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Abstract

One of the difficulties of color tracking is that color
changes in different lighting conditions, and static
color models would be inadequate to capture the non-
stationary color distribution over time. Although some
work has been done on adaptive color models, this
problem still needs further investigation. Different
from many other approaches, we formulate the non-
stationary color tracking problem as a transductive
learning problem, in which the generalization of a
trained color classifier is only defined on the pixels in
a specific image, rather than the whole color space.
This formulation offers a way to design and transduce
color classifiers through non-stationary color distribu-
tion. Instead of assuming a color transition model,
we assume that some unlabeled pizels in a new image
frame can be “confidently” labeled by a “weak classi-
fier” according to a preset confidence level. The pro-
posed Discriminant-EM (D-EM) algorithm offers an
effective way to transduce color classifiers as well as
automatically select a good color space. Ezxperiments
show that D-EM successfully handles some problems in
color tracking. As a component in our natural gesture
interface, this algorithm gives tight bounding bozes of
the hand or face regions in video sequences.

1 Introduction

In current research of vision-based human computer
interaction, the use of human body parts, such as
hands and faces, motivates the research of tracking
human body movements. Skin color offers an effec-
tive and efficient way to localize and track hand and
face. The core of color tracking is color-based segmen-
tation. According to the representation of color dis-
tribution in certain color spaces, current techniques
of color tracking can be classified into two general ap-
proaches: non-parametric [12, 8, 7, 15] and parametric
14, 9, 16).

One of the non-parametric approaches is based on

color histograms [12, 8, 7]. Since color space is quan-
tized by the structure of the histogram, this technique
shares the same problem with non-parametric density
estimation, in which the level of quantization will af-
fect the estimation. How to select a good quantization
level of the color histogram is not trivial. Although
non-uniform quantization would perform better than
uniform quantization, it is much more complicated.
Another non-parametric approach is proposed in [15]
based on the self-organizing map (SOM), an unsuper-
vised clustering algorithm to approximate color distri-
bution. SOM can be viewed as a neural network-based
vector quantization (VQ) algorithm. Although stan-
dard SOM algorithm also needs to specify the struc-
ture of SOM which acts the same role as the level
of quantization, the algorithm proposed in [15] has
the ability to find an appropriate structure by embed-
ded growing, pruning and merging schemes. Gener-
ally, these non-parametric approaches work effectively
when the quantization level is properly set and there
are sufficient data.

Parametric approaches model the color density in
parametric forms such as Gaussian distribution or
Gaussian Mixture models [14, 9, 16]. Expectation-
Maximization (EM) offers a way to fit probabilistic
models to the observation data. The difficulty of model
order selection could be handled by heuristics [9] or
cross-validation.

However, when we try to apply these techniques
to track human hand and face in some virtual en-
vironment (VE) applications, this problem is still
made challenging by some special difficulties such as
large variation in skin tone, unknown lighting condi-
tions and dynamic scenes. In order to achieve user-
independence, the tracking algorithm should be able
to deal with the large variation in skin color for differ-
ent people. One possible solution is to make a generic
statistical model of skin color by collecting a huge
training data set [7] so that the generic color model
works for every user. However, collecting and labeling



such a huge database is not trivial.

Even though such a good generic color model can
be obtained, we have to face another difficulty in color
tracking: generic color models would be incapable to
handle changing lighting conditions unless some in-
variants could be found. Many color tracking tech-
niques assume controlled lighting. However, in many
cases, the interested object may be shadowed by other
objects or by the object itself so that the color looks
very different. What is more, we cannot assume con-
stant lighting sources, since the lighting directions, in-
tensities and tones might change. In some VE applica-
tions, since the graphics rendered in the display keeps
changing, the reflective lights would change the appar-
ent color of objects. This color constancy problem is
not trivial in color tracking.

Because of dynamic scenes and changing lighting
conditions, the color distribution over time is non-
stationary, since the statistics of color distribution will
change with time. If a color classifier is trained under
a specific condition, it may not work well in other sce-
narios.

There have been some researchers who have looked
into the non-stationary color distribution problem in
color tracking. Several methods have been proposed
to approach this problem. A scheme of color model
adaptation was addressed in [9], in which a Gaussian
mixture model was used to represent color distribu-
tion, and a linear extrapolation was employed to ad-
just the parameters of the model by a set of labeled
training data drawn from the new frame. However,
since the new image is not segmented, this labeled
data set is not reliable.

In [15], the scheme of transduction of SOM was
proposed to update the weights and structure of the
trained SOM to capture the new color distribution,
according to a set of new training data, which con-
sists of both labeled and unlabeled samples. Since the
transduction of SOM combine unsupervised updating
and supervised updating, a large number of labeled
training data is not required.

In this paper, we try to investigate the problem
of non-stationary color distribution in color tracking.
We formulate this problem as a transductive learning
problem, which offers an easier way to design color
classifier in non-stationary color distribution. We fit
this transductive learning problem into an EM frame-
work. Combining both labeled and unlabeled data,
the proposed Discriminant-EM (D-EM) algorithm can
automatically select a good color space and relax the
assumption of probabilistic structure of color model.
Our algorithm has been applied to hand and face

tracking. It gives tight bounding boxes of the hand
or face regions in video sequences.

2 Color Features and Color Model

Each pixel is associated with a color feature vec-
tor. The issue of selecting color features must be
addressed here. Different color spaces, such as HSI,
RGB, normalized-RGB, have been used in current re-
search. Many color histogram-based techniques use 2-
D subspace of these 3-D color spaces, partly because
much more storage and searching are needed in 3-D.
For example, HSV space is reduced to HS subspace.
However, hue and saturation become unstable when
the intensity of a pixel is too large or too small, which
means that the HS values are meaningless for dark or
bright pixels. In some cases, simple intensity thresh-
olding can segment objects well, but using HS would
fail. Therefore, Reducing color space will lose some
valuable color information.

Although these compact 3-D color spaces have sub-
stantial physical meanings, none of them is found to be
able to give satisfactory color invariants through dif-
ferent lighting conditions. Considering that HSV color
space is not a linear transformation of RGB space, we
try to use a higher dimensional color space (6-D) by
combining HSV and RGB spaces. Since this higher
dimensional color space is redundant, it is not nec-
essary to estimate probabilistic model parameters in
such space. Instead, a linear subspace will be found by
performing multiple discriminant analysis technique,
which will be described in section 5. By this means,
good color features for classification can be selected
automatically.

Gaussian mixture models are employed here to
model the color distribution. Let x be the color fea-
ture vector for each pixel. Its distribution in one image
can be described as:

c
p(x1©®) = > p(x[0;;0;)p(0;) (1)

j=1
where Zlep(Oj) = 1 and where p(x|O;;6,) is the
conditional density for a pixel belonging to an object
Oj in the image, and it has been parameterized by 0,
and ® = {6;,j = 1,...,C}. This conditional density

can also be modeled by Gaussian mixtures:

T
p(x|0550;) = > p(x|ex; 05x)p(ck) (2)
k=1

where Z;‘::lp(ck) = 1 and where p(x|cg;0;i) is the
conditional density for a pixel belonging to a color



component ¢ of the object O; in the image. Each
mixture component can be modeled by Gaussian dis-
tribution with mean p; and covariance matrix 3.

3 A Transductive Problem

It is a good practice to learn a generic color classifier
by collecting a large labeled data set[7]. If some color
invariants to lighting could be found, learning such
a color classifier would suggest a direct and robust
way to color tracking. However, when we consider
the non-stationary color distribution over time, we do
not generally expect to find such invariants. In fact,
learning such a highly nonlinear color classifier may
not, be necessary.

The approach taken in [7] is an inductive learning
approach, by which the color classifier learned should
be able to classify any pixel in any image. Generally,
this color classifier would be highly nonlinear, and a
huge labeled training data set is required to achieve
good generalization. However, the requirement of gen-
eralization could be relaxed to a subset of the data
space. In color tracking, a color classifier M; at time
frame t could be only used to classify pixel x; in the
current, specific image feature data set I; so that this
specific classifier M; could be simpler. When there is a
new image Iy at time ¢+ 1, this specific classifier M;
should be transduced to a new classifier M1 which
works just for the new image I;;1 instead of I;. The
classification can be described as:

yi = arg jﬁ}aﬂﬂcp(yﬂxiaMtaItH 1Vx; € Iip1)  (3)

where y; is the label of x;, and C' is the number of
classes. In this sense, we do not care the performance
of the classifier M1 outside I;41. The transductive
learning is to transduce the classifier My to M1 given
Ii+1. Figure 1 shows the transduction of color classi-
fiers.

This transduction may not always be feasible un-
less we know the joint distribution of I; and I;4.
Unfortunately, such joint probability is generally un-
known since we may not have enough a priori knowl-
edge about the transition in a color space over time.
One approach is to assume a transition model, like
the case in motion tracking by Kalman filter or
Condensation[1], so that we can explicitly model
p(It41]1t). One of the difficulties of this approach is
that a fixed transition model is unable to capture much
dynamics. Although the issue of motion model switch-
ing by learning transition models has been addressed
in [1], their scheme is not general. Another difficulty
is that it may not be easy to identify parameters of the

Figure 1: An illustration of transduction of classifiers.

transition models due to the insufficient labeled train-
ing data. The approach used in [9] assumes a linear
transition model. However, the transition (updating)
of color models is plagued since the newest image has
not, been segmented yet.

However, our assumption is different from the tran-
sition model assumption. We assume that the classi-
fier M; at time ¢ can give “confident” labels to several
samples in I;y1, so that the data in I;; can be divided
into two parts: labeled data set £ = {(xj,y;),j =
1,...,N}, and unlabeled set U = {x;,j =1,..., M},
where N and M are the size of the labeled set and un-
labeled set respectively, x; is the color feature vector,
and y; is its label (such as skin or non-skin). Here, £
and U are from the same distribution. Consequently,
the transductive classification can be written as:

yi=arg maz p(y;|x;, L,U V% €U)  (4)
Jj=1,...,

In this formulation, the specific classifier M; is trans-
duced to another classifier M1 by combining a large
unlabeled data set from I;1.

4 The EM framework

The Expectation-Maximization (EM) approach can
be applied to this transductive learning problem, since
the labels of unlabeled data can be treated as missing
values.

The training data set D is a union of a set of
labeled data set £ and a set of unlabeled set U.
When we assume sample independency, the model pa-
rameters @ can be estimated by maximizing a pos-
teriori probability p(®|D). Equivalently, this can
be done by maximizing lg(p(®|D)). Let I(®|D) =



lg(p(®)p(D|®)). When introducing a binary indica-
tor z; = (2i1,...,2ic), where z;; = 1 iff y; = Oj, and
z;; = 0 otherwise, we have:

(©|D, 2) = 1g(p(®))

C
+ Z Z 25 18(p(0;|@)p(x:|O;; O))

x,€D j=1

The EM algorithm estimates the parameters ® by
an iterative hill climbing procedure, which alterna-
tively calculates F(Z), the expected values for all un-
labeled data, and estimates the parameters @ given
E(Z). The EM algorithm generally reaches a local
maximum of [(®|D). It consists of two iterative steps:

e E-step: set Z:t1) = B[Z|D; 6()]

o M-step: set O+ = arg maz, p(0|D; Z*-+1)

where Z() and ©®) denote the estimation for Z and
© at the k-th iteration respectively.

When the size of the labeled set is small, EM basi-
cally performs an unsupervised learning, except that
labeled data are used to identify the components. If
the probabilistic structure, such as the number of com-
ponents in mixture models, is known, EM could es-
timate true probabilistic model parameters. Other-
wise, the performance could be very bad. Generally,
when we do not have such prior knowledge about the
data distribution, a Gaussian distribution is always as-
sumed to represent a class. However, this assumption
is often invalid in practice, which is partly the reason
that unlabeled data hurt the classifier.

5 D-EM: A Transduction Algorithm

EM often fails when structure assumption does not
hold. One approach to this problem is to try every
possible structure and select the best one. However,
it needs more computational resources. An alternative
is to find a mapping such that the data are clustered
in the mapped data space, in which the probabilis-
tic structure could be simplified and captured by sim-
pler Gaussian mixtures. MDA offers a possible way to
relax the assumption of probabilistic structure, and
the EM supplies MDA enough labeled data to iden-
tify most discriminating features for classification.

5.1 Multiple Discriminant Analysis
Multiple Discriminant Analysis (MDA) [3] is a nat-
ural generalization of Fisher’s linear discrimination
(LDA) in the case of multiple classes. MDA offers
many advantages and has been successfully applied to

many tasks such as face recognition. The basic idea
behind MDA is to find a linear transformation W to
map the original d; dimensional data space to a new
ds space such that the ratio between the between-class
scatter and within-class scatter is maximized in the
new space.

MDA offers a means to catch major differences be-
tween classes and discount factors that are not related
to classification. Some features most relevant to clas-
sification are automatically selected or combined by
the linear mapping W in MDA, although these fea-
tures may not have substantial physical meanings any
more. Another advantage of MDA is that the data
are clustered to some extent in the projected space,
which makes it easier to select the structure of Gaus-
sian mixture models. Details can be found in [3].

5.2 D-EM Algorithm

It is apparent that MDA is a supervised statisti-
cal method, which requires enough labeled samples to
estimate some statistics such as mean and covariance.
By combining DMA with the EM framework, our pro-
posed method, Discriminant-EM algorithm (D-EM),
is such a way to combine supervised and unsupervised
paradigms. The basic idea of D-EM is to identify some
“similar” samples in the unlabeled data set to enlarge
the labeled data set so that supervised techniques are
made possible in such an enlarged labeled set.

D-EM begins with a weak classifier learned from
the initial labeled set. Certainly, we do not expect
much from this weak classifier. However, for each un-
labeled sample x; € U, the classification confidence
w; = {wjr, k = 1,...,C} can be given based on the
probabilistic label 1; = {l;x, k = 1,...,C} assigned by
this weak classifier.

P(Wx;|0k)p(Ox)
S P(WTx;|04)p(Oy)
wir =lg(p(WTx;|08)) k=1,...,C (6)

Eugation(6) is just a heuristic to weight unlabeled
data x; € U, although there may be many other
choices.

After that, MDA is performed on the new weighted
data set D’ = L|J{x;,1;, w; : Vx; € U}, which is lin-
early projected to a new space of dimension C' — 1 but
unchanging the labels and weights, D= {WTXj,yj :
vx; € L} J{WTx;,1;,w; : Vx; € U}. Then param-
eters ® of the probabilistic models are estimated on
f), so that the probabilistic labels are given by the
Bayesian classifier according to Equation(5). The al-
gorithm iterates over these three steps, “Expectation-
Discrimination-Maximization”. The algorithm can be

()
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terminated by several methods such as presetting the
iteration times, comparing a threshold and the differ-
ence of the parameters between consecutive two iter-
ations, and using cross-validation.

It should be noted that the simplification of prob-
abilistic structures is not guaranteed in MDA. If the
components of data distribution are mixed up, it is
very unlikely to find such a linear mapping. Our ex-
periments show that D-EM works better than pure
EM.

5.3 Tracking by D-EM

The application of D-EM to color tracking is
straightforward. In our current implementation, in
the transformed space, both classes (foreground and
background) are represented by a Gaussian distribu-
tion with three parameters, the mean pu;, the covari-
ance X; and a priori probability P;.

We use three schemes to bootstrap the tracking.
The first method is by manually collecting and label-
ing some pixels (100 samples) from both the interested
object and background. An alternative is by putting
the interested object in the middle of the image so
that some data can be automatically collected. The
third method is to detect the moving region by im-
age differences in the first several frames. We assume
that we are interested in the object with the largest
motion.

For each new image I, by setting a confidence level,
the color classifier M;_1 at time ¢ — 1 divides I; into
two parts: labeled set £; and unlabeled set U;. L;
is confidently labeled by M;_;. The D-EM algorithm
identifies some ”similar” samples in U to the labeled
samples in an unsupervised sense. Therefore, good
discriminating color features can be automatically se-
lected through the enlarged labeled data set. After a
Bayesian classifier is designed in the new feature space,
it is used to probabilistically label I;. Through several
iterations, the classifier M; 1 has been transduced to
M; by D-EM.

6 Experiments
6.1 Simulation

At current time ¢ in tracking, since M; 1 may not
be able to give a good segmentation on I;, the image
at time ¢ is not labeled (segmented) so that the ground
truth for the new data set is not available. However, to
evaluate our algorithm, we assume the ground truth is
known to calculate classification errors, although such
errors are not available in real applications.

We use two “hand images” (resolution 100 x 75),
where I; is a segmented image, and Iy is the same

as I1 except that the color distribution of I3 is trans-
formed by shifting the R element of every pixel by 20
such that I looks like adding a red filter. A color clas-
sifier is learned for I; with error rate less than 5%. In
this simple situation, this color classifier would fail to
correctly segment hand region from I, since the skin
color in I5 is much different. Actually, it has error rate
of 35.2% on I5.

— EM
= DEM

error rate
error rate

A W % W w  wm w %
iteration confidence level

() (b)

Figure 2: (a) shows the comparison between EM and
D-EM. (b) shows the effect of number of labeled and
unlabeled data in D-EM

Figure 2.a shows the comparison between EM and
D-EM. In this experiment, both EM and D-EM con-
verge after several iterations, but D-EM gives a lower
classification error rate (6.9% vs. 24.5%). To inves-
tigate the effect of the unlabeled data used in D-EM,
we feed the algorithm a different number of labeled
and unlabeled samples. The number of labeled data is
controlled by the confidence level. In this experiment,
confidence level is the same as the size of the labeled
set. In general, combining unlabeled data can largely
reduce the classification error when labeled data are
very few. When using 20% (1500) unlabeled data,
the lowest error rate achieved is 27.3%. When using
50% (3750) unlabeled data, the lowest error rate drops
to 6.9%. The transduced color classifier gives around
30% more accuracy. Figure 2.b shows the effect of
different sizes of labeled and unlabeled data sets in D-
EM.

6.2 Hand and Face Localization

This color tracking algorithm is applied to a ges-
ture interface, in which hand gesture commands are
localized and recognized to serve as inputs of a virtual
environment application. These experiments ran at
15-20Hz on a single processor SGI 02 R10000 work-
station.

Figure 3 and Figure 4 show two examples of hand
and face localization in a typical lab environment.
Both cases are difficult for static color models. In Fig-
ure 3, the skin color in different parts of hand are dif-
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Figure 3: Hand Localization by D-EM

Figure 4: Face localization by D-EM

ferent. The camera moves from downwards to upwards
and the lighting conditions on the hand are different.
Hand becomes darker when it shades the light sources
in several frames. In Figure 4, skin color changes a
lot when the head moves back and forth, and turns
around.

7 Conclusion

This paper presents a study of the problem of non-
stationary color tracking. We formulate this prob-
lem as a transductive learning problem, which offers
a way to design and transduce color classifiers in non-
stationary color distribution through image sequences.
Instead of assuming a transition model, we assume
that some unlabeled pixels in a new image frame can
be “confidently” labeled by a “weak classifier” accord-
ing to a preset confidence level. Integrating discrimi-
nant analysis and the EM framework, the proposed
Discriminant-EM (D-EM) algorithm offers a means
to relax the assumption of probabilistic structures of
data distribution and automatically select a good color
space. As a component in a natural gesture interface,
this algorithm gives tight bounding boxes of the hand
or face region in video sequences.

One of the future research directions of this ap-
proach is to explore the nonlinear case of MDA. The
convergence and stability analysis should be studied

in the future work. Currently, the confidence level is
an important parameter in the transduction to control
the size of labeled set. It needs further investigation.
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