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Abstract

Since human hand is highly articulated and de-
formable, hand posture recognition is a challenging
example in the research of view-independent object
recognition. Due to the difficulties of the model-
based approach, the appearance-based learning ap-
proach is promising to handle large variation in vi-
sual inputs. However, the generalization of many
proposed supervised learning methods to this problem
often suffers from the insufficiency of labeled train-
ing data. This paper describes an approach to allevi-
ate this difficulty by adding a large unlabeled training
set. Combining supervised and unsupervised learning
paradigms, a novel and powerful learning approach,
the Discriminant-EM (D-EM) algorithm, is proposed
in this paper to handle the case of small labeled train-
ing set. FExperiments show that D-EM outperforms
many other learning methods. Based on this approach,
we implement a gesture interface to recognize a set of
predefined gesture commands, and it is also extended
to hand detection. This algorithm can also apply to
other object recognition tasks.

1 Introduction

In current VE applications, keyboards, mice, wands
and joysticks are still the most popular devices. How-
ever, they are inconvenient and unnatural. In recent
years, the use of human movements, especially hand
gestures, serves as a motivating force for research in
gesture modeling, analyzing and recognition.

Although hand gestures are complicated to model
since the meanings of hand gestures depend on people
and cultures, a set of specific hand gesture vocabulary
can be always predefined in many applications, such
as Virtual Environment (VE) applications, so that the
ambiguity can be limited. Generally, these hand ges-
tures can be either static hand postures or temporal
hand gestures. Hand postures express some concepts
by hand configurations and hand shapes, while tem-

poral hand gestures represent some actions by hand
movements. Sometimes, hand postures act as spe-
cial transition states in temporal gestures, and supply
a cue to segment and recognize temporal hand ges-
tures. Some research results show that static hand
signs and temporal hand gestures seldom present si-
multaneously, which suggests us study static hand ges-
tures and temporal gestures separately.

Different from sign languages, the gesture vocab-
ulary in VE applications is structured and disam-
biguated. In such scenarios, some simple controlling,
commanding and manipulative gestures are defined to
fulfill natural interaction such as pointing, navigat-
ing, moving, rotating, stopping, starting, selecting,
etc. These gesture commands can be simple in the
sense of motion; however, many different hand pos-
tures are used to differentiate and switch among those
commanding modes. For example, only if we know a
gesture is a pointing gesture, it makes sense to esti-
mate its pointing direction. This problem is an em-
pirical problem in most VE applications.

Although this problem can be formulated as a clas-
sification problem of different predefined static hand
postures, there are still many difficulties. The first
is view-independent hand posture recognition, which
means hand postures must be recognized from any
view direction. This is a natural requirement in many
VE applications. In most cases, since users do not
know where the cameras are, the naturalness and im-
mersiveness will be ruined if users are obliged to issue
commands to an unknown direction. Another diffi-
culty is that human hand is highly articulated and de-
formable, the large variation in hand postures should
be handled to make a user-independent system.

Since hand postures can express some concepts as
well as act as special transition states in temporal ges-
tures, recognizing or estimating hand postures or hu-
man postures is one of the main topics in gestures
recognition. Some work has been done in this area.

One approach is the 3D model-based approach, in



which the hand configuration is estimated by tak-
ing advantage of 3D hand models [7, 8, 10, 11, 13,
15, 17, 21]. Since hand configurations are inde-
pendent to view directions, these methods could di-
rectly achieve view-independent recognition. Differ-
ent models take different image features to construct
feature-model correspondences. Joint angles can be
estimated by minimizing a projected surface model
and some image evidences such as silhouettes in the
light of “analysis-by-synthesis” [10, 11, 7]. How-
ever, this approach needs good surface models and
the process of projection-and-comparison is expensive.
Alternatively, point and line features are employed
in kinematical hand models to recover joint angles
[15, 17, 21]. Hand postures could be estimated ac-
curately if the correspondences between the 3D model
and the observed image features are well established.
Physical models and statistical models [8] were also
employed to estimate hand configurations. However,
the ill-posed problem of estimating hand configuration
is not trivial. Many current methods require reliable
feature detection which is plagued by self-occlusion.
Another drawback is that it is not trivial to achieve
user-independence, since 3D models should be cali-
brated for each user; otherwise the accuracy will be
scarified.

Although accurate estimation of hand configura-
tion is important in some applications such as manip-
ulating virtual objects or multi-DOF input devices,
a classification of hand postures is often enough in
many other applications such as commands switch-
ing. Since the appearances are much different among
different hand postures and these differences are not
large among different people, an alternative approach
is appearance-based approach [5, 6, 14, 19], in which
classifiers are learned for a set of image samples. Al-
though it is easier for the appearance-based approach
to achieve user-independence than model-based ap-
proach, there are two major difficulties of this ap-
proach: automatic feature selection and training data
collection. Although there have been many discus-
sions about feature extraction [19, 14, 13] and selection
[5, 6], little has been addressed on the training data.
The generalization of many current methods have to
largely depend on their training data sets. In general,
good generalization requires a large and representative
labeled training data set. However, to manually label
a large data set will be very time-consuming and te-
dious. Although unsupervised schemes has been pro-
posed to clustering the appearances of 3D objects[1],
it is hard for pure unsupervised approach to achieve
accurate classification without supervision.

In this paper, we take an appearance-based ap-
proach and try to investigate this training data prob-
lem. As we observed, although it is expensive to man-
ually label sample images, it is not difficult to col-
lect a large set of unlabeled hand images, which mo-
tivates us to train a good classifier by a small set of
labeled data but with a large unlabeled data set. We
propose a novel and powerful learning approach, the
Discriminant-EM (D-EM) algorithm, to hybrid super-
vised and unsupervised learning paradigms. Experi-
ments show that D-EM outperforms many other learn-
ing methods. This algorithm can also be applied to
other object recognition tasks.

A formulation of the problem is given in section
2. Section 3 and section 4 describes our proposed ap-
proach and the D-EM algorithm. Some of our experi-
ment results can be found in section 5, and section 6
concludes the paper and give some future work.

2 An Inductive Problem

View-independent hand posture recognition is to
identify a posture in any view direction. Some hand
posture images are shown in Figure 1. Each row
should be classified into the same posture class.

Traditionally, feature extraction and selection are
independent to the designation of classifier. Since the
raw image space is huge, some physical features, which
can be extracted by some image processing techniques,
can be employed as a compact representation of an
object. Even though selecting such physical features
needs quite a lot domain knowledge and experiences,
this step in many applications is ad hoc and under
large risk. For example, some statistics, such as the
area of the bounding box, the compactness of the hand
and some moments of the edge map, could be used to
represent a hand posture. However, totally different
hand posture might share the same set of such statis-
tics. To avoid this problem, many researchers employ
mathematical features. Although they may not have
substantial physical meanings, mathematical features
can preserve most of the image information of the ob-
ject. The Principal Component Analysis (PCA) tech-
nique offers such a way by persevering some largest
“energy” components. Generally, statistical methods
to extract mathematical features need a large training
data set.

Although either physical or mathematical features
can largely reduce the raw image space and serve as
compact representations of an object, different fea-
tures play different roles in object recognition and
they should be weighted differently. Some heuris-
tics can be used to weight physical features. How-



AL ITTI YT

D i R
i ] D At e
St B R D e e B
o S
B i o I O Y e I
i 1 S D D D W e
0 e Y e R e

Figure 1: Posture data

ever, such heuristics are domain-dependent and are
not always plausible. As of mathematical features,
it is even harder to find such heuristics, since physi-
cal meanings for mathematical features are not avail-
able. Fortunately, the discriminant analysis technique
offers a means to automatically select and weight
classification-relevant features. In the area of face and
gesture recognition, there have been some successful
methods based on it [5, 6, 3]. However, the discrim-
inant analysis technique puts a harsh requirement to
the training data set: a large labeled data set. We
do not expect discriminant analysis to output a good
result, unless enough labeled data are available.

In fact, it seems that it might not be necessary to
have every sample labeled in supervised learning. A
very interesting result given by the theory of the sup-
port vector machine (SVM)[20] is that the classifica-
tion boundary is related only to some support vec-
tors, rather than the whole data set. Although the

identification of these support vectors is not trivial, it
motivates us to think about the roles of non-support
vectors.

Fortunately, it may be easier to collect a large num-
ber of unlabeled data, which may be used to help
supervised learning, since unlabeled data contain in-
formation about the joint distribution over features.
If the probabilistic structure of data distribution is
known, parameters of probabilistic models can be es-
timated by unsupervised learning alone, but it is still
impossible to assign class labels without labeled data
[2]. This fact suggests that labeled data (if enough)
can be used to label the class and unlabeled data can
be used to estimate the parameters of generative mod-
els.

In such circumstance, the hybrid training data set
D consists of a labeled data set £ = {(x;,y;),i =
1,..., N}, where x; is feature vector, y; is label and
N is the size of the set, and an unlabeled data set
U={x4i=1,...,M}, where M is the size of the set.
We make an assumption here that £ and U are from
the same distribution. This assumption is reasonable,
because labeled data are selected from the unlabeled
data set. We also assume that the unlabeled set U is
much larger than the labeled set £. Essentially, the
classification problem can be represented as:

Yyi = arg 'nlwmcp(yﬂxi, LU:Vx;€Q) (1)
i=1,...,

where ) is the whole data space and C is the num-
ber of classes. The goal of the inductive learning is to
learn a classifier which can be generalized to the whole
data space 2 by using a small set of labeled date and
a large set of unlabeled data.

3 In the EM Framework

The Expectation-Maximization (EM) approach can
be applied to this learning problem, since the labels of
unlabeled data can be treated as missing values. We
employ a generative model which assumes that the
hybrid data set is drawn from a mixture density dis-
tribution of C' components {¢;,j = 1,...,C}, which
are parameterized by ® = {6;,j = 1,...,C}. The
mixture model can be represented as:

c
p(x[©) =D plxlc;; 0;)p(c;10;) (2)

j=1

where x is a sample drawn from the hybrid data set
D = L|JU. We make another assumption that each
component in the mixture density corresponds to one
class, ie. {y; =¢;,i=1,...,C}L



The parameters ® can be estimated by maximizing
a posteriori probability p(®|D). Equivalently, this can
be done by maximizing 1g(p(®|D)). Let I(®|D) =
lg(p(®)p(D|®)). When assuming that each sample is
independent to the others, and introducing a binary
indicator z; = (2i1,...,2ic), where z;; = 1iff y; = ¢;
and z;; = 0 otherwise, we have:

I(®|D, Z) = lg(p(®))

C
+ 37 2 180(0,1©)p(xi]0: ©))

x,€D j=1

In the EM framework, probability parameters ©
can be estimated by an iterative hill climbing pro-
cedure, which alternatively calculates E(Z), the ex-
pected values of all unlabeled data, and estimates the
parameters ® given E(Z). The EM algorithm gener-
ally reaches a local maximum of [(®|D). It consists of
two iterative steps:

o E-step: set 2+t = E[Z|D; 6%)]
o M-step: set OFD) = arg max, p(0©|D; ZH+1)

where Z() and ©%) denote the estimation for Z and
© at the k-th iteration respectively.

When the size of the labeled set is small, EM basi-
cally performs an unsupervised learning, except that
labeled data are used to identify the components. Al-
though the EM algorithm can be applied straightfor-
wardly, one of the difficulties is that the probabilistic
structure of data distribution must be determined in
advance. When the assumed probabilistic structure
in the generative model does not align to the ground
truth structure, EM hardly gives a good estimation,
which is partly the reason that unlabeled data hurt
the classifier. In many cases, the data dimension is
high so that the size of training data should be ac-
cordingly large, otherwise, the parameter estimation
of the generative model will be highly biased.

4 Inductive Learning by D-EM

Since we generally do not know the probabilistic
structure of data distribution, EM often fails when
structure assumption does not hold. One approach
to this problem is to try every possible structure and
select the best one. However, it needs more computa-
tional resources. An alternative is to find a mapping
such that the data are clustered in the mapped data
space, in which the probabilistic structure could be
simplified and captured by simpler Gaussian mixtures.
The Multiple Discriminant Analysis (MDA) technique
offers a way to relax the assumption of probabilistic

structure, and EM supplies MDA a large labeled data
set to select most discriminating features. At the mean
time, MDA also reduces the data dimension, which
makes the task of statistical estimation easier.

MDA is a natural generalization of Fisher’s linear
discrimination (LDA) in the case of multiple classes[2].
The basic idea behind MDA is to find a linear trans-
formation W to map the original d; dimensional data
space to a new ds space such that the ratio of the
between-class scatter and the within-class scatter is
maximized in some sense. Details can be found in [2].
MDA offers a means to catch major differences be-
tween classes and discount factors that are not related
to classification. Some features most relevant to clas-
sification are automatically selected or combined by
the linear mapping W in MDA, although these fea-
tures may not have substantial physical meanings any
more. Another advantage of MDA is that the data
are clustered to some extent in the projected space,
which makes it easier to select the structure of Gaus-
sian mixture models.

It is apparent that MDA is a supervised statistical
method, which requires enough labeled samples to es-
timate some statistics such as mean and covariance.
By combining MDA with the EM framework, our pro-
posed method, Discriminant-EM algorithm (D-EM),
is such a way to combine supervised and unsupervised
paradigms. The basic idea of D-EM is to enlarge the
labeled data set by identifying some “similar” sam-
ples in the unlabeled data set, so that supervised tech-
niques are made possible in such an enlarged labeled
set. D-EM employs a generative model in the lower
dimensional space mapped by the transformation W
from MDA.

C
p(y1©®) = > p(yles: 0;)p(c;105) (3)

j=1

where y = WTx.

D-EM begins with a weak classifier learned from the
labeled set. Certainly, we do not expect much from
this weak classifier. However, for each unlabeled sam-
ple x;, the classification confidence w; = {wji, k =
1,...,C} can be given based on the probabilistic la-
bel 1; = {ljx,k = 1,...,C} assigned by this weak
classifier.

p(WTx;|cr)plcr)
Yooy POWTx; ek )p(cr)
wix =lg(p(Wrx)lexr)) k=1,....,C  (5)

Eugation(5) is just a heuristic to weight unlabeled
data x; € U, although there may be many other

(4)

Lk =



choices. This E-step outputs a probabilistic label
and a weight for each unlabeled sample, given a fixed
transformation W and a generative model.

After that, the D-step is to perform MDA on the
new weighted data set D' = L J{x;,1;, w; : Vx; € U},
to find a linear transformation W, by which the data
set D’ is linearly projected to a new space of dimen-
sion C' — 1, but unchanging the labels and weights,
D= {(WTx;,y; : vx; € LY U{WTx;,L;,w; : Vx; €
U}. Then the M-step estimates parameters © of
the probabilistic models on 75, so that the prob-
abilistic labels are given by the Bayesian classifier
according to Equation(4). The algorithm iterates
over these three steps, “Expectation-Discrimination-
Maximization”. The algorithm can be terminated by
several methods such as presetting the iteration times,
comparing a threshold and the difference of the pa-
rameters between consecutive two iterations, and us-
ing cross-validation.

It should be noted that the simplification of prob-
abilistic structures is not guaranteed in MDA. If the
components of data distribution are mixed up, it is
very unlikely to find such a linear mapping. In this
case, nonlinear mapping should be found so that sim-
ple probabilistic structure could be used to approxi-
mate the data distribution in the mapped data space.
Generally, we use Gaussian or 2-order Gaussian mix-
tures. Our experiments show that D-EM works better
than pure EM.

5 Experiments

In this section, we describe the collection of training
and testing data set, data preprocessing, extraction of
physical and mathematical features, investigation of
the effect of using unlabeled data in training, com-
parison among different classification schemes, and an
application to hand detection.

5.1 Data Collection and Setting

As shown in Figure 1, the gesture vocabulary in
our gesture interface is 14, each of which represents
a gesture command mode, such as navigating, point-
ing, stopping, grasping, hooking, cutting, etc. A hand
localization system [23] has been developed to auto-
matically collect hand images which serve as the un-
labeled data, since the localization system only out-
puts bounding boxes of hand regions, regardless of
hand postures. A large unlabeled database can be
easily constructed. Currently, there are 14,000 unla-
beled hand images in our database. It should be noted
that the bounding boxes of some images are not tight,

which introduce noise to the training data set. How-
ever, including such noise can make the recognition
algorithm more robust. For each posture class, some
samples are manually labeled. To investigate the ef-
fect of using unlabeled data and to compare different
classification algorithms, we construct a testing data
set, which consists of 560 labeled images.

The step of data preprocessing includes color-based
background subtraction [23], histogram equalization
and lighting correction [16]. This step largely bypasses
the influence of the backgrounds.

Physical and mathematical features are both used
as hand representation in our experiments. Taking
advantage of the texture and edge information, we ex-
tract and normalize 28 physical features, (d2 = 28).
Gabor wavelet filters with 3 levels and 4 orientations
are used to extract 12 texture features, each of which is
the standard deviation of the wavelet coefficients from
one filter. 10 coefficients from the Fourier descriptor
are used to represent hand shapes. We also use some
statistics such as the hand area, contour length, to-
tal edge length, density, and 2-order moments of edge
distribution. Therefore, we have 28 low-level image
features in total.

To extract mathematical features, hand images are
resized to 20 x 20, which gives a raw image space of
dimension (d; = 400). PCA is employed to find a
lower-dimensional feature space R%. We experiment
with different dy and a cross-validation approach is
taken to find a good ds.

5.2 The Role of Unlabeled Data

To investigate the effect of the unlabeled data used
in D-EM, we feed the algorithm a different number of
labeled and unlabeled samples. In this experiment, we
use the mathematic features extracted by PCA with
22 principal components, and the dimension for MDA
is set to 10. In this experiment, we use 500, 1000,
2500, 5000, 7500, 10000, 12500 unlabeled samples and
42, 56, 84, 112, 140 labeled data, respectively. From
Figure 2, in general, combining some unlabeled data
reduce the classification error by 20% to 30%. It is
not surprising to see this result, because D-EM is able
to automatically label some samples by its embedded
unsupervised mechanism.

In Figure 3, we study the effect of the dimension
parameters in PCA and MDA. If less principal com-
ponents of PCA are used, some minor but important
discriminating features may be neglected so that those
principal components may be insufficient to discrimi-
nate different classes. On the other hand, if more prin-
cipal components of PCA are used, it would include
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Figure 2: The effect of labeled and unlabeled data in
D-EM

more noise. Therefore, the number of principal com-
ponents of PCA is an important parameter for PCA.
The dimension of MDA ranges between 1 to C' — 1,
where C' is the number of classes. We are interested
in a lower dimensional space in which different classes
can be classified. In this experiment, we use 112 la-
beled data and 10000 unlabeled data, and we find that
a good dimension parameter of PCA is around 20 to
24, and 8 to 13 for MDA.
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Figure 3: The effect of the dimension of PCA and
MDA in D-EM

5.3 Comparison

Four classification algorithms are compared in this
experiment. We test both physical (P-Features) and
mathematical features (M-Features). For M-Features,
the number of principal components of PCA is set to
22, and a set of 560 labeled data is used to perform
MDA with dimension of 10.

Using 1000 labeled training data, the multi-layer
perceptron used in this experiment has one hidden
layer of 25 nodes. We experiment with two schemes
of the nearest neighbor classifier. One is just of 140
labeled samples, and the other uses 140 labeled sam-

ples to bootstrap the classifier by a growing scheme,
in which newly labeled samples will be added to the
classifier according to their labels. The labeled and
unlabeled data for both EM and D-EM are 140 and
10000, respectively. Table 1 shows the comparison.

Algorithm P-Features M-Features
Multi-layer Perceptron 33.3% 39.6%
Nearest Neighbor 30.2% 35.7%
Nearest Neighbor(growing) 15.8% 20.3%
EM 21.4% 20.8%
D-EM 9.2% 7.6%

Table 1: Comparison among different algorithms

From Table 1, the D-EM algorithm outperforms the
other three methods. The multi-layer perceptron is of-
ten trapped in local minima in this experiment. The
poor performance of the nearest neighbor classifier is
partly due to the insufficient labeled data. When the
growing scheme is used, it reduces the error by 15%,
since it automatically expends the stored templates.
The problem of this scheme is that it is affected by
the order of inputs, because there is no confidence
measurement in growing so that the error of label-
ing will be accumulated. Pure EM algorithm hardly
converges to a satisfactory classification in our exper-
iments. However, D-EM ends up with a pretty good
result.

5.4 Hand Detection

Combining with skin color segmentation[23], view-
independent posture recognition can be used to detect
hands. Since skin color segmentation has already lim-
ited the searching range, hand detection can be very
efficient. Figure 4 shows two examples, in which the
skin color regions from color-based segmentation often
contain the arm. Hand detection gives a more accu-
rate bounding box of hand region.

6 Conclusion

View-independent hand posture recognition is im-
portant to achieve natural and immersive interaction
in many gesture-based virtual environment applica-
tions. Although many supervised learning approaches
has been proposed to this problem, the generalization
of these methods often suffers from the training data
set, because collecting a large labeled training set is
time-consuming. However, manually labeling all sam-
ples is not necessary. In this paper, we propose a novel
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Figure 4: Hand detection

and powerful learning approach, the Discriminant-EM
algorithm, which uses an unlabeled data set to help
supervised learning to reduce the number of labeled
samples. By combining MDA and the EM algorithm,
MDA makes EM perform more supervised learning,
and EM supplies MDA enough labeled data to per-
form discriminant analysis. Experiments show that
the D-EM outperforms some learning methods such
as multi-layer perceptron and nearest neighbor. This
algorithm can also be applied to other object recogni-
tion tasks.

Since current D-EM uses linear MDA and the sim-
plification of probabilistic structure cannot be guar-
anteed in some cases, the non-linear case of MDA will
be investigated in the future. The convergence and
stability analysis of the D-EM algorithm will also be
studied. More physical features for hand images will
be studied to make a more extensive comparison to
mathematical features. The work of hand detection
will be extended in our current hand localization sys-
tem. The applications of the D-EM algorithm to other
object recognition tasks are worth pursuing.
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