
Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback 

Ying Wu, Qi Tian and Thomas S. Huang 
Beckman Institute 

University of Illinois at Urbana-Champaign 
405 N. Mathews, Urbana, IL 61801 
{ y ingwu ,qi tian,huang }@ ifp .uiuc. edu 

Abstract 

Retrieval techniques based on pure similarity metrics are 
often suffered from the scales of image features. An alterna- 
tive approach is to learn a mapping based on queries and 
relevance feedback by supervised learning. However, the 
learning is plagued by the insuficiericy of labeled training 
images. Different from most current research in image re- 
trieval, this paper investigates the possibility of taking ad- 
vantage of unlabeled images in the given image database 
to make feasible a hybrid statistical learning. Assuming a 
generative model of the database, the proposed approach 
casts image retrieval as a trunsductive learning problem in 
a probabilistic framework. Our experiments show that the 
proposed approach has a satisfactory perjormance in image 
retrieval applications. 

1. Introduction 

To avoid manual annotating large image databases, an 
alternative approach of retrieving images is content-based 
image retrieval (CBIR), by which images would be indexed 
by their visual contents such as color, texture, shape, etc. 
Many research efforts have been made to extract these low- 
level image features [l, 4, 91, evaluate distance metrics [7, 
lo], and look for efficient searching schemes [ 11, 141. 

However, images are too rich to represent by these low- 
level physical features. An alternative representation is 
mathematical features, which only performs dimension re- 
duction in mathematical senses. Principal component anal- 
ysis (PCA) is a typical technique to obtain such mathemat- 
ical features [ 111. Both representations confront the same 
problem: automatic feature weighting, which is partly the 
reason of the gap between high-level concepts and low-level 
image features. For example, if images are represented as 
a set of physical features, sometimes color features such as 
color histogram or color moments are more suitable for re- 
trieval, but sometimes a combination of color and texture 

features will have better performance. 
The mapping between them would be highly nonlinear 

such that it is impractical to represent it explicitly. In this 
situation, learning approaches can be taken into account 
to learn the possible mapping implicitly and dynamically. 
However, in the application of image retrieval, there are 
a limited number of labeled training images given by the 
queries and relevance feedback, so that it is difficult to learn 
the image similarity measurement correctly. Pure super- 
vised learning from such a small training data set will have 
poor generalization performance. 

To obtain a possible better similarity measurement from 
several given images, this paper looks into the image re- 
trieval problem in the perspective of transductive learning, 
and presents a probabilistic approach to employ both la- 
beled images and unlabeled images. Based on the EM 
framework and discriminant analysis, the proposed algo- 
rithm, Discriminant-EM (D-EM), learns a generative model 
in a lower-dimensional subspace obtained by discriminant 
analysis, which relaxes the assumption of the probabilistic 
structure of the data distribution. A new formulation of the 
image retrieval problem is given in section 2. The proposed 
algorithm is presented in section 3. Experimental results 
and conclusion are given in 4 and 5 ,  respectively. 

2. Problem Formulation and EM 

The task of image retrieval is to find as many as possible 
“similar” images to the query images in a given database. 
The retrieval system acts as a classifier to divide the images 
in the database into two classes, either relevant or irrelevant. 
By the approach of relevance feedback in image retrieval, 
several relevant and irrelevant examples are labeled by the 
user. 

Generally, it is under a large risk to perform supervised 
learning techniques on such a small labeled data set, since 
the similarity among these images would be vague such that 
the generalization would be very poor. However, when we 
weaken the requirement of generalization to a known sub- 
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set of the whole data space, and provide more unsupervised 
data to describe this subset, a good generalization would 
be obtained on such subset, since here we do not care the 
generalization of the data outside this subset. For image re- 
trieval, we try to learn an good image classifier in the sense 
of the given database. 

The basic idea of our approach is to identify some "simi- 
lar" images to the labeled images to enlarge the labeled data 
set. Therefore, good discriminating features could be auto- 
matically selected through this enlarged training data set to 
better represent the implicit concepts. 

In such circumstance, we employ a hybrid training data 
set D which consists of a labeled data set C = {(xi , yi), i = 
1, . . . , N } ,  where xi is its feature vector, yi is its label 
and N is the size of the set, and an unlabeled data set 
U = {xi,i = 1,. . . , M } ,  where M is the size of the 
set. Here, the query images act as the labeled data, and the 
whole database or a subset can be treated as the unlabeled 
set. 

In this sense, image retrieval is formulated as a trunsduc- 
tive problem, which is to generalize the mapping function 
learned from the labeled training data set C to a specific un- 
labeled data set U. We make an assumption here that C and 
U are from the same distribution. This assumption is rea- 
sonable, because the query images are drawn from the same 
image database. Essentially, image retrieval is to classify 
the images in the database by: 

yi = arg . max p(yjIXi,L,U : 'dxi E U )  ( I )  j=1, ..., c 
where C is the number of classes, and C = 2 for image 
retrieval. In this sense, we do not care the performance of 
the classifier over images outside the given database. 

We assume that the hybrid data set is drawn from a 
mixture density distribution of C components {c j , !  = 
1, . . . , C}, which are parameterized by 0 = {Oj, 3 = 
1, . . . , C}. The mixture model can be represented as: 

c 
P(Xl0) = C p ( x l 4 ;  @j)P(Cjl4> (2) 

j=l 

where x is a sample drawn from the hybrid data set V = 

Let Z = { zj : 'dxj E U}, in which zj is the probabilistic 
label for the sample xj in the unlabeled set U. The EM algo- 
rithm can be used to estimate the probability parameters 0 
by an iterative hill climbing procedure, which alternatively 
calculates E ( 2 ) ,  the expected values of all unlabeled data, 
and estimates the parameters 0 given E ( Z ) .  It consists of 
two iterative steps: 

CUU. 

0 E-step: set 2(k+1) = E[ZIV; e('),] 

0 M-step: set 6(k+1) = arg maxop(OID; 2(k+1)) 

where 2(k) and e(') denote the estimation for Z and 0 at 
the k-th iteration respectively. 

When the size of the labeled set is small, EM basically 
performs an unsupervised learning, except that labeled data 
are used to identify the componerds. If the probabilis- 
tic structure, such as the number of components in mix- 
ture models, is known, EM could estimate true probabilistic 
model parameters. Otherwise, the ptxformance can be very 
bad. 

Generally, when we do not have such a prior knowledge 
about the data distribution, a Gaussian distribution is always 
assumed to represent a class. However, this assumption is 
often invalid in practice, which is partly the reason that this 
direct EM method performs poor in many cases. 

3. Discriminant-EM Algoritlhm 

Since we generally do not know the probabilistic struc- 
ture of data distribution, EM often fails when structure as- 
sumption does not hold. Instead ad trying every possible 
structure in EM, an alternative is to find a mapping such that 
the data are clustered in the mapped data space, in which the 
probabilistic structure could be simplified and captured by 
simpler Gaussian mixtures. 

Multiple Discriminant Analysis (MDA) [2]  is a natural 
generalization of Fisher's linear discrimination (LDA) in 
the case of multiple classes. The basic idea behind MDA 
is to find a linear transformation UT to map the original d l  
dimensional data space to a new dz space such that the ratio 
between the between-class scatter and within-class scatter 
is maximized in the new space. 

MDA offers a means to catch major differences between 
classes and discount factors that are not related to classi- 
fication. Some features most relevant to classification are 
automatically selected by the linear mapping W in MDA, 
although these features may not have substantial physical 
meanings any more. Another advantage of MDA is that 
the data are clustered to some extent in the projected space, 
which makes it easier to select the structure of Gaussian 
mixture models. 

It is apparent that MDA is a supervised statistical 
method, which requires a large number of labeled samples 
to estimate some statistics such a3 mean and covariance. 
By combining MDA with the EM framework, our pro- 
posed method, Discriminant-EM algorithm (D-EM), sup- 
plies MDA enough labeled data by combining supervised 
and unsupervised paradigms. 

D-EM algorithm begins with a weak classifier learned 
from the labeled set. Certainly, we do not expect much 
from this weak classifier. However, for each unlabeled 
sample xj, the classification confidence wg = { W g k ,  k = 
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1, . . . , C} can be given based on the probabilistic label 
zj = { ~ j k ,  k = 1, . . . , C} assigned by this weak classifier. 

(3 )  

w3k = Ig(p(x3 If&)) k = 1,. . . , c (4) 

Euqation(4) is just a heuristic to weight unlabeled data x3 E 
U, although there may be many other choices. 

After that, MDA is performed on the new weighted data 
set 2)‘ = C U{x3, z3, w, : b’x3 E U}, by which the data set 
D’ is linearly projected to a new space of dimension C - 1 
but unchanging the labels and weights, 2) = { WTx,, yJ : 
Vx3 E C} U(WTx,, z3,  w3 : b’x, E U}. Then parame- 
ters 0 of the probabilistic models are estimated by maxi- 
mizing a posteriori probability on @, so that the probabilis- 
tic labels are given by the Bayesian classifier according to 
Equation(3). The D-EM algorithm iterates over these three 
steps, “Expectation-Discrimination-Maximization”. 

It should be noted that the simplification of probabilistic 
structures is not guaranteed in MDA. If the components of 
data distribution are mixed up, it is very unlikely to find 
such a linear mapping. 

4. Experiments 

In order to give some analysis and compare several dif- 
ferent methods, we manually label an image database of 
134 images, which is a subset of the COREL database. 
Our dataset has 7 classes such as airplane, bird, car, church 
painting, flower, mountain view and tiger. All images in the 
database have been labeled as one of these classes. In all 
the experiments, these labels for unlabeled images are only 
used to calculate classification error. 

To investigate the effect of the unlabeled training data 
used in D-EM, we feed the algorithm a different number 
of labeled and unlabeled images. The labeled images are 
obtained by relevance feedback. When using more than 100 
unlabeled samples, the error rates drop to less than 10%. 
From Figure 1, we find that D-EM brings about 20% to 30% 
more accuracy than without using any unlabeled images. 
In general, combining a number of unlabeled images can 
largely reduce the classification error when labeled data are 
very few. 

We experimented with physical features (P-Features), 
which consist of 9 color features including the mean, std 
and skew of the HSV color space, 10 texture features ex- 
tracted by wavelets, and 18 structure features represented by 
the statistics of the edge map[9]. The mathematical features 
(M-Features) are extracted by PCA, in which the number of 
principle components is 30, and the resolution of image is 
reduced to 20 x 20. 

Figure 1. The effect of labeled and unlabeled data in D- 
EM. Error rate decreases when adding more unlabeled data. 
Combining some unlabeled data can largely reduce the clas- 
sification error. 

We test and compare four methods. The first method is to 
incrementally find a similarity measurement by weighting 
each feature from relevance feedback (WRF) [9], in which 
37 physical features are pre-calculated and pre-stored. The 
top 20 most similar images are obtained through ranking 
each image by comparing the Mahalanobis distances to the 
mean of query images. The second method is a simple 
probabilistic method (SP) which only employs the labeled 
images. In this method, both classes (relevant and irrele- 
vant) are assumed Gaussian distributions, and the model pa- 
rameters are estimated by labeled images alone. The third 
method is the basic EM (EM) algorithm, which assumes 
Gaussian distributions for both classes. This method em- 
ploys both labeled and unlabeled images, but it does not per- 
form discriminant analysis and has to estimate the parame- 
ters of a high dimensional generative model. The fourth is 
the D-EM algorithm, which has been described in section 3. 
In the last three probabilistic methods, the label of each im- 
age is given by maximizing a posteriori probability (MAP), 
1, = arg maxk p(ckIx3). Except for WRF, both P-Features 
and M-Features are tested. 

These four methods are compared on this fully labeled 
database. Classification error for each method is calculated 
for evaluation, although these errors are not available for the 
training. Suppose the database has N samples, C classes, 
and the k-th class has Nk samples, and N = ck=l N k .  
The method to calculate error in WRF is different from the 
other three methods. In WRF, if the query images belong to 
the j-th class, and m3 samples in the top N3 belongs to the 
j-th class, the error for this query is defined as 

c 

In the other three methods, if there are m samples in total 
that are not correctly labeled, the error is defined as e j  = 
m / N .  The average error is obtained by averaging over M 
experiments, i.e. e = Cj=l ej /A/ r .  M 
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Algorithm P-Features M-Features 

WRF 6.3% NIA 
SP 2 1.2% 15.7% 
EM 23.4% 25.8% 

D-EM 3.9% 5.3% 

Table 1. Error rate comparison among different algo- 
rithms. All comparisons are based on the first time rele- 
vance feedback with 6 relevant and 6 irrelevant images. D- 
EM outperforms the other three methods. 

Our algorithm is also tested on several large databases. 
The COREL database contains more than 17, 000 images. 
The VISTEX database is a collection of 832 texture images. 

5. Conclusion 

Different from many other methods in content-based im- 
age retrieval, our approach formulates it as a transduc- 
tive learning problem, in which both the image queries 
and unlabeled images in the given database are employed 
the training of an image classifier. The proposed method, 
Discriminant-EM algorithm (D-EM), approaches this prob- 
lem in the EM framework. Since the simple EM algorithm 
confronts several difficulties, such as learning in high di- 
mensionality and probabilistic structure assumption, the D- 
EM algorithm introduces a Discrimination-step in the EM 
iteration to relax the assumption of the probabilistic struc- 
ture of data distribution and automatically select the most 
relevant features to classification. Our experiments show 
that the D-EM algorithm could be an effective way to mul- 
timedia databases. 

Future work should includes the study of the conver- 
gence and stability of the algorithm. Currently, D-EM uses 
a linear transformation, but non-linear transform may have 
better performance. Another future research direction of 
this approach is to explore the non-linear case of MDA. 
To accelerate the algorithm, the size of the unlabeled data 
set could decrease through the iteration. More large image 
databases should be tested by this approach. 
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