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Abstract

It is often tedious and expensive to label large
training data sets for learning-based object recognition
systems.  This problem could be alleviated by self-
supervised learning techniques, which take a hybrid of
labeled and unlabeled training data to learn classifiers.
Discriminant-EM (D-EM) proposed a framework for
such tasks and current D-EM algorithm employed lin-
ear discriminant analysis. However. the algorithm is
limited by its dependence on linear transformations.
This paper extends the linear D-EM to nonlinear ker-
nel algorithm, Kernel D-EM, based on kernel multiple
discriminant analysis (KMDA). KMDA provides better
ability to simplify the probabilistic structures of data
distributions in a discrimination space. We propose
two novel data-sampling schemes for efficient training
of kernel discriminants. Experimental results show that
classifiers using KMDA learning compare with SVM
performance on standard benchmark tests, and that
Kernel D-EM outperforms a wvariety of supervised and
semi-supervised learning algorithms for a hand-gesture
recognition task and fingertip tracking task.

1 Introduction

Invariant object recognition is a fundamental but
challenging computer vision task, since finding effective
object representations is generally a difficult problem.
3D object reconstruction suggests a way to invariantly
characterize objects. Alternatively, objects could also
be represented by their visual appearance without ex-
plicit reconstruction. However, representing objects in
the image space is formidable, since the dimensionality
of the image space is intractable. Dimension reduc-
tion could be achieved by identifying invariant image
features. In some cases, domain knowledge could be
exploited to extract image features from visual inputs,
however, many other cases need to learn such features
from a set of examples when image features are diffi-
cult to define. Many successful examples of learning
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approaches in the area of face and gesture recognition
can be found in the literature [5, 2].

Generally, characterizing objects from examples re-
quires huge training data sets, because input dimen-
sionality is large and the variations that object classes
undergo are significant. Labels or supervised infor-
mation of training samples are needed for recognition
tasks. The generalization abilities of many current
methods largely depend on training data sets. In gen-
eral, good generalization requires large and represen-
tative labeled training data sets. Unfortunately, col-
lecting labeled data can be a tedious, if not altogether
impossible, process. Although unsupervised or cluster-
ing schemes have been proposed [1, 14], it is difficult
for pure unsupervised approaches to achieve accurate
classification without supervision.

This problem can be alleviated by semi-supervised
or self-supervised learning techniques which take hybrid
training data sets. This learning paradigm could be
looked as an integration of pure supervised and unsu-
pervised learning. These algorithms assume that only
a fraction of the data is labeled with ground truth, but
still take advantage of the entire data set to generate
good classifiers; they make the assumption that nearby
data are likely to be generated by the same class. Work
in this area has been successfully applied to text clas-
sification (3, 4, 7, 10].

Discriminant-EM (D-EM)- [15] is a self-supervised

Jearning algorithm for such purposes by taking a small

set of labeled data with a large set of unlabeled data.
The basic idea of this algorithm is to learn discriminat-
ing features and the classifier simultaneously by insert-
ing a multi-class linear discrminant step in the stan-
dard expectation-maximization iteration loop. D-EM
makes assumption that the probabilistic structure of
data distribution in the lower dimensional discrimina-
tion space is simplified and could be captured by lower
order Gaussian mixtures. Because the discrimination
step in D-EM is linear, however, it has difficulty han-
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dling data sets which are not linearly separable, and
input data is likely to be highly non-linearly-separable,
regardless of the features used as input.

Based on nonlinear kernel discriminant analysis, this
paper presents a Kernel D-EM algorithm. Kernel dis-
criminant analysis transforms the original data space &
to a higher dimensional kernel feature space 7 and then
projects to a lower dimensional discrimination space A,
such that nonlinear discriminating features could be
identified, and training data could be better classified
in a nonlinear feature space. Two novel algorithms are

‘presented for sampling training data for efficient learn-

ing of nonlinear kernel discriminants. Our experiments
include standard benchmark testing, view-independent,
hand posture recognition and invariant fingertip track-
ing.

2 Nonlinear Discriminant Analysis

Nonlinear discriminant analysis could be achieved
by transforming the original data space X to a nonlin-
ear feature space F and then performing LDA in F.
This section presents a kernel-based approach.

2.1 Linear Multiple Discriminant Analysis

Multiple discriminant analysis (MDA) is a natu-
ral generalization of Fisher’s linear discriminant anal-
ysis (LDA) for the case of multiple classes [6]. The
goal of MDA is to find a linear projection W that
maps. the original d;-dimensional data space X to a
do-dimensional discrimination space A (dy < c—1,cis
the number of classes) such that the classes are linearly
separable.

More specifically, MDA finds the best linear projec-
tion of labeled data, x € X, such that the ratio of
between-class scatter, Sp, to within-class scatter, Sw,
is maximized. Let n be the size of training data set,
and n; be the size of the data set for class j. Then,
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j=1
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where the total mean and class means are given by
m=1%" x¢ m; = %Z:lek, for j = 1,...,¢,
and Vop, = [vy,...,Vve_1] will contain in its columns
¢ — 1 eigenvectors corresponding to ¢ — 1 eigenvalues,
ie., Spv; = A Swv;.
2.2 Kernel Discriminant Analysis

In monlinear discriminant analysis, we seek a prior
transformation of the data, y = ¢(x), that maps the
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original data space X, to a feature space (F-space) F,
in which MDA can be then performed. Thus, we have

[VTSEv)
Vopt = argm W;Sf—w' (4)
S8 = 3 nym; - m)(m; - m)7, )
j=1
st = 30 S (60xe) - my)(60x) — m)7, (6)
j=1k=1

withm = 2370 é(x), m; = 7 L3kl &%), where
i=1..

In general, because we choose ¢(-) to facilitate lin-
ear discriminant. analysis in the feature space F, the
dimension of the feature space may be arbitrarily large,
even infinite. As a result, the explicit computation of
the mapping induced by ¢(-} could be prohibitively ex-
pensive.

The problem can be made tractable by taking a
kernel approach that has recently been used to con-
struct nonlinear versions of support vector machines
[13], principal components analysis [12], and invariant
feature extraction [9, 11]. Specifically, the observation
behind kernel approaches is that if an algorithm can
be written in such a way that only dot products of the
transformed data in F need to be computed, explicit
mappings of individual data from X become unneces-
sary.

Referring to Equation 4, we know that any col-
umn of the solution V, must lie in the span of all
training samples in F, i.e.,, v; € F. Thus, for some
a=lag, -, an]T,

v = Zaké(xk) = dq, : (7)

where @ = [p(x1), --,0(x,)]. We can therefore
project a data point x; onto one coordinate of the lin-
ear subspace of F as follows (we will drop the subscript
on v; in the ensuing):

vig(xi) = oo o(xk) (8)
k(x1,xk)
= d| =a"&, (9
k(Xn,Xk)
k(xy,xk)
& = : ) (10)
k(xn,xk)

where we have rewritten dot products, (¢(x),o(y)),
with kernel notation, k(x,y). Similarly, we can project



each of the class means onto an axis of the feature space
subspace using only dot products:

ny | 0T (x1)é(xk)

vim; = QT% : (11)
] 6T () p(xk)
o Lkl k(x1, %x)

= of : (12)
fj' Zilk(Xka)

= g_Tuj. (13)

It follows that

vISpv = aTKpa, (14)
where Kp = 3271 n(u; — m)(py — w)T, and

vIiSwv = o Kwa, (15)

where Kw = 3°7_1 3707 (€ — 145) (€ — 7)™ The goal

of Kernel Multiple Discriminant Analysis (KMDA),.

then, is to find

IATKpA| ,
Aom = arg m/ixx m, (16)
where A = [a,, -+, a._,], and computation of K and

Kw requires only kernel computations.

3 Sampling Data for Efficiency

Because Kp and Kw are n X n matrices, where
n is the size of training set, the nonlinear mapping
is dependent on the entire training samples. For
large n, the solution to the generalized eigensystem
is costly. Approximate solutions could be obtained
by sampling representative subsets of the training
data, {pglk = 1,...,M,M < n}, and using & =
(k(x1y %), - - k(xa, k)]t to take the place of &.

3.1 PCA-based Kernel Vector Selection

The first approach we propose is blind to the class
labeling. We select representatives, or kernel vectors,
by identifying those training samples which are likely
to play a key role in = = [£,...,§,]. Eisannxn
matrix, but rank(Z) <« n, when the size of training
data set is very large. This fact suggests that some
training samples could be ignored in calculating kernel
features &.

We first compute the principal components of =Z. De-
note the n xn matrix of concatenated eigenvectors with
P. Thresholding elements of abs(P) by some fraction
of the largest element of it allows us to identify salient
PCA coefficients. For each column corresponding to a
non-zero eigenvalue, choose the training samples which

correspond to a salient PCA coefficient, i.e., choose the
training samples corresponding to rows that survived
the thresholding. Do so for every non-zero eigenvalue
and we arrive at a decimated training set, which rep-
resents data at the periphery of each data cluster.

Figure 1: KMDA with a 2D 2-class non-linearly-separable
example. (a) Original data (b) the kernel features of the
data (c) the normalized coefficients of PCA on Z, in which
only a small number of them are large (in black) (d) the
nonlinear mapping.

3.2 Evolutionary Kernel Vector Selection

Another approach is to take advantage of class la-
bels in the data. We maintain a set of kernel vec-
tors at every iteration which are meant to be the key
pieces of data for training. M initial kernel vectors,
KV®, are chosen at random. At iteration k, we
have a set of kernel vectors, KV ), which are used
to perform KMDA such that the nonlinear projection
y§k) = VT g(x;) = Aﬁ,@f{}“ € A of the original
data x; can be obtained. We assume Gaussian distri-
bution 8) for each class in the nonlinear discrimina-
tion space A, and the parameters %) can be estimated
by {y'*}, such that the labeling and training error e*)
can be obtained by I{*) = arg max; p(l;ly;, 0%)).

If e® < e~ we randomly select M training sam-
ples from the correctly classified training samples as
kernel vector K V(+1) at iteration k4 1. Another pos-
sibility is that if any current kernel vector is correctly
classified, we randomly select a sample in its topolog-
ical neighborhood to replace this kernel vector in the
next iteration. Otherwise, i.e., e(®) > e(*~V and we
terminate.

The evolutionary kernel vector selection algorithm
is summarized below in Figure 2.



Evolutionary Kernel Vector Selection: Given a set of
training data D = (X, L) = {(xi,l:),i =1,...,N},
to identify a set of M kernel vectors KV = {v;,i =
1,...,M}.

k=0; e=o0c; KV =random pick(X); // Init
do{
Al =KMDA(X, KV®));// Perform KMDA
Y® =Proj(X,Al%); // Project X to A
O =Bayes(Y¥) L); //Bayesian classifier
L®) =Labeling(Y® ©W); // Classification
el®) =Error (L"), L); // Calculate error
if(e®) < e)
e=e®): KV = KV®: k 4+ +;
KV® —random pick({x; : l_,(;k) #LP;
else
KV = KV*-1); pbreak;
end

return KV,

Figure 2: Evolutionary Kernel Vector Selection

4 Kernel D-EM Algorithm

As an extension to Expectation-Maximization
(EM), [15] proposed a three-step algorithm, called
Discriminant-EM (D-EM), which loops between an ex-
pectation step, a discrimination step (via MDA), and
a maximization step. D-EM estimates the parameters
of a generative model in a discrimination space.

We now apply KMDA to D-EM. Kernel D-EM
(KDEM) is a generalization of D-EM, in which instead
of a simple linear transformation of the data, KMDA is
used to project the data nonlinearly into a feature space
where the data is better separated linearly. The non-
linear mapping, ¢(-), is implicitly determined by the
kernel function, which must be determined in advance.
The transformation from the original data space X to
the discrimination space A, which is a linear subspace
of the feature space F, is given by VT ¢(.) implicitly or
AT¢ explicitly. A low-dimensional generative model is
used to capture the transformed data in A.

p(lIO) = 37 p(VTo()lejs0y)p(csl6)  (17)

Empirical observations suggest that the transformed
data often approximates a Gaussian in A, and so in
our current implementation, we use low-order Gaussian
mixtures to model the transformed data in A. Kerno)
D-EM can be initialized by selecting all labeled data
as kernel vectors, and training a weak classifier based
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on only unlabeled samples. Then, the three steps of
Kernel D-EM are iterated until some appropriate con-
vergence criterion:

o E-step: set Z-+1) = E[Z|D; 6k

T
e D-step: set A’;;rtl = argmaxa f%, and iden-
tify kernel vectors KV (++1)

o M-step: set ©+1) = argmaxy p(©|D; Z*-+1)

The E-step gives unlabeled data probabilistic labels,
which are then used by the D-step to separate the data.
As mentioned before, this assumes that the class dis-
tributions are moderately smooth.

5 Experiments

In this section, we compare KMDA with other su-
pervised learning techniques on some standard data
sets. Experimental results of Kernel D-EM on hand
posture recognition and invariant fingertip tracking are
presented.

5.1 Benchmark Test for KMDA _

We first verify the ability of KMDA with our data-
sampling algorithms. Several benchmark data sets! are
used in our experiments. The benchmark data has 100
different realizations. In [9], results of different ap-
proaches on these data sets have been reported. The
proposed KMDA algorithms were compared to a sin-
gle RBF classifier (RBF), a support vector machine
(SVM), AdaBoost, and the kernel Fisher discriminant
(KFD) [8]. RBF kernels were used in all kernel-based
algorithms.

Benchmark Banana  B-Cancer Heart

RBF 10.8+0.06 27.6%+0.47 17.61+0.33
AdaBoost 12.3+0.07 30.4+£0.47 20.3%+0.34
SVM 11.5+0.07 26.0+0.47 16.0+0.33
KFD 10.8+0.05 25.840.46 16.1+0.34

KMDA-pca 10.740.25 27.5+0.47 16.5+0.32
KMDA-evol 10.840.56 26.3+0.48 16.1£0.33
#-KVs 120 40 20

Table 1: Benchmark Test: the average test error as well as
standard deviation.

In Table 1, KMDA-pca is KMDA with PCA se-
lection, and KMDA-evol is KMDA with evolutionary
selection, where #-KVs is the number of kernel vec-
tors. The benchmark tests show that the proposed

1The standard benchmark data sets in our experiments are
obtained from http://www.first.gmd.de/ raetsch.


http://ww.first

approaches achieve comparable results as other state-
of-the-art techniques, in spite of the use of a decimated
training set.
5.2 Hand Posture Recognition

Next, we examine results for KDEM on a hand ges-
ture recognition task. The task is to classify among
14 different hand postures, each of which represents a
gesture command mode, such as navigating, pointing,
grasping, etc. Our raw data set consists of 14,000 un-
labeled hand images together with 560 labeled images
(approximately 40 labeled images per hand posture),
most from video of subjects making each of the hand
postures. These 560 labeled images are used to test the
classifiers by calculating the classification errors.

Hands are localized in video sequences by adaptive
color segmentation and hand regions are cropped and
converted to gray-level images [15]. Gabor wavelet fil-
ters with 3 levels and 4 orientations are used to extract
12 texture features. 10 coeflicients from the Fourier
descriptor of the occluding contour are used to repre-
sent. hand shape. We also use area, contour length,
total edge length, density, and 2nd moments of edge
distribution, for a total of 28 low-level image features
(I-Feature). For comparison, we also represent images
by coefficients of the 22 largest principal components
of the total data set resized to 20 x 20 pixels (these
are “eigenimages”, or E-Features) [15]. In our experi-
ments, we use 140 (10 for each) and 10000 (randomly
selected from the whole database) labeled and unla-
beled images respectively, for training with both EM
and D-EM. Table 2 shows the comparison.

Algorithm MLP NN-G EM LDEM KDEM

LFeature 33.3% 15.8% 21.4% 92%  5.3%
E-Feature 39.6% 20.3% 20.8% 7.6%  4.9%

Table 2: View-independent hand posture recognition:
Comparison among multilayer perceptron (MLP),Nearest
Neighbor with growing templates (NN-G), EM, linear D-
EM (LDEM) and KDEM

We observed that multilayer perceptrons are often
trapped in local minima and nearest neighbor suffers
from the sparsity of the labeled templates. The poor
performance of pure EM is due to the fact that the
generative model does not. capture the ground-truth
distribution well, since the underlying data distribution
is highly complex. It is not. surprising that LDEM and
KDEM outperform other methods, since the D-step
optimizes separability of the classes.

Finally, note the effectiveness of KDEM. We find
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that KDEM often appears to project classes to approx-
imately Gaussian clusters in the transformed space,
which facilitates their modeling with Gaussians. Fig-
ure 4 shows typical transformed data sets for linear
and nonlinear discriminant analysis, in a projected 2D
subspace of 3 different hand postures.

Figure 3: Data distribution in the projected subspace (a)
Linear KMDA (b) Kernel KMDA. Different postures are
more separated and clustered in the nonlinear subspace by
KMDA.

= vl
(a) (b)
Figure 4: (a) Some correctly classified images by both
LDEM and KDEM (b) images that are mislabeled by

LDEM, but correctly labeled by KDEM (c) images that
neither LDEM or KDEM can correctly labeled.

5.3 Fingertip Tracking

In some vision-based gesture interface systems, fin-
gers could be used as accurate pointer input devices.
Also, fingertip detection and tracking play an impor-
tant role in recovering hand articulations. A difficulty
of the task is that fingertip motion often undergoes ar-
bitrary rotations, which makes it hard to invariantly
characterize fingertips. The proposed Kernel D-EM
algorithm is employed to discriminate fingertips and
non-fingertips. ‘

We have collected 1,000 training samples including
both fingertips and non-fingertips. Non-fingertip sam-
ples are collected from the background of the working
space. Some training samples are shown in Figure 5.
50 samples for each two classes are manually labeled.
Training images are resized to 20x20 and converted to
gray-level images. Each training sample is represented
by its coefficients of the 22 largest principal compo-
nents. Kernel D-EM algorithm is performed on such
training dataset to obtain a kernel transformation and
a Bayesian classifier. Assume at time ¢t — 1, fingertip



Figure 5: (a) Fingertip samples, (b) Non-fingertip samples.

location is X;_; in image. At time ¢, the predicted
location of fingertip is )Aft according to Kalman predic-
tion. For simplicity, the size of search window is fixed
by 10x10 centered at X;. For each location in the
search window, a fingertip candidate is constructed by
the 20 x 20 sized image centered at that location. Thus,
100 candidates will be tested. A probabilistic label
of such fingertip candidate is obtained by classifying
it. The one with the largest probability is determined
as the tracked location at time t. We run the track-
ing algorithm on sequences containing a large amount
of fingertip rotation and complex backgrounds. The
tracking result is fairly accurate.

6 Conclusion and Future Work

We presented two novel algorithms for efficient
kernel-based, nonlinear, multiple discriminant analy-
sis. These algorithms identify “kernel vectors” which
are the defining training data for the purposes of classi-
fication. Benchmark tests show that KMDA with these
adaptations performs comparably with the best known
supervised learning algorithms. We also presented a
semi-supervised discriminant analysis technique, Ker-
nel D-EM, which employs both labeled and unlabeled
data in training. On real experiments for recogniz-
ing hand postures and tracking fingertips, KDEM out-
performs naive supervised learning and existing semi-
supervised algorithms.

Examination of the experimental results reveals that
KMDA often maps data sets corresponding to each
class into approximately Gaussian clusters in the tran-
formed space, even when the initial data distribution
is highly non-Gaussian. In future work, we will inves-
tigate this phenomenon more closely.
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