
Visual Panel: Virtual Mouse, Keyboard and 3D Controller
with an Ordinary Piece of Paper

Zhengyou Zhang
Microsoft Research

Redmond, WA 98053, USA

zhang@microsoft.com

Ying Wu
University of Illinois

Urbana, IL 61801, USA

yingwu@ifp.uiuc.edu

Ying Shan�, Steven Shafer
Microsoft Research

Redmond, WA 98053, USA

stevensh@microsoft.com

ABSTRACT
This paper presents a vision-based interface system, VISUAL PANEL,
which employs an arbitrary quadrangle-shaped panel (e.g., an ordi-
nary piece of paper) and a tip pointer (e.g., fingertip) as an intuitive,
wireless and mobile input device. The system can accurately and
reliably track the panel and the tip pointer. The panel tracking con-
tinuously determines the projective mapping between the panel at
the current position and the display, which in turn maps the tip po-
sition to the corresponding position on the display. By detecting
the clicking and dragging actions, the system can fulfill many tasks
such as controlling a remote large display, and simulating a phys-
ical keyboard. Users can naturally use their fingers or other tip
pointers to issue commands and type texts. Furthermore, by track-
ing the 3D position and orientation of the visual panel, the system
can also provide 3D information, serving as a virtual joystick, to
control 3D virtual objects.

Keywords
Vision-based user interface, visual panel, new input device, new
control device, virtual mouse, virtual keyboard, virtual joystick,
plane projectivity.

1. INTRODUCTION
In many intelligent environments, instead of using conventional

mice, keyboards and joysticks, people are looking for an intuitive,
immersive and cost-efficient interaction device. We describe a
vision-based interface system, called Visual Panel, which employs
an arbitrary quadrangle-shaped panel (e.g., an ordinary piece of pa-
per) and a tip pointer (e.g., fingertip) as an intuitive input device.

We can find many applications where this type of vision-based
interfaces is desired. For an instance, in a smart room, the user
wants to control a remote and large display or play a game, but
he/she is in a sofa instead of in front of a computer, and therefore
the mouse and keyboard or joystick may not be accessible. Then,
what could he/she do? He/she may pick up an arbitrary paper at
hand and move his fingers or pens on the paper to drive a cursor or

�Current address: Sarnoff Corporation, New Jewsey, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PUI 2001 Orlando, FL USA
Copyright 2001 ACM 1-58113-448-7-11/14/01 ..$5.00

to type some text, or move the paper to control the game. Certainly,
such an interaction is made possible by having a camera look at the
user and analyzing the movement of the paper and the user.

For another example, several people are discussing in a meeting
room using a large display. They may need to draw some pictures to
show their ideas. However, it is unrealistic to facilitate every user a
mouse and a keyboard. What could they do? Again, they may pick
up any paper and use their fingers to draw their ideas which will
be shown in the large display. By this means, a more immersive
discussion can be achieved.

Even more, in a large lecture room, the lecturer sometimes needs
to write down something on a small whiteboard. However, the au-
dience far from him or remote audience may not be able to see
clearly what he writes. Due to the constraints of the bandwidth,
it would not be feasible to broadcast the video of the writing. In
this situation, a vision-based system is needed to analysis what the
lecturer writes and retrieve it in remote displays.

In such scenarios as smart rooms, immersive discussions and
tele-conferencing, conventional mice and keyboard turn out to be
not suitable, which motivates the development of a vision-based
gesture interface. There have been many implemented application
systems ([2, 7, 9, 27, 25, 24, 1, 4, 10, 15, 16, 22, 26, 11, 19, 23, 6,
13, 18, 21] to cite a few).

We have developed a vision-based interface prototype system
called VISUAL PANEL that takes advantage of an arbitrary quadrangle-
shaped planar object as a panel such that a user can use any tip
pointer such as his fingertip to interact with the computer. By ob-
serving the tip pointer on the panel, we achieve accurate and robust
interaction with the computer. The 3D pose of the panel can also
be used to control the display of 3D objects. In the sequel, we first
give an overview of the design and the main components of the sys-
tem. We then describe the calculation of the homography, which
describes the relationship between the image of the panel and the
remote display. We then provide the details of the techniques used
for detecting and tracking the panel and the tip pointer and for de-
termining the pose of the VISUAL PANEL. We also present the
approach we used in the action detector and recognizer. Four ap-
plications built on top of the system are finally presented.

2. THE SYSTEM: OVERVIEW
Figure 1 shows the basic idea of visual tracking in the VISUAL

PANEL system. Figure 1a is one frame of the video input, and Fig-
ure 1b shows the tracking result of the panel and the fingertip. The
quadrangle can be mapped to a remote display, and the mapping is
a homography. As to be explained later, the homography describes
a plane perspectivity because the panel and the display both are pla-
nar. The position of the fingertip is then mapped accordingly, and
can be used, for example, to control the cursor on the display, thus

1

(a) (b)

Figure 1: The tracking in the VISUAL PANEL system. (a) an
input image (b) tracking result: a tracked panel and a tracked
fingertip.

serving as a virtual mouse.
The system consists of panel tracker, tip pointer tracker, homog-

raphy calculation and update, and action detector and event gener-
ator. It can simulate both mouse and keyboard. The whole system
is shown in Figure 2.

Video sequences are analyzed by a panel tracker and a tip pointer
tracker. As already described in the last section, the panel tracker
can accurately track an arbitrary quadrangle-shaped plane object
by outputting the positions of the four corners. Since their posi-
tions are calculated in sub-pixels, we can accurately compute the
homography, which describes the mapping between the panel and
a remote display. Through the homography, any point on the panel
is mapped to the corresponding position on the remote display.

The panel detector, also described in the last section, can auto-
matically detect the panel when it just enters the camera’s field of
view, or recover the panel if its tracking is lost due to abrupt motion.

In the VISUAL PANEL system, users can use their fingertip as a
mouse to simulate a cursor for the remote display. This requires an
accurate and stable tracking of the fingertip, because a small error
in the tip position will be magnified in the remote large screen. To
see why, let us assume the resolution of the input video is 320�240
and that of the remote display is 1024 � 768. Since the panel usu-
ally occupies about half of the image, it is obvious that a tracking
error of 1 pixel will incur an error of about 6 pixels on the display,
making the mapped cursor position very shaky. This problem is
solved in our system by representing a tip pointer as a conic and
fitting a parametric conic to image observations. Therefore, the tip
position is also calculated in sub-pixels.

The fingertip detector automatically detects the fingertip when it
is posed on the panel. Both fingertip tracking and detection will be
described later.

The current system simulates the clicking/pressing gestures by
holding the tip pointer on the same position for a while. The event
generator reads input from the action detector, and issues various
mouse and keyboard events. More details will be given later.

We describe below several system issues:

� Camera Setting: The setting is quite flexible. It can be any-
where as long as the panel is not significantly occluded. In
our current implementation, a fixed camera is mounted on
the ceiling. The user can rotate, translate and tilt the panel
to reach a comfortable pose for use. Under circumstances
where more mobility is necessary, we can use a pan-tilt-zoom
camera or mount a camera on top of his head by wearing a
hat, on his glasses, or on his shoulders, such that the user can
be anywhere to interact with the computer. This would be
quite useful, for example, for a speaker who gives a presen-
tation while walking around.

� Panel Design: The panel can be anything as long as it is
quadrangle-shaped. For example, we can use a piece of white
paper or a cardboard, which is widely available in offices and
at homes. Because we rely on a homography mapping, we
should not bend the quadrangle-shaped object during opera-
tion.

� Tip Pointers: The system allows arbitrary tip pointers, such
as fingertips and pens, as long as their color is distinguish-
able from the panel’s color. In our usability studies, many
users prefer pens to fingertips in some applications like finger
painting, because pens are more intuitive for them, although
they have fun to use fingertips.

� Clicking: The current VISUAL PANEL system simulates
clicking and pressing by holding the tip pointer in the same
position for a short period of time. We are exploring the pos-
sibility of using some natural gestures.

Building on top of these techniques, our system is capable of
performing two types of input: virtual mouse and virtual keyboard,
as will be shown in the application section. As a virtual mouse,
the position of the tip pointer is mapped onto the remote display to
simulate a cursor. We can also use a paper with a keyboard pattern
printed on it as a virtual keyboard, with which a user can point the
keys on the paper to input text.

Furthermore, our system can track the 3D position and orien-
tation of the visual panel, and the 3D information can be used to
control 3D virtual objects. Therefore, our system can also serve as
a virtual joystick.

A video filming a live demonstration of an older version of this
system is also submitted. We have not yet had time to record a
demonstration of the newer version including the 3D control func-
tionality (virtual joystick), but we plan to do it for the PUI. The
whole system runs at close to 29 frames per second.

Let us now look at each component in more details.

3. PLANE PERSPECTIVITY: MAPPING BE-
TWEEN PANEL AND DISPLAY

Since we use an arbitrarily rectangle-shaped panel to control the
cursor position on the remote display, we have to know the mapping
between a point on the panel and a point on the display. Further-
more, what is available is an image sequence of the panel which
may undergo arbitrary motion (as long as the image of the panel
does not degenerate into a line or a point), so we also need to know
the mapping between a point in the image plane and a point on the
panel. We assume the camera performs a perspective projection
(pinhole model) [5]. As the display, the panel, and the image plane
are all planes, both above relationships can be described by a plane
perspectivity[17], as to be explained below.

Given a point p = [x; y]T on a plane �, we use ~p = [x; y; 1]T to
denote its homogeneous coordinates. Then, the plane perspectivity
between planes � and �0 is described by a 3 � 3 matrix H such
that

�~p0 = H~p (1)

where � is an arbitrary non-zero scalar. This implies that the ho-
mography matrix is only defined up to a scale factor, and therefore
has 8 degrees of freedom. If four couples of corresponding points
(no three of them are collinear) are given, the homography matrix
can be determined (see, e.g., [28]).

It is not difficult to see that the composition of two plane perspec-
tivities is still a plane perspectivity. Thus, the mapping between the
image of the panel and the remote display can be described by a
homography matrix. This is very important because what we really

2

Figure 2: The system of VISUAL PANEL, which consists of panel tracker, pointer tracker, action detector and event generator.

need is to use the detected tip position in the image to control the
cursor position on the remote display. (If we instead estimate the
above-mentioned two homographies, additional calibration is nec-
essary, making the system setup unnecessarily more complicated.)

The composed homography can be easily determined once the
four corners of the panel are located in the image. As we know the
dimension of the display, we compute the homography by mapping
each corner of the panel to a corner of the display. Thus, the po-
sition of the four corners of the panel is the only thing we need to
perform the mapping. As the panel can be detected and tracked eas-
ily and robustly, as to be described in the next section, the camera
can also move dynamically to achieve a higher degree of mobility.

4. VISUAL PANEL DETECTION AND TRACK-
ING

We use an arbitrary rectangular object such as a piece of paper
as our visual panel. Its projection in the image is a quadrangle.

4.1 Quadrangle Representation
The image of the panel can be represented by a quadrangle:

Q = fl1; l2; l3; l4g (2)

where li is a side line. It can also be represented by the four corners
Q = fq1;q2;q3;q4g with lk = qk�1qk (we assume q0 = q4).

Each side of the quadrangle in the image is expected to be a set
of edge points due to the difference between the panel and the back-
ground. We model the appearance of each side as a random vector
x = fG; Ig, where G is the average gradient and I is the average
intensity. The distribution of X is assumed to be a Gaussian, i.e.,
x � N(�x;�x). More richer modeling of the appearance is under
investigation.

4.2 Automatic Detection
We have developed a simple technique based on Hough trans-

form [8] to automatically detect a quadrangle in an image. Take the
image shown in Fig. 3a as an example. A Sobel edge operator is
first applied, and the resulting edges are shown in Fig. 3b. We then
build a 2D Hough space for lines. A line is represented by (�; �),
and a point (u; v) on the line satisfies cos(�)u+ sin(�)v� � = 0.

(a) (b) (c)

Figure 3: Automatic quadrangle detection. (a) Original image
with detected quadrangle overlaid as green lines; (b) Edges im-
age obtained with Sobel detector; (c) Hough space.

An edge point with orientation is mapped into the (�; �) space. In
our implementation, � is divided into 90 intervals from �90Æ to
90Æ, and � is divided into 100 intervals from range from �d to d,
where d is the half of the image diagonal. The Hough space for the
edges in Fig. 3b is shown in Fig. 3c.

We then examine the strong peaks in the Hough space whether
four of them form a reasonable quadrangle. By “reasonable”, we
mean:

� the neighboring sides should differ at least by 20Æ in orienta-
tion;

� the opposite sides are close to be parallel (the orientation dif-
ference is less than 20Æ);

� the opposite sides are not close to each other (at least 40 pix-
els of difference in �); and

� there are indeed a large number of edges on the quadrangle.

The last test is necessary because a point in the Hough space corre-
sponds to an infinite line, and a quadrangle formed by 4 lines may
not correspond to any physical quadrangle in an image. The quad-
rangle detected in Fig. 3a is shown with red lines on the image. Our
current implementation of quadrangle detection achieves 22 frames
per second for image resolution 320� 240 on a PC III 1G Hz.

4.3 Tracking Through Dynamic Programming
At time frame t, the location of the quadrangle is at Q(t) =

fq1(t);q2(t);q3(t);q4(t)g, and the appearance of the quadrangle
is x(t). The tracking can be formulated as a MAP (maximum a

3

posteriori) problem:

Q�(t+ 1) = argmax
Q

p(Q(t+ 1)jQ(t);x(t);x(t+ 1))

Because the panel motion between successive image frames is lim-
ited, we assume at time t + 1 these four corner points will be in a
range Di around pi(t), respectively. The above problem can then
be approximated by

Q�(t+ 1) = argmaxQ p(Q(t+ 1);x(t+ 1)jQ(t);x(t)
: fD1; D2; D3; D4g)

Here, “:” means that fD1; D2; D3; D4g are parameters for the
probability. Obviously, this is a formidable searching problem. To
illustrate this (see Figure 4), we assume the size of each search area
of Di is N . The complexity of the exhausted search for this prob-
lem is O(4N). However, since the four sides of the quadrangle are
sequentially connected, this problem can be solved by the dynamic
programmingtechnique [20].

Q�(t+ 1)

= argmaxQ
P

4

i=1
p(Q(t+ 1);xi(t+ 1)jxi(t);Qi(t)
: Di(qi(t);q

�
i�1(t)))

= argmaxfqig
P

4

i=1
p(xi(t+ 1)jxi(t);qi(t);q

�
i�1(t))

(3)
That is, we try to estimate each side of the quadrangle sequentially
by maximizing a suitable criterion (see below).

Figure 4: Tracking a quadrangle by dynamic programming
technique

In our implementation, in order to reduce further the computa-
tional complexity, we do not search for the corners directly, where
each corner should be examined in a 2D region. Instead, we search
side lines, where the search region of each corner can be approx-
imated by a line segment. Once side lines are determined, corner
points are computed from the intersection of these lines.

As mentioned earlier, the appearance of each side line of the
quadrangle is modeled by x that contains both the gradient infor-
mation and the color information. Maximizing the probability in
(3) implies to finding a pair of line segments between t and t + 1
such that their appearances are closest. This can be done by mini-
mizing the relative entropy between their distributions [3].

Assume Gaussian distribution of X and Y , then the relative en-
tropy:

D(XjjY) = E[lg
px(u)

py(u)
] =

Z
p(u) lg

px(u)

py(u)
du

=
d

2
lg
j�yj

j�xj
�

1

2
+

1

2
E[(x� �y)

0��1
y (x� �y)]

=
d

2
lg
j�yj

j�xj
�

1

2
+

j�yj

2j�xj
+

1

2
(�x � �y)

0��1
y (�x � �y)

Thus, we have a symmetric distance metric:

D(X;Y) = 2(D(XjjY) +D(Y jjX))

=
j�yj

j�xj
+
j�xj

j�yj
+ (�x��y)

0(��1
x +��1

y)(�x��y)� 2

(4)
By this means, we can find the best-matched line at time t+ 1 by:

l
�
i (t+ 1) = arg min

fqi;qi�1g
D(x(t);x(t+ 1) : fqi;qi�1g) (5)

Note that, because our panel tracking is based on locating the
side lines, it is very robust to occlusion. It works well even when a
significant fraction of a side line, including the corners, is occluded
by, for example, hands, or moves out of the camera’s field of view.
Obviously, the tracking fails when a whole side line is occluded
or invisible, and in this case the quadrangle detection algorithm
described in the last subsection is activated.

Our current implementation of quadrangle tracking achieves 29.5
frames per second.

4.4 An Example

(a) (b) (c)
Figure 5: Another example of automatic quadrangle detection.
(a) Original image with detected quadrangle overlaid as red
lines; (b) Edges image obtained with Sobel detector; (c) Hough
space.

(a) (b) (c)

(d) (e) (f)
Figure 6: Sample results of a tracking sequence under various
situations.

Figures 5 and 6 show another tracking sequence with different
background. Figure 5 shows the automatic detection result, while
Figure 6 shows a few sample results of the tracking under vari-
ous situations. Note that this sequence is quite difficult since the
background contains books of similar color and there are a large
number of edges. Note also that we have not used any background
subtraction or frame difference technique to reduce the background
clutter. As can be observed, our technique tracks very well under

4

perspective distortion, illumination change, partial disappearance,
size change, and partial occlusion.

5. FINGERTIP DETECTION AND TRACK-
ING

The tracking of a tip pointer is quite intuitive. Assume the posi-
tion of the tip at time t is p(t). Kalman filtering technique is em-
ployed to predict the tip position �p(t+1) at time t = 1. In a small
window, say 30 � 30, we identify as many as possible edge pixels
that probably belong to the edge of the tip by thresholding the gra-
dient and taking advantage of color of previous edge of tracked tip.
After that, we fit a conic to those pixels and identify the extreme
point of the conic to be the tip position p(t+ 1) for time t+ 1. In
this way, we achieve subpixel precision for tip location. The com-
bination of quadrangle tracking and tip tracking runs at close to 29
frames per second.

Since a tip pointer is on/off the panel frequently, the system
should have the capability of detecting the tip pointer automati-
cally when it appears on the panel. We have developed a technique
through dynamic background subtraction, which is illustrated in
Fig. 7.

Figure 7: Detecting tip pointer. The foreground, i.e. hand, can
be segmented out from the background, since the current posi-
tion of the panel is tracked and a background template is main-
tained.

Assume at the beginning of the application, the panel Q(0) at
time 0 is detected, and there is no tip pointer on the panel. We
save the image as I0. At time t, since the system tracks the panel
position Q(t), the homography H(t) between Q(0) and Q(t) can
be easily calculated. Through the homography H(t), the pixels
pt(0) in I0 are mapped to the panel at time t as pb(t) by:

~pb(t) = H(t)~pt(0)

We thus have a warped image I0(pb(t)). This virtual background
image is what the panel should look like if there is no tip pointer.
Subtracting I0(pb(t)) from the current image gives us a difference
image. The tip pointer is likely located in areas with large color
difference. A mask image is computed for the foreground, and the
most distant pixel from the mask centroid is considered to the tip.
Figure 7 shows the basic idea of our approach.

6. ACTION DETECTION AND TWO MOUSE
PRESSING MODES

Our system has two mouse button pressing modes: mode I
(clicking mode) which simulates the left button down then up au-
tomatically and mode II (dragging mode) which simulates the left
button down until released. In our current implementation, click-
ing/pressing is simulated by holding the tip pointer for a short pe-
riod of time, say, 1 second, and a beep sound is generated as a

feedback to indicate that an event is activated. This is illustrated in
Fig. 8, where the horizontal axis indicates the time and the vertical
axis for the top row indicates the tip location (i.e., trajectory).

Figure 8: Simulating clicking (mode I) and dragging (mode II)

A variable S with two states (UP and DN) is maintained to sim-
ulate the two natural states of a button. The variable S is initialized
to be UP. In the clicking mode (mode I), when the system detects
that the tip pointer has been at a fixed place for a predefined amount
of time, the state variable S is set to DN. After 0.1 second, the state
variable S will be automatically set to UP to simulate button re-
lease. Appropriate mouse events are then generated, and a clicking
action is performed.

Obviously, in clicking mode (mode I), the ability of dragging
is very limited, since the release is automatic. To simulate drag-
ging, mode II uses another state variable D to memorize the flip of
clicking. When the system detects that the tip pointer has been at a
fixed place for a predefined amount of time, variable D changes its
state. When the D-state changes from UP to DN, a pressing event
is triggered; when the D-state changes from DN to UP, a releasing
event is triggered. Thus, we can pick up a window and drag it to a
different place.

Note that the clicking event can also be triggered in the dragging
mode if the pointer tip stays in the same location twice longer.

In our current implementation, an icon is provided in the menu
bar. By clicking on that icon, the system switches between the
dragging and clicking modes. Because of noise, there are some
small jitters in the tip location during the wait time for activating
an event. We consider that the tip is immobile if the jitters are
within 2 pixels.

7. 3D POSE ESTIMATION
In this section, we describe how the 3D pose of the VISUAL

PANEL and the camera parameters are determined and how that
information is used to control the visualization of a 3D object. The
intrinsic parameters of a camera can be calibrated in advance with
many different techniques such as the one described in [28]. In
our current implementation, we use a simplified camera model, and
calibrate the camera using the known size of the VISUAL PANEL.

We assume that the principal point of the camera is at the center
of the image, the aspect ratio of the pixels is known (1 in our case),
and the pixels are squared (no skew), so the only unknown camera
parameter is the focal length f . Let R and t be the rotation matrix
(defined by 3 parameters) and the translation vector (also defined
by 3 parameters) of the VISUAL PANEL with respect to the cam-
era coordinate system. We assume that the width w and height h
of the VISUAL PANEL are known, so the coordinates of the four
corners, Qi (i = 1; : : : ; 4), can be defined in a coordinate system
attached to the VISUAL PANEL as [0; 0; 0]T , [w; 0; 0]T , [w; h; 0]T

and [0; h; 0]T . As described in Sect. 4, we detect/track the four cor-

5

ners in the image which are denoted by qi (i = 1; : : : ; 4). The
relationship between Qi and qi is described by the perspective pro-
jection model:

s

�
qi
1

�
= A[R t]

�
Qi
1

�
withA =

2
4f 0 u0
0 f v0
0 0 1

3
5 (6)

where s is a non-zero scale factor and (u0; v0) are the coordinates
of the principal point. Eliminating s yields two scalar equations.
Since we have 4 points, we have in total 8 equations. Because we
only have 7 parameters (focal length + the 6 pose parameters), a
least-squares solution can be obtained for the focal length by min-
imizing the errors in the image space. In order to achieve higher
accuracy, we track the VISUAL PANEL through 30 frames and esti-
mate the focal length using all the images, again in least-squares.

Once the focal length is known, the pose (R; t) of the VISUAL

PANEL at each time instant can be determined based on the same
equation (6). We still have 8 equations, but only 6 unknowns (the
pose parameters). A least-squares solution can be obtained by min-
imizing the errors in the image space. The computation time for
pose estimation is negligible.

To control the visualization of a 3D object, we use the relative
pose of the VISUAL PANEL at the current time instant with respect
to the pose when it was detected.

8. SAMPLE APPLICATIONS
Based on the VISUAL PANEL system, several applications are

made to demonstrate the capacity of the system. A video filming
a live demonstration of an older version of the system (without au-
tomatic panel detection and the virtual joystick functionality), is
available at URL:
research.microsoft.com/~zhang/VisualPanel/video.avi
The sound track is not edited, and a beep signals a Windows event
is generated.

In this section, we explain four applications: control a calculator,
draw a picture with a finger, input text without using any keyboard,
and control a 3D object with the Visual Panel.

8.1 Controlling a Calculator
This application demonstrates the accuracy and stability of the

VISUAL PANEL system. The Calculator, with around 30 buttons,
takes a very small part area of the display. In this demo, a user
can freely use his fingertip to click any buttons or menus of the
Calculator. A snapshot is shown in Fig. 9 where the cursor is posi-
tioned on the button “�” (multiplication). The tracking error is less
than 1 pixel, and the motion of the cursor is very smooth. Indeed,
our system can be used as a virtual mouse to control any Windows
application.

8.2 Finger Painting
This application demonstrates different mouse button pressing

modes. A user can now use his finger to select tools and draw any-
thing with Paint, a standard Windows application. Our usability
study shows that users learn quickly how to draw a picture and con-
trol the remote display with their finger using our VISUAL PANEL

system. Figure 10 shows a snapshot of the display while a user
was finishing painting “hello world”. The left window displays the
panel and the hand viewed from the camera.

8.3 Virtual Keyboard
This application demonstrates that the physical keyboard can be

replaced by a printed virtual keyboard in our VISUAL PANEL sys-
tem. We print a keyboard pattern on the panel, which is shown in

Figure 9: Controlling a calculator.

Figure 10: Finger painting.

Figure 11. When the user points to any of the keys on the panel,
a key-down message is sent to the operating system, such that the
current active application will receive such key. For example, we
can use Windows Notepad to receive text inputted by the user. Fig-
ure 12 shows a snapshot of the display while a user was inputting
“hello world. THANK YOU” with the virtual keyboard. (Note that
the lock key was pressed in the middle.)

In our current implementation, users can only use one of their
fingers. The typing speed is slow because of the one-second wait
time. We are not claiming that we can get rid of the physical key-
board. However, our system could be a very promising alternative
when the physical keyboard is not available under some circum-
stances. The typing speed could be increased by using hand ges-
tures to activate the events rather than waiting for a short period of
time. Alternatively, instead of using the traditional keyboard, we
could use special keyboards similar to Cirrin [12] and Quickwrit-
ing [14] which can input multiple letters without explicit keyboard
events.

8.4 Virtual Joystick
As described in Sect. 7, we can determine the 3D orientation and

position of the VISUAL PANEL at each time instant, and we can
therefore use this type of information to control the display of a 3D
object. That is, the VISUAL PANEL can serve as a virtual joystick.
Figure 13 shows a few screen dumps of controlling a tiger model

6

Figure 11: Virtual keyboard

Figure 12: Virtual keyboard in action

using the VISUAL PANEL. In each picture, the left side displays
the live video with the tracked VISUAL PANEL indicated by red
lines; the right side displays a 3D tiger model. As we can see,
when the VISUAL PANEL moves closer to the camera, the tiger is
zoomed; when the VISUAL PANEL rotates, so does the tiger; when
the VISUAL PANEL translates, so does the tiger.

One obvious limitation of our system is that we cannot rotate
an object all around continuously because the VISUAL PANEL may
degenerate to a line in the image, making the pose estimation failed.
There are several ways to overcome this difficulty: detect explicitly
this case; perform temporal filtering. In our current implementa-
tion, we just re-initialize the VISUAL PANEL, and pursue the 3D
control from where the tracking was lost previously.

9. CONCLUSION AND FUTURE WORK
We have developed a prototype vision-based gesture interface

system called VISUAL PANEL, which is capable of performing ac-
curate control of remote display and simulating mouse, keyboard
and joystick. The VISUAL PANEL system employs an arbitrary
quadrangle-shaped plane object as a panel, which can be consid-
ered as a display or a keyboard. It can robustly and accurately track
the panel and the tip pointer. A user can use their fingers or other
tip pointers to simulate a cursor pointer and issue clicking/pressing
instructions. After the action is detected, various events can be gen-
erated and sent to the computer operating system. Furthermore, by
tracking the 3D position and orientation of the visual panel, the
system can also provide 3D information, serving as a virtual joy-
stick, to control 3D virtual objects. Four applications have been
described: control a calculator, paint with fingers, input text with a
virtual keyboard, and control the display of 3D objects. They have
clearly shown the high robustness, accuracy and flexibility that the

VISUAL PANEL can provide. Many other applications are possible.
For example, the 3D pose information of the VISUAL PANEL will
allow real-time insertion of a texture-mapped virtual object into the
scene to make it appear as if it is a part of the scene and move with
the VISUAL PANEL.

The VISUAL PANEL system leaves a lot of room for extensions
and improvements in various aspects, especially in action recogni-
tion. In our current implementation, action is triggered when the tip
pointer stays immobile for a short duration (say 1 second). We are
investigating more natural ways to do that, for example, by com-
bining hand gesture recognition.

Acknowledgments
The authors would like to thank Ken Hinckley, Eric Horvitz and
Matthew Turk for discussions.

10. REFERENCES
[1] S. Ahmad. A usable real-time 3D hand tracker. In Proc.

IEEE Asilomar Conf., 1994.
[2] G. Berry. Small-wall: A multimodal human computer

intelligent interaction test bed with applications. Master’s
thesis, Dept. of ECE, University of Illinois at
Urbana-Champaign, 1998.

[3] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley, 1991.

[4] J. Crowley, F. Berard, and J. Coutaz. Finger tracking as an
input device for augmented reality. In Proc. Int’l Workshop
Automatic Face Gesture Recognition, pages 195–200, 1995.

[5] O. Faugeras. Three-Dimensional Computer Vision: a
Geometric Viewpoint. MIT Press, 1993.

[6] D. Hall, C. Le Gal, J. Martin, O. Chomat, T. Kapuscinski,
and J. Crowley. Magicboard: A contribution to an intelligent
office environment. In Proc. Int’l Symposium on Intelligent
Robotic Systems, University of Coimbra, Portugal, 1999.

[7] K. Imagawa, S. Lu, and S. Igi. Color-Based hands tracking
system for sign language recognition. In Proc. Int’l Conf. on
Face and Gesture Recognition, pages 462–467, 1998.

[8] R. Jain, R. Kasturi, and B.G. Schunck. Machine Vision.
McGraw-Hill, New York, 1995.

[9] K. Jo, Y. Kuno, and Y. Shirai. Manipulative hand gestures
recognition using task knowledge for human computer
interaction. In Proc. Int’l Conf. on Automatic Face and
Gesture Recognition, Japan, 1998.

[10] N. Jojic, B. Brumitt, B. Meyers, and S. Harris. Detecting and
estimating pointing gestures in dense disparity maps. In
Proc. Int’l Conf. Face Gesture Recognition, pages 468–475,
2000.

[11] S. Ju, M. Black, S. Minneman, and D. Kimber. Analysis of
gesture and action in technical talks for video indexing. In
Proc. Int’l Conf. on Computer Vision and Pattern
Recognition, 1997.

[12] J. Mankoff and G. Abowd. Cirrin: A world-level unistroke
keyboard for pen input. In Proc. ACM Symposium UIST,
pages 213–214, 1998.

[13] T. Moran, E. Saund, W. van Melle, A. Gujar, K. Fishkin, and
B. Harrison. Design and technology for collaborage:
Collaborative collages of information on physical walls. In
Proc. ACM Symposium UIST, 1999.

[14] K. Perlin. Quikwriting: Continuous stylus-based text entry.
In Proc. ACM Symposium UIST, pages 215–216, 1998.

[15] F. Quek. Unencumbered gesture interaction. IEEE
Multimedia, 1997.

7

Figure 13: Virtual joystick: Control the visualization of a 3D object by moving the VISUAL PANEL

[16] J. Rehg and T. Kanade. Model-based tracking of
self-occluding articulated objects. In Proc. Int’l Conf.
Computer Vision, pages 612–617, 1995.

[17] J.G. Semple and L. Roth. Introduction to Algebraic
Geometry. Oxford: Clarendon Press, 1949. Reprinted 1987.

[18] T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The
gesture pendant: A self-illuminating, wearable, infrared
computer vision system for home automation control and
medical monitoring. In Proc. Int’l Symposium Wearable
Computers, pages 87–94, 2000.

[19] T. Starner et al. A wearable computer based american sign
language recognizer. In Proc. Int’l Symposium Wearable
Computing, 1997.

[20] G. Strang. Introduction To Applied Mathematics.
Wellesley-Cambridge Press, 1986.

[21] N. Takao, J. Shi, S. Baker, I. Matthews, and B. Nabble.
Tele-Graffiti: A pen and paper-based remote sketching
system. In Proc. 8th Int’l Conf. Computer Vision, volume II,
page 750, 2001.

[22] J. Triesch and C. von de Malsburg. Robust classification of
hand postures against complex background. In Proc. Int’l
Conf. Face Gesture Recognition, 1996.

[23] C. Vogler and D. Metaxas. ASL recognition based on a
coupling between HMMs and 3D motion analysis. In Proc.
Int’l Conf. Computer Vision, pages 363–369, 1998.

[24] P. Wellner. Interacting with paper on the DigitalDesk.
Communications of the ACM, 36(7):86–96, July 1993.

[25] C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland.
Pfinder: Real-time tracking of the human body. In Photonics
East, SPIE Proceedings, volume 2615, 1995.

[26] Y. Wu and T. S. Huang. Human hand modeling, analysis and
animation in the context of HCI. In Proc. Int’l Conf. Image
Processing, 1999.

[27] M. Zeller and et al. A visual computing environment for very
large scale biomolecular modeling. In Proc. Int’l Conf.
Application-Specific Systems, Architectures and Processors,

pages 3–12, 1997.
[28] Z. Zhang. A flexible new technique for camera calibration.

IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, 2000.

8

