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ABSTRACT

This paper describes a novel approach to analyzing and trac-
king the motion of structured deformable shapes that consist
of multiple correlated deformable subparts. Due to the high
dimensional nature of this problem, existing methods are
plagued either by the inability of capturing detailed localde-
formation or the enormous complexity, induced by the curse
of dimensionality. Taking advantage of the structure of the
deformable shapes, the paper presents a new representation,
i.e., dynamic Markov network model, to overcome the chal-
lenges induced by high dimensionality. Probabilistic vari-
ational analysis of this Markov network model reveals a
set of fixed point equations, i.e., the mean field equations,
which manifest the interactions among the posterior mo-
tions of these deformable subparts and suggest an efficient
solution to such a high dimensional motion analysis prob-
lem. Combined with Monte Carlo strategies, the new algo-
rithm, namely mean field Monte Carlo(MFMC), achieves
very efficient Bayesian inference with close-to-linear com-
plexity. Experiments on tracking human faces and human
lips demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

Structured deformable shapes consist of multiple correlated
deformable subparts. For example, a human face is com-
posed of outer face contour, eyebrows, eyes, nose and mouth.
Analyzing the motion of structured deformable shapes has
many real applications such as tracking human lips for spee-
ch recognition [1], locating human faces for face recogni-
tion [2] and medical applications such as tracking the en-
docardial wall [3]. The structured deformation is different
from articulated motion. In structured deformation, each
subpart is a deformable shape while articulation consists of
a linked structure of rigid subparts.

For structured deformation analysis, the first problem is
how to represent the deformable shapes. Existing methods
either represent the deformable shapes as spline curves [4,
5], or as a set of control points [2, 6]. The second problem
is how to recover the structured deformation from the video
sequence. There are mainly two approaches: the top-down

approach takes a two step strategy, i.e., the hypothesis gen-
eration and image observation verification such as the par-
ticle filtering algorithm [5]; while the bottom-up approach
estimates the best model parameters by optimizing a cost
function just as the SNAKES [4].

The high dimensional nature of structured deformable
shapes causes many challenges. Both approaches mentioned
above are challenged by this situation: for the first approach,
e.g., the particle filtering algorithm [5], the number of parti-
cles needed to achieve a good result may increase exponen-
tially with the dimensionality, so does the computation cost;
for the second approach, e.g., SNAKES [4], the cost function
needs to be optimized in a very high dimensional space. It
is confronted by the enormous local minima induced by the
high dimensionality. In addition, since these methods treat
the deformable shapes as a whole, detailed local deforma-
tion is hardly to be analyzed.

Our method employs a dynamic Markov network to rep-
resent the structured deformable shapes. The structural con-
straints are modeled in the Markov network at each time
instant. The probabilistic mean field variational analysis
of the Markov network results in a set of mean field fixed
point equations. Since it is difficult to obtain the closed
form solution to such a set of fixed point equations, a mean
field Monte Carlo (MFMC) [7] algorithm is proposed as
a nonparametric approximation. Different subparts can be
tracked by different trackers while these trackers can ex-
change information with each other to reinforce the struc-
tural constraints. This way, we achieve very efficient Bayes-
ian inference with near-to-linear complexity and the local
deformation of each subpart can be recovered very well.

The remainder of this paper is organized as follows: in
Section 2, related work of this paper will be discussed; then
in Section 3, we propose the Markov network representation
and a mean field Monte Carlo algorithm; in Section 4, by ex-
tending the model and the algorithm, we propose a dynamic
Markov network to model the deformation of the structured
deformable shapes and a sequential mean field Monte Carlo
algorithm to implement the inference; experimental results
will be presented and discussed in Section 5; and the con-
clusion and future work will be presented in Section 6.



2. RELATED WORK

Because of the high dimensional nature of structured de-
formable shapes, the analysis of them faces the curse-of-
dimensionality. We use a dynamic Markov network repre-
sentation to approach it. There are two problems we need to
address, the first is how to formulate such a tracking algo-
rithm, the second is how to implement the Bayesian infer-
ence for the dynamic Markov network. Therefore, related
work in the literature can be categorized into two, the first
category addresses the problem of deformable object track-
ing; the second category deals with the inference of complex
statistical graphical models.

For deformable object tracking, there are two main ap-
proaches just as briefly mentioned in Section 1. The repre-
sentatives of them are the particle filtering tracker [5] andits
variants [8, 9] and the SNAKES [4]. To attack the high di-
mensionality problem, the active shape model [2] uses PCA
to learn and find the best linear approximation of the orig-
inal model. More recent work includes using ISOMAP al-
gorithm for dimension reduction [10]. However, learning a
lower dimensional description of the object needs a set of
training data and sometimes it would be very difficult to ob-
tain. Partitioned sampling [11] samples different parts one
by one but the information flow is unidirectional.

For Bayesian inference in graphical model, belief prop-
agation can achieve exact results in the case of directed
acyclic graphical model (DAG). When the graphical model
has loops, loopy belief propagation can obtain good approx-
imate results in many applications[12, 13]. Probabilistic
variational analysis is an principled approximate inference
technique. It uses a more tractable approximate form of
the posterior probability [14, 9] and an approximate infer-
ence is achieved by minimizing the K-L divergence between
the approximated posterior and the original one. Particle
filtering [5] employs a set of weighted samples to repre-
sent the real distributions and probabilistic inference isim-
plemented based on these samples. Most recent work us-
ing particle filtering to perform the inference of generalized
graphical model includes the nonparametric belief propaga-
tion (NBP) algorithm [15] and the PAMPAS algorithm [16]
where Monte Carlo method is used in the message passing
process in belief propagation. In both algorithms, the mes-
sages are modeled as Gaussian mixtures and Markov chain
Monte Carlo (MCMC) samplers are designed to draw sam-
ples from them.

In the proposed method, each subpart of the structured
deformable shape is modeled by a parametric description of
a spline curve in the motion space. And the constraint be-
tween two subparts are modeled explicitly in the dynamic
Markov network representation. As described in the follow-
ing sections, our method of performing inference in such
a dynamic Markov network actually combines the idea of

variational inference methods [14] with the idea of particle
filtering [5]. Different from NBP [15] and PAMPAS [16], it
is a fully nonparametric inference algorithm with close to
linear complexity.

3. REPRESENTATION AND MFMC

Suppose the structured deformable object consists ofK sub-
parts, then we denote each subpart of the object as a random
variablexi, which can be any parametric description of the
motion such as the affine motion in our experiment. Then,
we can construct a suitable potential functionψ(xi,xj) be-
tween two different subparts, which in fact reveals the prob-
ability of two random variables being subject to a certain
constraint. Also, suppose the image observation for each
xi is zi, and the observation function isφ(zi|xi), a Markov
network can thus be constructed to model the structured de-
formable object.
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Fig. 1. Markov network for human face.

Figure 1 shows a Markov network of human face where
the subscripts ’Of’,’Leb’,’Reb’,’Le’,’Re’,’N’ and ’M’ cor-
respond to out face contour, left eyebrow, right eyebrow,
left eye, right eye, nose and mouth respectively. Each undi-
rected link in the graphical model represents a potential func-
tionψ(xi,xj) and each directed link in the graphical model
represents an observation functionφ(zi|xi).

The joint probability corresponding to the graphical mo-
del in Figure 1 is:

p(X,Z) =
1

ZC

∏
(i,j)∈E

ψ(xi,xj)
∏
i∈V

φ(zi|xi) (1)

whereZC is a normalization constant,E denotes the set of
undirected link in the graphical model andV denotes the set
of directed links.

The inference problem of such a loopy graphical model
is to calculate the posteriori probabilityp(xi|Z). We em-
ploy a variational mean field method to obtain an approx-
imate solution to it, i.e., the joint posterior probabilityis
approximated by

P (X|Z) ∼
∏
i

Qi(xi), (2)



whereQi(xi) is an independent approximate distribution of
P (xi|Z). Then we can construct a cost function

J(Q) = logP (Z)−

∮
X

∏
i

Qi(xi) log

∏
i Qi(xi)

P(X|Z)

= −
∑
i

Hi(Qi) +

∫
xi

Qi(xi)EQ{logP(X,Z)|xi}

whereHi(Qi) is the entropy of the distributionQi(xi) and

EQ{logP (X,Z)|xi} =

∮
{xj}\xi

[
∏
{j}\i

Qj(xj)] logP(X,Z).

(3)
Minimizing J(Q) will lead to Qi(xi) → P(xi|Z). Tak-
ing the derivative ofJ(Q) w.r.t. Qi(xi), and constraining∑

xi
Qi(xi) = 1, we can obtain a set of fixed point equa-

tions forQi(xi) [14, 7]:

Qi(xi)←
1

ZE
eEQ{log P(X,Z)|xi} (4)

whereZE is a normalization constant to make sureQi(xi)
is a valid probabilistic distribution. Embedding equation1
into equation 3 and equation 4, we can obtain a set of sim-
plified mean field fixed point equations [14, 7]:

Qi(xi)←
1

Z′
E

φ(zi|xi)e
∑

j∈N(i)

∫
xj

Qj(xj) logψ(xi,xj) (5)

whereZ ′
E is again a normalization constant. Since this set of

fixed point equations involves integration of complex prob-
abilistic distributions, closed form solution would be dif-
ficult. We simulate it by Monte Carlo techniques where
several sets of weighted samples are used to represent the
probabilistic distributions, i.e.,Qi(xi) ∼ {s

(n)
xi , π

(n)
xi }. The

iteration of the fixed point equation set is then implemented
based on these samples. This leads to the mean filed Monte
Carlo (MFMC) algorithm, which is shown in Figure 2.
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3. Normalization:ωmxi,k+1 = ωmxi,k+1/
∑
m
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get{s(n)
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(n)
xi,k+1}

4. Iteration:k← k + 1, iterate until convergence.

Fig. 2. Mean Filed Monte Carlo Algorithm

Compared with the NBP algorithm [15] and the PAMPAS

algorithm [16], the MFMC algorithm employs weighted sam-
ples for all the distributions while both NBP and PAMPAS

model these distributions as Gaussian mixtures. In this sense,
our algorithm is fully nonparametric. Also, our algorithm
employs importance sampling thus it avoids using MCMC
samplers which have been used in both NBP and PAMPAS.
The use of importance sampling has two advantages: firstly,
it avoids sampling directly from the complex Gibbs distri-
bution of equation 4 or equation 5; secondly, domain knowl-
edge can be used to construct a suitable importance function
to generate samples from more confident areas.

4. SEQUENTIAL MFMC

Assuming each subpart of the structured deformable shape
has an independent dynamic motion modelp(xi,t|xi,t−1),
we can describe the motion of a structured deformable ob-
ject through a dynamic Markov network as in Figure 3. It
is the temporal extension of the Markov network in Fig-
ure 1. Each horizontal arrow represents the dynamic mo-
tion model of each corresponding subpart. DenoteZ1:t =
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Fig. 3. DMN for Human Face deformation.

{Z1, . . . ,Zt}, the inference problem becomes [5]:

P (Xt|Z1:t) ∝ P(Zt|Xt)

∫
Xt−1

P(Xt|Xt−1)P(Xt−1|Z1:t−1
)

(6)
Also, assuming independent dynamic model for each sub-
part, i.e.,

P (Xt|Xt−1) =
∏
i

P(xi,t|xi,t−1) (7)



the mean field approximation will result in the following
fixed point equations [7]:

Qi,t(xi,t) =
1

ZC
φ(zi,t|xi,t)

×

∫
xi,t−1

P (xi,t|xi,t−1)Qi,t−1(xi,t−1)

× exp(
∑

j∈N (i)

Qj,t(xj,t) log(ψ(xi,t, xj,t)))

(8)

whereZC is a normalization constant. Comparing equa-
tion 8 with equation 5, we can see that there is one more
item in equation 8, which exactly models the dynamic pre-
diction prior. Actually, if we do know the priori probability
of each node in Figure 1, we can also incorporate a local
prior item in equation 4 and equation 5.

This set of fixed point equations are more complex be-
cause they involve multiple integrations of complex proba-
bilistic distributions. Again, we adopt a Monte Carlo strat-
egy to approach to this problem. We call it the sequential
mean field Monte Carlo algorithm (SMFMC), as shown in
Figure 4.

The SMFMC algorithm has two steps, the first step is
the sequential Monte Carlo (SMC) process; then, the re-
sult is used as the initialization of the MFMC process. The
MFMC process runs until convergence.

5. EXPERIMENTS

To demonstrate the effectiveness of the SMFMC algorithm,
it has been implemented to track both human lips and hu-
man faces. All the experiments run on a PC with 2.4GHz
CPU. The code is programmed with C++ and no code opti-
mization is performed.

5.1. Tracking Human Lip

A human lip can be decomposed into upper-lip and lower-
lip, each of them is represented by an affine deformation of a
spline curve. Thus a two-node Markov network can be con-
structed and each node represents a 6-dimensional random
variable of the affine deformation. The constraint between
the upper-lip and lower-lip is that the two pairs of the end
points should be as close as possible, thus a potential func-
tion can be constructed based on this. In our experiment, we
use a Gaussian potential function to model the constraint,
i.e., the average distance of the two pair of end points obey
a zero mean Gaussian distribution. And the parameter of the
potential function can be trained from a set of manually an-
notated images. The observation function is similar as that
in [5].

The lip video sequence has more than 150 frames. Sam-
ple frames of the results of the SMFMC algorithm are shown

Generate{s(n)
xi,t

, ω
(n)
xi,t
}Nn=1 from {s(n)

xi,t−1 , ω
(n)
xi,t−1}

N
n=1.

I. Initialization: Sequential Monte Carlo,k ← 1

I.1. Re-sampling:Re-sampling{s(n)
xi,t−1}

N
n=1 according to

the weightsω(n)
xi,t−1 to get{s(n)

xi,t−1 , 1
N
}Nn=1

I.2. Prediction: For each weighted sample in{s(n)
xi,t
}Nn=1,

sampling fromP (xi,t|xi,t−1) to get{s(n)
xi,t,k

, 1
N
}Nn=1

I.3. Re-weight:Assign weightω(n)
xi,t,k

= φ(zi|s
(n)
xi,t,k

) to

each correspondings(n)
xi,t,k

and normalize the weight such that∑N

n=1 ω
(n)
xi,t,k

= 1

II. Iteration: Mean Field Monte Carlo

II.1. Importance Sampling:Sample{s(n)
xi,t,k+1 , 1

N
}Nn=1

from a suitable importance functionIi(xi,t).

II.2. Re-weight:For each samplesmxi,t,k+1
, set its weight to

ωmxi,t,k+1
=

φ(zi|s
m
xi,t,k+1

)Dxi,t
(sm

xi,t,k+1
)Gxi,t

(sm
xi,t,k+1

)

Ii(s
m
xi,t,k+1

)

where
Dxi,t

(smxi,t,k+1
) =

∑N

n=1 P (smxi,t,k+1
|snxi,t−1

)ω
(n)
xi,t−1

and

Gxi,t
(smxi,t,k+1

) = e

∑
j∈N(i)

∑N
n=1 ω

(n)
xj,t,k

logψ(smxi,t,k+1
,s

(n)
xj,t,k

)

II.3. Normalization:ωmxi,t,k+1
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Fig. 4. Sequential Mean Filed Monte Carlo Algorithm

in Figure 5. For comparison, a single SMC tracker and a
multiple independent SMC (MiSMC) tracker are also im-
plemented. The results are shown in Figure 6 and Figure 7,
respectively. From the results, we observe that the single
SMC tracker can not catch the detailed local deformation
well. The reason is that the upper lip and lower lip are ac-
tually subject to different correlated affine motion instead
of the same motion, but the single SMC algorithm treats
them as the same. We also observe that the MiSMC can
not keep the structure of the upper and lower lip, and it eas-
ily loses track because of the lack of constraints between
the two independent trackers. On the contrary, the proposed
SMFMC algorithm achieves much better results. It tracks
both the upper-lip and lower-lip deformation very well, and
the structure of the combined upper-lip and lower-lip has
also been kept because it has been reinforced by the dy-
namic Markov network.

In fact, if a very tight potential function is used in the



Fig. 5. Tracking Human Lip Via SMFMC, more results in
“lip.avi”.

Fig. 6. Tracking Human Lip Via a Single SMC Tracker.

Markov network, i.e., the state of one node can fully decide
the state of the other, then the SMFMC tracker degenerates
to a single SMC tracker. On the contrary, if the potential
function is very loose, i.e., each node is almost independent
with the others, then the SMFMC tracker degenerates to a
MiSMC tracker. Thus we can treat SMC and MiSMC as
two extreme cases of the SMFMC tracker.

5.2. Face Alignment and Tracking

The SMFMC algorithm proposed in this paper can be used
for automatic face alignment. Just as we have mentioned
in Section 4, the first step of the SMFMC algorithm is the
SMC step, then the result is used as the initialization of the
MFMC step. In most cases, the result of the SMC step is
unsatisfactory, then the MFMC step will use the structure
information of the face to guide an iterative alignment to a
better result.

The face model is exactly what we have proposed in
Figure 1. The potential function is constructed based on
the assumption that the state of two connected nodes be as
close as possible in the parametric space. Again, we em-
ploy a Gaussian density to model the distribution of the dis-
tance of two constrained subparts in the parametric space.
And it can be trained from a set of manually annotated im-
ages. The other setup is similar as those in Section 5.1.

Fig. 7. Tracking Human Lip Via a MiSMC Tracker.

Fig. 8. Tracking Human Face Via Sequential MFMC, more re-
sults in “face.avi”.

The proposed SMFMC algorithm achieves good results for
automatic face alignment and face tracking over a video se-
quence of more than 200 frames. After manual initializa-
tion in the first frame, the algorithm automatically aligns
and tracks the face over the sequence. Sample frames of the
experimental result are shown in Figure 8. Compared with
the ASM [2], our face prior model is actually a Gibbs model
while the ASM uses a Gaussian model. Thus our method is
more general than the ASM model, and more capable of
capturing detailed shape deformation.

5.3. Computation efficiency

In the SMC algorithm, the major computation comes from
the evaluation of the observation likelihood. Since in each
time step, the SMC algorithm needs to evaluate the observa-
tion likelihood once for each sample, the computation com-
plexity is almost proportional to the number of samples. For
conventional particle filtering methods, the needed number
of samples is exponential w.r.t. the dimensionality. Suppose

SMCLip MiTLip SMFMCLip SMFMCFace
16.5 F/s 10.9 F/s 4.0 F/s 1.6 F/s

Table 1. Processing Frame Rate of different trackers



for a single object, the number of samples needed to make
the tracker work isN . Then for a structured deformable
shape withK subparts, if mean field iteration converges
in M steps, the computation complexity isO(MKN ) [7],
which is clearly linear w.r.t. the number of subparts, thus to
the dimensionality.

Moreover, our algorithm can let us allocate the com-
putation resources to different subparts according to their
needs, i.e., some of the more complexed subparts may need
more samples while some of the others may need less sam-
ples. In this way, the computation resources can be used
more efficiently as we have done in the experiments. Ta-
ble 1 shows the rough processing frame rates of different
methods in our experiments. Noticing that the lip has 2 sub-
parts, the face has 7 subparts and the number of mean field
iteration is 3, it verifies that the SMFMC tracker do have
linear complexity w.r.t. the dimensionality just as we have
expected.

6. CONCLUSION AND DISCUSSION

In this paper, a novel SMFMC algorithm is proposed to
analyze and track structured deformable shapes based on
a dynamic Markov network representation. The SMFMC
algorithm combines both analytical and nonparametric in-
ference methods, i.e., the statistical variational analysis and
Monte Carlo methods. More interestingly, it has linear com-
plexity w.r.t. the dimensionality. In addition, it shows that
the single SMC tracker and the MiSMC tracker can be re-
garded as two extreme cases of our algorithm. Experiments
have demonstrated the effectiveness and efficiency of the
proposed SMFMC algorithm.

Although the SMFMC algorithm is employed in this pa-
per for analyzing structured deformable shapes, it is actually
generalizable for many other vision problems such as articu-
lated motion analysis [7]. The idea of dealing with the local
subparts while reinforcing the global constraint proved tobe
an effective way of overcoming the curse-of-dimensionality.
Our future work includes applying SMFMC to other vision
problems and further theoretical study of SMFMC such as
the convergence rate of the algorithm.
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