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Abstract

The problem of multibody motion segmentation is an im-
portant and challenging issue in computer vision. In this
paper, a novel segmentation technique based on simulated
annealing (SA) is proposed. According to the fact that un-
der linear projection models, feature points of multibody
reside in multiple subspaces, firstly, a meaningful energy
function is proposed, which favors the correct formation of
those subspaces, and some subspaces are generated as the
initial state. Then, two strategies of subspace evolution and
transformation are developed to optimize the energy func-
tion in a manner of simulated annealing. The ultimate con-
figuration of these subspaces will reveal the inherent mul-
tiple subspace structure embedded in the data space. The
classification of data points to these subspaces is equivalent
to multibody grouping. The global optimization process re-
sults in an increase of robustness with noise tolerance. The
method is also effective in degenerate cases. Promising re-
sults on synthetic and real data are presented.

1. Introduction
In various real applications in the computer vision field,
multibody motions are frequently encountered. Therefore,
the techniques for motion segmentation are of fundamental
importance and have gained wide-spreading concerns.

A number of algorithms have been proposed to address
this problem. Recently, factorization method, which was
originally developed by Tomasi and Kanade [1] for struc-
ture from motion of a single object, has attracted much pop-
ularity. It reveals that under linear projection models, trajec-
tories of a single body lie in a low dimensional subspace of
the data space. In the case of shape degeneracy (object has
less than three independent dimensions such as a line or a
plane) or motion degeneracy (object performs pure rotation
or pure translation), the dimension of that subspace would
be even lower. So, feature points of multibody actually re-
side in multiple subspaces. Started with a data matrix W,
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whose columns correspond to the features’ trajectories im-
aged over a sequence of frames. The segmentation of inde-
pendently moving objects can be equivalently achieved by
grouping columns of W into a set of independent subspaces.

In the framework of factorization, Gear [2] formulated
the problem as weighted graph matching which may be
stuck in some local minima. Costeira and Kanade [3] pre-
sented a multibody factorization method in which a shape
interaction matrix Q is introduced. Q=VVT where V comes
from the singular value decomposition (SVD) of W. Ele-
ments of Q has a property that if any features i and j are
from different objects, Qij will be zero, otherwise, non-
zero. They then grouped features by thresholding and sort-
ing Q. Ichimura [4] applied a discriminant criterion to select
the most representative vectors in Q for feature grouping.
Kanatani [5] developed a method through dimension cor-
rection and model selection.

Unfortunately, the performance of algorithms based on
Q degrades quickly when noise exists; the reason is that Q
only records the relationships between individual features
and is vulnerable to noise. The work in [2] also suffers from
this problem. Presence of noise or outliers will pose addi-
tional challenge to this problem.

Wu et al. [6] decomposed Q into orthogonal subspaces
and grouped these fragment subspaces for motion segmen-
tation. More robust performance is obtained because the el-
ements to be grouped are not individual features but several
subspaces formed by groups of the feature points. However,
the subspace distance defined in [6] for subspace grouping
could only be applied to subspaces with same dimensions
and therefore, will fail in degenerate cases in which sub-
spaces of each object may have different dimensions.

Fan et al. [7] applied Independent Subspace Analysis
(ISA), an approach totally based on the statistical proper-
ties of the data, for independent motion segmentation. Vidal
et al. [8] proposed a powerful tool, called General Princi-
pal Component Analysis (GPCA), for subspace clustering
and motion segmentation. In [9], L. Zelnik-Manor et al.
proposed an segmentation algorithm by applying subspace
constraints on the flow-field.

In this paper, a novel algorithm based on simulated an-
nealing is proposed, which has a robust performance against
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noise and outliers and is also able to cope with degeneracies.
It will be shown in Section 2 that columns of VT , which
come from the SVD of W, span a set of mutually orthogonal
subspaces called objects’ shape subspaces. Our approach
is to discover this mutually-orthogonal-subspace configura-
tion by optimizing an energy function in a simulated an-
nealing (SA) manner. Several potential shape subspaces are
generated as the initial solution state. A novel technique
for subspace transformation and a conventional subspace
evolution technique are used for state transition towards the
minimum of the energy which coincides exactly with the
subspace structure embedded in the data set. All feature
points are involved in this global optimization, which re-
sults in an increase of robustness with noise tolerance. An
effective technique for detecting and coping with degenera-
cies is also described. Compared with previous work, the
SA based approach in this paper is more intuitive by giving
an algebraic description of shape subspaces and exhibits a
plain scenario for the procedure of shape subspace finding.

The paper is organized as follows. In Section 2, the prob-
lem of multibody motion segmentation is briefly reviewed.
Section 3 presents our simulated annealing based approach.
Experimental results on synthetic and real image sequences
are demonstrated in Section 4. Conclusion is summarized
in Section 5.

2. The problem of multibody motion
segmentation

Suppose there are N independently moving objects in the
scene, each object contains ni 3D points. Their homoge-
neous coordinates is represented by a 4×ni matrix Si,

Si =




x1
i x2

i · · · xni

i

y1
i y2

i · · · yni

i

z1
i z2

i · · · zni

i

1 1 · · · 1


 . (1)

When a linear projection (orthographic, affine, etc.) is as-
sumed, we collect the projected image coordinates (u, v) of
these ni points over F frames into a 2F×ni matrix Wi, i.e.

Wi = MiSi, (2)

where

Wi =




u11 · · · u1ni

v11 · · · v1ni

u21 · · · u2ni

v21 · · · v2ni

· · · · · · · · ·
uF1 · · · uFni

vF1 · · · vFni




and Mi =




Mi1

Mi2

· · ·
MiF


 .

Each column of the Wi contains the observations for a sin-
gle point over F frames, while each row contains the ob-

served u-coordinates or v-coordinates for a single frame.
Mi is a 2F×4 matrix and Mif (f=1, . . . , F ) is the 2×4 pro-
jection matrix related to object i in the f th frame. Assume at
least four non-coplanar feature points are chosen from each
object, thus, the ni columns of Wi reside in a 4D subspace
spanned by the columns of Mi.

All feature points across all frames can be compactly
written into a 2F×P matrix W,

W = [W1W2 . . .WN ]

= [M1M2 . . .MN ] ·




S1

S2

· · ·
SN


,(3)

where P = Σni is the total number of features in the scene.
Since the motions of all objects are independent, the rank

of W is 4N (degeneracies will be discussed later). By sin-
gular value decomposition W=UΣVT , where U∈2F×4N,
Σ∈4N×4N and V∈P×4N, the shape interaction matrix Q
can be computed by Q=VVT and

Qij

{
= 0, if feature i and j belong to different objects,
�= 0, if feature i and j belong to the same object.

(4)
Assume we have grouped feature points of different ob-

jects, we could express VT as VT =[V1 V2. . .VN ], where
Vi=[V1

i V2
i . . .V

ni

i ]. Denote SPi=span{V1
i V2

i . . .V
ni

i } as
the shape subspace for object i. According to the nice prop-
erty of Q in (4), it is proved [6] that in the noise-free case,

SPi ⊥ SPj , ∀i �= j. (5)

It means that the shape subspaces are mutually orthogo-
nal. In reality, with no information about feature grouping,
we might obtain a W� whose columns are permutation of
W, as well as V�T , a permuted version of VT . But this does
not violate the mutual orthogonality of shape subspaces.

3. Multibody motion segmentation
based on simulated annealing

Following the above descriptions, the key to solve the prob-
lem of multibody motion segmentation is clear. Given a
2F×P matrix W�, we manage to find a set of appropriate
mutually orthogonal shape subspaces SPi from the r × P
matrix V�T . Then, multibody segmentation can be equiv-
alently achieved by grouping the columns of V�T to those
subspaces, where V�T comes from the SVD of W�, r is the
rank of W� and P is the number of imaged features.

In this section, we develop a novel and robust method
to address this problem. A meaningful energy function is
introduced and then is minimized in a simulated annealing
(SA) manner. The most important parts in the SA algorithm
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are: the objective energy function, the initial state and the
strategy of state transition. Description of these three ele-
ments will be presented in the following subsections.

3.1. Membership function and energy function
We first introduce a membership function, based on which
the objective energy function is constructed.

Recall the formation of shape subspaces in Section 2,
columns of V�T actually come from the mutually orthog-
onal subspaces. We can define a membership function to
describe the degree to which the ith column of V�T belongs
to a certain shape subspace SPj , as

mem(i, j) = ‖πj ·V�T
i ‖/‖V�T

i ‖ , (6)

where V�T
i is the ith column vector of matrix V�T , πj =

Bj(BT
j Bj)−1BT

j is the projection matrix onto SPj and Bj

consists of basis vectors of subspace SPj . Due to the mu-
tual orthogonality of those SPj , this membership function
has a nice property that

mem(i, j)
{

= 1, if vector i lies in SPj ,
= 0, if vector i is orthogonal to SPj .

(7)
Suppose there are N shape subspaces (The determina-

tion of N will be detailed in Section 3.7), based on the
membership function, we then define a energy function as

E(r) = A

P∑
i=1

N∑
j=1

N∑
k=1,k �=j

mem(i, j)mem(i, k)

+B(P −
P∑

i=1

N∑
j=1

mem(i, j))2 (A = B = 1), (8)

where P is the total number of imaged features. The first
term of E(r) is minimized if for ∀i, at most one of the mem-
bership functions mem(i, j) j ∈ [1, N ] is nonzero. The sec-
ond term is minimized if the summation of all mem(i, j) is
equal to P . Reflect the definition and property of the mem-
bership function in (6) and (7). The minimum energy E(r)
favors the case that the shape subspaces are mutually or-
thogonal and all columns (features) are correctly classified
into their own subspaces. So, (8) is the objective energy
function to be minimized in our algorithm.

3.2. Initial state of the simulated annealing
The initial state in the process of SA is a set of randomly
generated mutually orthogonal subspaces as the potential
shape subspaces in the r-dimensional space spanned by
V�T . Because none of them will have a rank more than
four, we assign each of them four r-dimensional orthonor-
mal basis vectors as,


SP1 = span{SP(1)
1 ,SP(2)

1 ,SP(3)
1 ,SP(4)

1 },
· · · · · ·
SPN = span{SP(1)

N ,SP(2)
N ,SP(3)

N ,SP(4)
N }.

(9)

3.3. Strategy for state transition
Reasonable scheme for state transition can facilitate a
fluent and consistent movement to the ideal state with the
minimum energy. Totally, we design two strategies for
state transition which exhibit the most novel feature of our
algorithm and are confirmed to be pertinent and effective to
escape local minima.

3.3.1. Strategy 1: subspace evolution. Besides the
input data of P column vectors from the r×P matrix V�T ,
we have N potential subspaces. Aimed to find the inherent
relationship between the column vectors and those potential
subspaces, the simplest but straightforward strategy that
can be implemented is to rotate a subspace towards a vector.
Therefore, referring to the learning scheme in subspace
classifier [10], one of the strategies for state transition can
be defined as

π
′
j = (I +

µV�T
i (V�T

i )T

‖V�T
i ‖2

)πj , (10)

where πj is the orthogonal projection onto the jth subspace,
V�T

i is the ith column vector of matrix V�T and 0 < µ < 1
denotes the learning rate decreasing when the temperature
of SA drops. This manipulation will induce a rotation of
subspace SPj towards the vector V�T

i and therefore, the
projection result of V�T

i onto SPj will become greater. i
and j are arbitrarily chosen from [1,P ] and [1,N ].

3.3.2. Strategy 2: subspace transformation. How-
ever, only performing (10) is insufficient to achieve global
extremum. By investigation, we find that the solution may
be trapped in some local minima that the basis components
of a subspace might consist of basis vectors from differ-
ent subspaces. For instance, at a state in the simulated
annealing process, one subspace may be represented as
SPi = {B(1)

i ,B(2)
i ,B(3)

i ,B(1)
j }, j �= i, where B(1)

i ,

B(2)
i and B(3)

i are three basis vectors of the ideal shape

subspace SPi, while B(1)
j is a basis vector of the ideal

shape subspace SPj . Therefore, there is a need to swap
basis vectors between subspaces in order to find the appro-
priate grouping of basis vectors and the optimal subspace
formation. Inspired by this idea, we propose an alternative
strategy of state transition as subspace transformation.

The concept of principal angles and principal vectors
[11] is well-suited for the investigation of the essential rela-
tionship between a pair of subspaces.
Definition 1. Let A and B be two p-D subspaces in an l-D
space. A and B are l×p matrices consisting of orthonormal
bases of A andB. The principal angles 0≤θ1≤· · ·≤θp≤π/2
and principal vectors {u1, . . . ,up}∈A, {v1, . . . ,vp}∈B
are defined as follows:
Computing the SVD of AT B: YT (AT B)Z=diag(σ1,. . .,σp),
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where YT Y=ZT Z=I (the p×p identity matrix), then


[u1, . . . ,up] = AY,
[v1, . . . ,vp] = BZ,

cos(θk) = σk, k = 1, . . . , p.
(11)

The computation of principal angles,
[u1, . . . ,up]T [v1, . . . ,vp] = YT (AT B)Z =
diag(cos(θk)) (k = 1, . . . , p), indicates that the angle
between the ith pair of principal vectors (ui,vi) is just
the ith principal angle of the subspace pair (A,B). In a
sense, the principal angles can fully represent and totally
determine the relative configuration of the two subspaces.
Observation 1: the p subspaces spanned by {ui,vi} (i=
1, . . . , p) are mutually orthogonal.

[u1,. . .,up]T [v1,. . .,vp] = diag(cos(θk)), k=1, . . . , p indi-
cates that vector ui is orthogonal to vector vj (j �=i).

Moreover, since [u1,. . .,up]T [u1,. . .,up]=YT (AT A)Y=I,
ui is also orthogonal to uj (j �=i). Similarly, vi is orthogonal
to both uj and vj for j �=i. Therefore, the subspace spanned
by {ui,vi} is orthogonal to the subspace spanned by {uj ,vj ,
j �=i}, which further implies that the p subspaces spanned by
{ui,vi} (i=1, . . . , p) are mutually orthogonal.

This mutual orthogonality can offer an appropriate
method for subspace transformation. Consider two sub-
spaces, SPi and SPj , out of the current state. We calculate
their principal vectors as{ SP i = span{u(p1),u(p2),u(p3),u(p4)},

SPj = span{v(p1),v(p2),v(p3),v(p4)}.
Within SP i⊕SPj , the four subspaces spanned by {u(pk),
v(pk)} (k=1, . . . , 4) are mutually orthogonal. These pairs of
principal vectors forms the corresponding principal angles,
respectively. Without loss of generality, we assume that one
pair of the principal vectors, e.g. {u(p1), v(p1)}, is swapped
to realize the transformation of these two subspaces. So, the
configuration of these two subspaces in the new state will be{

SP ′
i = span{v(p1),u(p2),u(p3),u(p4)},

SP ′
j = span{u(p1),v(p2),v(p3),v(p4)}.

However, the mutual orthogonality of the four subspaces
spanned by {u(pk), v(pk)} (k=1, . . . , 4) remains unchanged.
Although the configurations of the two subspaces are really
altered, {u(pk), v(pk)} (k=1, . . . , 4) are still principal vec-
tor pairs of the new subspaces (SP ′

i, SP
′
j) (Observation 1).

Therefore, the four principal angles of (SP ′
i, SP

′
j) are ex-

actly the same as the principal angels of (SPi, SPj), which
further implies the invariability of the relative configuration
of these two subspaces through the transformation. Further-
more, since the manipulation of the transformation is lim-
ited in SPi⊕SPj , no impact has been made on other shape
subspaces. In execution of SA, the two subspaces and the
one pair of principal vectors to be swapped are randomly
selected from the current solution state.

3.4. Degeneracies
In real applications, two types of degeneracies, shape de-
generacy and motion degeneracy, are possible, both of
which will make the dimension of the object’s shape sub-
space less than four.

So, the total number of basis vectors (4N ) of those po-
tential subspaces may be larger than the actual dimension
(r) of the data space. The intersection of shape subspaces
caused by dimension redundance can be checked in the fi-
nal phase of the SA process, when the subspace configura-
tions are fairly stable and does not vary significantly. We
examine the first principal angle θij between every pair of
shape subspaces SPi and SPj (i, j=1, . . . , N ,i �= j). If
cos θij > 0.97, the overlapped basis vector, i.e., the first
principal vector, will be removed from one of the two sub-
spaces. The reduction of dimension is done to the very sub-
space which can offer a greater decrease in the energy func-
tion (8). This technique is practical and can always cope
with degeneracies, as shown in the section of experiments.

3.5. Feature grouping and outlier rejection
The membership function (6) is used in this section to dis-
card outliers and to group features. We observe that in real
applications, noise and outliers will distort the mutual or-
thogonality of the obtained shape subspaces. In our exten-
sive experiments, the inlier’s membership to its own sub-
space will be mostly around 1, but is nearly 0 to other sub-
spaces. Thus, outliers could be simply identified if mem-
berships of such feature points to all the shape subspaces
are nearly equal or comparable.

If mem(i, j)<0.99, feature i will not be classified to the
subspace SPj . The benefit of this thresholding is that out-
liers are detected and discarded by multi-pass formed by
these subspaces. We then classify the filtered inlier column
i to the shape subspace SPj′ which produces the largest
membership value, j′ = arg maxjmem(i, j). Thus, the re-
sult of multibody grouping is equivalently achieved.

3.6. Summary of SA based algorithm
The steps of the algorithm are summarized as below:

1. Given W�, obtain the r×P matrix V�T by SVD, where
r is the rank of W�.

2. Set a start temperature T (parameter of SA). Randomly
generate N mutually orthogonal subspaces as the ini-
tial state of SA.

3. Randomly choose one of strategies, subspace evo-
lution and subspace transformation, to generate new
state while decreasing the temperature.

4. Accept/reject the new state based on ∆E(r) and T till
the temperature is rather low.

5. Check if any redundant dimensions to be reduced.
6. Use the membership function (6) to group features into

multibodies and discard outliers.
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3.7. Determination of parameter r and N
In Section 3.2, the value r, rank of W�, is essential since
the rank specifies the rows of singular vectors V�T . The
value N in Section 3.1 is of the same importance which is
the number of shape subspaces. It is difficult to give them
a correct estimation when noise present. In our experiment,
let σ1 ≥ σ2 ≥ · · · ≥ σrnoise

be singular values of W�,

where σrnoise
=min(2F, P ). We define the rank of W� as

the smallest rest that satisfies

rest∑
i=1

σ2
i

/rnoise∑
i=1

σ2
i ≥ 0.98. (12)

For more accuracy, the algorithm will be executed for
several times with the rank of W� in some range, e.g.
r∈[rest-3,rest+3]. For every rank possibility r, the num-
ber of potential moving objects N is restricted within the
range [round(r/4)-1, round(r/4)+1] (round(X) rounds the
elements of X to the nearest integers). Each pair of (r, N )
conducts a full SA process for energy minimization. Fi-
nally, the parameter pair (r, N ), which yields the minimum
of energy over all pairs, is chosen as the optimal solution.
If the value of the current (r, N ) is incorrect, disharmony
with the original data structure makes it less likely to yield
the minimum energy over all r and N .

4. Experimental results
In this section, experiments on synthetic and real data are
carried out to demonstrate the algorithm’s robust perfor-
mance and the ability to cope with degeneracies. The data
being analyzed in this section is the r×P matrix V�T .

4.1. Synthetic data
In this experiment, 120 points are randomly chosen from 4
transparent entities, two spheres and two planes (rank 3),
each containing 30 points. All of them move in an arbitrary
way except that one of the spheres performs pure rotation
across the sequence (rank 3). So, both shape degeneracy
and motion degeneracy are allowed (r=4+3+3+3=13). 10
frames with resolution 100×100 pixels are captured and the
standard deviation of simulated Gaussian noise is 1 pixel.
50 outliers are fabricated into the image stream. We let the
rank r in the range [11,15] and compare the energy results
(8) with different pairs of r and N , as shown in Table 1.

Table 1: The energy results of different r and N

E(r) r: 11 12 13 14 15
N : 2 2.871 2.686 2.213

3 2.130 2.165 2.050 2.359 3.053
4 0.782 0.876 0.47 1.063 1.573
5 0.707 1.146

(a) (b)
Figure 1: (a) Visualization of all feature’s projection results
onto each subspace (totally 4 objects). (b) Change of energy
in the SA process

The results show that r=13 and N=4 is obviously the
most favorable one coinciding with the actual situation. For
convenience of visualization, the membership functions of
these features to the 4 shape subspaces are transformed to
gray scale between [0, 255] in Fig. 1(a). We can see that
each subspace’s response to its inliers is very apparent while
outliers have comparable impress on all subspaces.

In Fig. 1(b), the energy change with different tempera-
ture in a SA process is reported. Red squares denote the oc-
currences of subspace transformation and green circles rep-
resent the removal of redundant bases. It is seen that when
the temperature is high, swapping of basis vectors often oc-
curs. While in the final phase of SA, the state of solution is
relatively stable and no more swapping of basis vectors hap-
pens. Then, redundant bases are removed enabling a closer
approach to the ideal solution.

Table 2 summarizes the segmentation result. Notice that
erroneous removal of a few correct points is not catastrophic
and a high percentage of the outliers are successfully dis-
carded. Our method acts more accurately in our extensive
experiments in which the inlier to outlier ratio is not so se-
vere as in the shown synthetic data set.

In another synthetic experiment, we compared our algo-
rithm with two methods: a discriminant method similar to
[4] and a simple thresholding method. 70 points in total on
two objects are chosen, 35 features from the first object and
35 points from the other. Gaussian noise with 0 mean and
standard deviation of ε is added to the image feature co-
ordinates. The ε ranges from 0 to 5 pixels with a interval
of 0.25 pixels. The three methods are applied 10 times for

Table 2: Segmentation results on synthetic data (s-sphere,
p-plane, otl-outliers)

s1 s2 p1 p2 otl

input features 30 30 30 30 50
clustering result 21 35 26 24 64
true inliers (true outliers) 21 29 26 24 44
false outliers (false inliers) 0 6 0 0 20
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Figure 2: Results of average error ratio.
each ε. Fig. 2 shows the average error ratio. The thresh-
olding and discriminant methods caused misclassifictions,
while our method greatly improves the classification accu-
racy and is always correct up to ε=4.5 pixels.

4.2. Real image sequences
Results are shown for real image sequences. Feature points
were detected and tracked by using KLT tracker [12]. Fig. 3
show 3 views from collected 16 frames. The background is
not still due to the instability of the hand-held video cam-
era. “+” and “o” denote good features of the vehicle and
the background correctly grouped by our algorithm. Fig. 4
show 3 views from an image sequence of 20 frames taken in
a lab and the book’s planar surface is considered as shape
degeneracy. Features that belong to the two books and a
face are properly classified and denoted by “x”, “+” and
“o”, respectively. The results are promising.

5. Conclusions
In this paper, we have proposed a novel simulated annealing
based algorithm for multibody motion segmentation, which
is formulated as a non-trivial problem of finding the under-
lying subspace structure within the data space. A reason-
able anergy function is introduced. Besides the technique
for subspace evolution, a novel one for subspace transfor-
mation is developed for energy minimization.

Unlike most previous methods which are formulated as
clustering problems based on similarities of either individ-
ual features or fragment subspaces, we approach this prob-
lem via a global SA optimization process. Because feature
points are interacted indirectly, inliers have limited expo-
sure to outliers and the strength of inliers are accumulated
to overcome to disturbance of noise and outliers which are
inconsistent with the multiple subspace structure.

This algorithm is robust against noise and is also effec-
tive in degeneracies. However, the speed of simulated an-
nealing is comparatively slow. In our future work, we will
research on developing segmentation algorithms with faster
speed and the problem of correlated motion segmentation.
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