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ABSTRACT

In image classification and other learning-based object 

recognition tasks, it is often tedious and expensive to label 

large training data sets. Discriminant-EM (DEM) 

proposed a semi-supervised learning framework which 

takes both labeled and unlabeled data to learn classifiers. 

This paper extends the linear D-EM to nonlinear kernel 

algorithm, KDEM and evaluates KDEM on both 

benchmark image databases and synthetic data. Various 

comparisons with other state-of-the-art learning 

techniques are investigated. 

1. INTRODUCTION 

Content-based image retrieval (CBIR), a technique that 

uses visual content to search images from large-scale 

image database according to user’s interest, has been an 

active and fast advancing research area since the 1990s.

One of the difficulties of CBIR is the gap between 

high-level semantics in human mind and low-level image 

features, due to the rich content but subjective concepts of 

an image [1]. The mapping between them would be 

nonlinear such that it is impractical to represent it 

explicitly. A promising approach to this problem is 

machine learning, by which the mapping could be learned 

through a set of examples. In our proposed approach, 

image retrieval is cast as a statistical learning problem. 

The task of image retrieval is to find as many as 

possible “similar” images to the query images in a given 

database. The retrieval system acts as a classifier to divide 

the images in the database into two classes, relevant or 

irrelevant. In image retrieval, there are a limited number 

of labeled training samples given by the query and 

relevance feedback. Pure supervised learning from such a 

small training dataset will have poor generalization 

performance. If the learning classifier is over-trained on 

the small training dataset, over-fitting will probably occur. 

This problem can be alleviated by semi-supervised or 

self-supervised learning techniques which take hybrid 

training datasets. For image retrieval, there are a large 

number of unlabeled images in the given database. 

Unlabeled data contain information about the joint 

distribution over features which can be used to help 

supervised learning. Discriminant-EM (DEM) [2] is a 

self-supervised learning algorithm for such purposes by 

taking a small set of labeled data with a large set of 

unlabeled data. The basic idea is to learn discriminating 

features and the classifier simultaneously by inserting a 

multi-class linear discriminant step in the standard 

expectation-maximization (EM) [3] iteration loop. DEM 

makes assumption that the probabilistic structure of data 

distribution in the lower dimensional discrimination space 

is simplified and could be captured by lower order 

Gaussian mixture. 

Contrary to the traditional two-class, i.e., fisher 

discriminant analysis (FDA) and multi-class discriminant 

analysis (MDA) which treats every class equally when 

finding the optimal projection subspaces, Zhou and Huang 

in [4] proposed a biased discriminant analysis (BDA) 

which treats all positive, i.e., relevant, examples as one 

class and negative, i.e., irrelevant, examples as different 

classes. The intuition behind BDA is that “all positive 

examples are alike, each negative example is negative in 

its own way”. Compared with the state-of-the-art methods 

such as Support Vector Machines (SVM) [5], BDA and its 

kernel version (KBDA) [4] outperform SVM when the 

size of negative examples is small (<20). 

However, one drawback of BDA is its ignorance of 

unlabeled data in semi-supervised learning. Unlabeled 

data could improve the classification under the 

assumption that nearby data are to be generated by the 

same class. In the past years there has been a growing 

interest in the use of unlabeled data for enhancing 

classification accuracy in supervised learning such as text 

classification [6], face expression recognition [7], and 

image retrieval [2, 8].   Recent work [7, 9] shows that 

unlabeled data can improve or degrade the classification 

performance depending on whether the model assumption 

is correct, and also on whether the labeled and unlabeled 

data has the same distribution.  



2. NONLINEAR DISCRIMINANT ANALYSIS 

Preliminary results of applying DEM for CBIR have been 

shown in [2]. Because the discrimination step in DEM is 

linear, it has difficulty handling data sets which are not 

linearly separable. Image distribution is likely, e.g., 

mixture of Gaussians, which is highly non-linear-

separable. In this paper, we generalize the DEM from 

linear setting to a nonlinear one. We first map the data x

via a nonlinear mapping  into some high, or even 

infinite dimensional feature space F and then apply linear 

DEM in feature space F. To avoid working with the 

mapped data explicitly (being impossible if F is of an 

infinite dimension), we will adopt the well-known kernel

trick [10].  The kernel functions ,(k compute a dot 

product in a feature space F: (k .

Formulating the algorithms in F using  only in dot 

products, we can replace any occurrence of a dot product 

by the kernel function k, which amounts to performing the 

same linear algorithm as before, but implicitly in a kernel 

feature space F.  Kernel principle is quickly gaining 

attention in CBIR in recent years [8, 4].

2.1. Linear Multiple Discriminant Analysis 

Multiple discriminant analysis (MDA) is a natural 

generalization of Fisher’s linear discriminant analysis 

(FDA) for multiple classes [3]. The goal is to find a lower 

dimensional space in which the ratio of between-class 

scatter over within-class scatter is maximized. 
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denote the feature vectors of training samples. C is the 

number of classes, jN the number of the samples of the jth

class,
)( j

ix is the ith sample from the jth class, and jm is

mean vector of the jth class, and m grand mean of all 

examples. ],,[ 1,21 Copt wwwW will contain in its 

columns C-1 eigenvectors corresponding to C-1

eigenvalues, i.e., iwiib wSwS . [3] 

2.2. Kernel Discriminant Analysis 

We will have the similar formulae Eqs. (1 3) for kernel-

based approaches except now MDA is performed in the 

feature space F and x is replaced by )(x .

In general, there is no other way to express the 

solution FWopt , either because F is too high or infinite 

dimension, or because we do not even know the actual 

feature space connected to a certain kernel. Referring to 

[10], we know that any column of the solution optW , must 

lie in the span of all training samples in F, i.e., Fwi .

Thus for some expansion coefficients T
N ],,[ 1 ,

N

k
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The use of the above expansion makes things tractable 

and with some reformulation [10], it is now a quotient in 

terms of expansion coefficients , and not in terms of 

Fwi . Therefore, Kernel MDA becomes 
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where ],,[ 11 CA , C is the total number of classes , 

N the size of training samples, and BK and WK  are 

NN matrices which require only kernel computations 

on the training samples [10].  

2.3. Biased Discriminant Analysis 

BDA [4] differs from regular MDA defined in (1)-(3) in a 

modification on the computation of scatter matrices BS

and WS . They are replaced by PNS  and PS ,

respectively, where PNS  is the scatter matrix between 

the negative examples towards the centroid of the positive 

examples, and PS  is the scatter matrix within the positive 

examples. PN indicates the asymmetric property of 

this approach, i.e., the user’s biased opinion towards the 

positive class, thus the name of biased discriminant 

analysis (BDA) [4]. 

3. KERNEL D-EM ALGORITHM 

Kernel DEM (KDEM) is a generalization of DEM [2] in 

which instead of a simple linear transformation to project 

the image into discriminant subspaces, the image data is 

first projected nonlinearly into a high dimensional feature 

space F where the data is better separately linearly. Then 

the linear D-EM is applied in the feature space.

Empirical observations suggest that the transformed 

image data often approximates a Gaussian in discriminant 



subspace, and so in our implementation, we use low-order 

Gaussian mixture to model the transformed data. KDEM 

loops between three steps until some appropriate 

convergence criterion: 
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data point x to a linear subspace of feature space 

F.

M-Step: set )ˆ;|(maxargˆ )1()1( kk ZDp

The same notation is used as in [2]. The E-step gives 

probabilistic labels to unlabeled data which are then used 

by the D-step to separate the data.

4. EXPERIMENTS 

In this section, we compare KMDA and KDEM with 

other supervised learning techniques on both benchmark 

image datasets and synthetic data for image classification. 

4.1. Benchmark Test

Kernel functions that have been proven useful are e.g., 

Gaussian RBF, )/(
2

ck , or 

polynomial kernels, (k , for some positive 

constants Rc and Nd , respectively [10]. 

Several benchmark data sets1 were used in the 

experiments. For comparison, KMDA is compared to a 

single RBF classifier (RBF), AdaBoost, a support vector 

machine (SVM), and the kernel Fisher discriminant 

(KFD) and the linear MDA on the benchmark dataset 

[11]. RBF kernels were used in all kernel-based 

algorithms. #KV is the number of kernel vectors, i.e., the 

size of the training samples. Two sampling schemes of 

selecting the training samples are PCA-based and by an 

iterative procedure. 

Table 1: The average test error (%) and standard deviation

Benchmark Banana Breast-Cancer Heart 

RBF 10.8 0.06 27.6 0.47 17.6 0.33

AdaBoost 12.3 0.07 30.4 0.47 20.3 0.34

SVM 11.5 0.07 26.0 0.47 16.0 0.33

KFD 10.8 0.05 25.8 0.48 16.1 0.34

MDA 38.43 2.5 28.57 1.37 20.1 1.43

KMDA-pca

KMDA-iter.

# KV 

10.7 0.25

10.8 0.56

120

27.5 0.47

26.3 0.48

40

16.5 0.32

16.1 0.33

20

1
The data sets are obtained from http://mlg.anu.edu.au/~raetsch/ 

Table 1 shows that the proposed KMDA achieves 

comparable performance as other state-of-the-art 

techniques over different training datasets. Table 1 also 

shows that KMDA performs better than linear MDA.   
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Figure 1: The average error rate for KMDA on Heart data

It should be noted that a proper selection of kernel 

function is critical and till now there is no good method 

on how to choose a kernel function and its parameter. 

Figure 1 shows the error rate of KMDA with RBF kernel 

under different degrees c and number of kernel vectors 

used on Heart data. By experimental observation, we 

found that 10 for c and 20 for #Kernel Vectors gives 

almost the best performance. Similar results are also 

obtained for Breast-Cancer data and Banana data. Thus 

this setting will be used in the rest of our experiments. 

4.2. KDEM vs. KBDA for Image Classification 

As mentioned in Section 1, biased discriminant analysis 

(BDA) and kernel BDA [4] have achieved great success 

in CBIR when the number of training samples is small 

(<20). BDA differs from traditional MDA in that it tends 

to cluster all the positive samples and scatter all the 

negative samples from the centroid of positive examples. 

This works very well with relatively small training 

samples. However, BDA ignores unlabeled images and is 

biased tuned toward the centroid of the positive examples. 

It is effective only if these positive examples are the most-

informative images, i.e., images close to the classification 

boundary, instead of most-positive images, i.e., images far 

away from the classification boundary. Optimal 

transformation found based on the most-positive images 

won’t improve classification for images on the boundary. 

 In this second experiment, Kernel DEM (KDEM) is 

compared with Kernel BDA (KBDA) on both real image 

databases and synthetic data.  The real image database 

consists of the face images from MIT facial image 

database2 (2358 images) and non-face images from Corel 

database3 (2598 images). 

For training sets, the face images are randomly 

selected from MIT database with fixed size 100, and non-

2
MIT facial database is obtained from 

http://www.ai.mit.edu/projects/cbcl/software-

datasets/FaceData2.html
3

Corel database is benchmark dataset used in CBIR



face images are randomly selected from Corel database 

with varying size from 5 to 200. The testing set consists of 

200 randomly images (100 faces and 100 non-faces) from 

two databases. The image features used are extracted from 

size-reduced images and feature dimension is 256. 

Figure 2 shows the average classification error rate in 

percentage for KDEM and KBDA under the same RBF 

for face and non-face classification.
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Figure 2: Comparison of KDEM and KBDA for face and non-

face classification 

Figure 2 shows that KDEM performs better than 

KBDA when more negative examples are provided while 

KBDA performs better when the size of negative 

examples is small (<20). This agrees with our expectation. 

To further examine the effect of increasing size of 

negative classes (in Fig. 2, all negative examples are 

possible from the same class) on the performance of 

KDEM and KBDA, we investigated on synthetic data for 

which we have more controls over data distribution. 
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Figure 3: Comparison of KDEM, DEM and KBDA on synthetic 

data

Figure 3 shows that with the increasing size of 

negative classes from 1 to 9, KDEM always performs 

better than KBDA. Even linear DEM works better than 

KBDA. The reason is that learning in both DEM and 

KDEM is on hybrid data, while only a small set of labeled 

data is used in KBDA. This shows proper incorporation of 

unlabeled data does improve classification. 

5. CONCLUSIONS 

We presented a semi-supervised discriminant analysis 

technique, Kernel DEM, which employs both labeled and 

unlabeled data in training. Kernel DEM not only out-

performs linear DEM on the benchmark data set but also 

out-performs Kernel BDA [4] on both real image database 

and synthetic data. 

Our future work include (1) the selection of a 

representative subset of training samples to reduce the 

computation complexity of KDEM, (2) further connection 

between KDEM and support vector machines, and (3) 

incorporation of unlabeled data in BDA. 
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