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Abstract
This paper presents a novel multiple collaborative kernel

approach to visual tracking. This approach treats kernel-
based tracking in a more general setting, i.e., a relaxation
and constraints formulation, in which a complex motion is
represented by a set of inter-correlated simpler motions.
With this formulation, we present a rigorous analysis on a
critical issue of kernel observability and obtain a criterion,
based on which we propose a new method using collabora-
tive kernels that has the theoretical guarantee of enhanced
observability. This new method has been shown to be com-
putationally efficient in both theory and practice, which can
be readily applied to complex motions such as articulated
motions.

1. Introduction

Kernel-based methods [2, 9] have attracted much atten-
tion in computer vision [4, 6, 10] and have recently shown
promising performance in the challenging problem of visual
tracking [5]. In this context, the representation of the object
being tracked is the convolution of the object features with
a spatially weighted kernel, which enables efficient gradi-
ent based optimization methods, such as mean shift [4] or
Newton-style method [7], to search for the best match to the
target model based on the collected visual measurements (or
observations). Thus, one of the most appealing merits of
kernel-based trackers is their low computational cost, com-
pared with other commonly employed tracking schemes,
such as particle filters [8] or exhaustive template matching.

Since the kernel-based tracking methods are gradient-
based differential approaches, their performances are
largely effected by the quality of the searching directions
calculated from the measurements (i.e., the discrepancy be-
tween the candidates and the target model). In practice,
we observe a singular case where the searching direction
is indifferent to the measurements, i.e, the measurements
become more or less invariant to some motion parameters,
such that these motion parameters are not recoverable or ob-
servable. Therefore, three critical issues of both theoretical
and practical importance need to be investigated:

• Is there a criterion or a test that detects such singulari-
ties and checks the observability of the motion?

• Is there a principled way of kernel design to prevent or
alleviate such singularities?

• Can we cope with such singularities in more complex
motions (e.g., articulation) while still achieving com-
putational efficiency?

There have been some initial studies related to these
questions. For example, in [3], to deal with the problem
that most kernels, being scale-invariant, cannot recover the
scale changes of the target, a method was proposed to com-
bine multiple kernels of different resolutions. An outstand-
ing initial investigation on multiple kernels was presented
in [7], where an unconstrained linear least square formula-
tion was given and the motion singularity can be revealed by
the rank deficiency when approaching its solution, based on
which a multiple kernel method was proposed to possibly
reduce the risk of rank deficiency.

These initial investigations on multiple kernels are mean-
ingful, but they are inadequate. For example, although sev-
eral suggestions have been made in [7] on designing multi-
ple kernels, it is desirable to have a more rigorous theoretical
guarantee on motion recoverability and a more principled
and generalizable approach to kernel design. In addition,
complex motions (e.g., motions of articulated bodies) pose a
great challenge to most existing kernel-based tracking algo-
rithms which are largely confined by single target and sim-
ple motions, and this is a topic remained largely unexplored
among the literatures of kernel-based methods. Although
many top-down sampling-based algorithms have been ex-
plored for complex motion [1, 11], they are in general com-
putationally demanding. Thus, it will be very meaningful if
the bottom-up kernel-based solutions can be found.

Inspired by [7, 11], we present a novel multiple collabo-
rative kernel approach to visual tracking in this paper. This
approach treats kernel-based tracking in a more general for-
mulation, i.e., a relaxation and constraints formulation, in
which a complex motion can be represented by a set of inter-
correlated simpler motions. In this new formulation, the



state equation describes the constraints among these simpler
motions, and the measurement equation characterizes the
independent visual measurement processes of these simpler
motions. With this formulation, this paper presents a rig-
orous theoretical analysis on the singularity issue, i.e., ker-
nel observability, and presents the observability criterion.
Based on this, we propose the multiple collaborative ker-
nel method that has the theoretical guarantee of enhanced
observability. This new method has been shown to be com-
putationally efficient in both theory and practice.

Advancing the state of the art, the contributions of this
work include: (1) the theoretical results that unify the study
of the motion observability issue in most kernel-based meth-
ods including single and multiple kernels; (2) a principled
way of designing observable kernels, i.e.. the multiple col-
laborative kernels, that can be easily generalized to complex
motions; (3) an efficient computational paradigm to cope
with complex motion due to the “collaboration” among a set
of inter-correlated kernels, each of which only takes charge
of recovering a simpler motion.

The proposed design of “multiple collaborative ker-
nels” closely follows the theoretical concerns on “kernel-
observability”, i.e., singularity in motion detection, and sub-
stantially broadens the applicability of kernel based meth-
ods for tracking of multiple targets with complex motions,
such as the articulated body motions.

2. Kernel-based Tracking

We first review the basic idea of kernel-based tracking
with notations similar to [5, 7].

Assume {xi}i=1...n be the pixel locations of the target
(this can be generalized to more complex motion parame-
ters). For each pixel xi, a binning function b(xi) maps a
predefined feature, e.g., the color, of xi onto a histogram
bin u, with u ∈ {1 . . . m}. Let K be a spatially weight-
ing kernel. Then a histogram representation of the target
q= [q1, q2, . . . , qm]T ∈ R

m can be computed as,

qu =
1
C

n∑
i=1

K(xi − c)δ(b(xi), u), (1)

where δ is the Kronecker delta function, c is the kernel cen-
ter and C is the normalization factor. Its more concise ma-
trix form can be written as [7]:

q(c) = UT K(c), (2)

where

U =




δ(b(x1, u1)) . . . δ(b(x1, um))
...

...
...

δ(b(xn, u1)) . . . δ(b(xn, um))


 ∈ R

n×m,

and

K =
1
C




K(x1 − c)
...

K(xn − c)


 ∈ R

n.

In general, for the target model, the kernel is centered at
0, and we denote it by q = UT K. By the same token, we
represent the histogram observed at a given candidate region
centered at c as:

p(c) = UT K(c). (3)

Given an initial start at location c, the core problem in
tracking is to find a best displacement ∆c such that the mea-
surements p(c + ∆c) at the new location best matches the
target q, i.e.,

∆c∗ = arg min
∆c

O(q,p(c + ∆c)), (4)

where O(·, ·) is the objective function for matching. For
example, it can be the Bhattacharyya coefficient employed
in the mean shift algorithm [5]:

O1(∆c)
�
= −〈√q,

√
p(c + ∆c)〉 = −√

qT
√

p(c + ∆c).

In addition, it can also be the Matusita metric used in [7]:

O2(∆c)
�
= ‖√q −

√
p(c + ∆c)‖2.

As indicated in [7], these two choices are equivalent.
Various optimization techniques can be employed to

solve the problem in Eq. 4, such as the mean shift pro-
cedure [5] or a Newton-style method in [7]. Of course,
when the final displacement ∆c∗ = 0, a local optimum is
achieved and thus a match to the target is found. In prac-
tice, unfortunately, we sometimes are plagued in a singular-
ity situation where the same optimal value of O(∆c) can be
achieved over a continuous range, i.e., any candidate region
induced by the movement in this range matches the target
equally well. In other words, the motion parameters can
not be uniquely determined, or can not be fully observed
through the kernel. Inspired by some initial analysis in [7]
on this problem of kernel-observability, we present in next
section our study on it.

3. Kernel-observability Analysis

The issue of “kernel-observability” mentioned in the pre-
vious section can be related to the “system-observability” of
a more general system in Eq. 5 for a better definition and ex-
planation. We omit the noise terms for clarity, since it does
not affect the analysis.

{
Ω(x) = 0
y = M(x), (5)



where Ω(x) represents the inherent property of the state
variable x, such as the complexity, self-contained constraint
or the system dynamics, and M denotes the observation
process or measurement process. In this system, the state
variable x is hidden and can only be estimated through the
measurement y. In the tracking scenario, the state variable
refers to the motion to be estimated. Here we do not limit
our discussions only to the 2D displacements, but generalize
it to r dimensional motion vector, i.e., x ∈ R

r. A critical
issue is whether or not x can be uniquely determined from
y, i.e., the observability of this system.

In the context of kernel tracking, we treat

x
�
= ∆c.

Our analysis is based on the linearization of the system at
a given initial start c, since the local property of c is the
mostly concerned in the tracking problem. The collected
image evidence for c + ∆c is the difference between the
target and the candidate, i.e.,

√
q−√

p(c + ∆c). Lineariz-
ing it w.r.t. ∆c, we have

√
q −

√
p(c) = M∆c,

where
√

q,
√

p(c) ∈ R
m, ∆c ∈ R

r, M ∈ R
m×r,

M = 1
2diag(p(c))−

1
2 UT JK(c),

JK(c) =



∇cK(x1 − c)
∇cK(x2 − c)

...
∇cK(xn − c)


 ,

and diag(p) represents the matrix with p on its diagonal.
This result was actually obtained in [7]. In view of this,

we treat the measurement y
�
=

√
q − √

p(c), and thus the
linearized measurement equation can be written as:

y = M∆c = Mx. (6)

When the motion constraints holds at c+∆c, i.e., Ω(c+
∆c) = 0, we can always linearize it as

Ω(c) + Ω′(c)∆c = 0.

Thus, when we define b
�
= −Ω(c), and G

�
= Ω′(c), we

have a linearized system state equation, or the state con-
straint equation:

b = Ω′(c)∆c = Gx, (7)

where x ∈ R
r and G ∈ R

s×r, s is the number of linear
constraints. We have the following theorem that stipulates
the kernel observability,

Theorem 1 Kernel-Observability
The system described by Eq. 7 and Eq. 6 is observable, i.e.,
unique recovery of x is guaranteed, iff

rank(MT M + λGT G) = r, ∀λ > 0 (8)

i.e., (MT M + λGT G) is of full rank.

Proof: Please see Appendix.
Based on this theorem, we demonstrate three examples

on the unique recovery of x, i.e., ∆c, from the above sys-
tem, and motivate our proposed approach of multiple col-
laborative kernels in Section 4.

3.1. Example 1: A Single Kernel
As a special case, if we do not consider the system

state equation, which means the contribution of G vanishes,
i.e., G = 0, the observability of a single kernel, based
on the Theorem, is given by checking rank(MT M), or
rank(M)1.

This conclusion coincides with the SSD-based analysis
in [7], where a least square problem is formulated:

min
∆c

‖√q −
√

p(c) − 1
2
d(p(c))−

1
2 UT JK(c)∆c‖2.

Hager et.al. [7] pointed out the rank deficiency of M =
1
2d(p)−

1
2 UT JK(c) will not allow a unique solution to ∆c.

In order to recover ∆c in this system, before taking ef-
fort to make M full rank, it should be noted that d(p)−

1
2

and U would not be rank deficient as long as the number
of the non-zero values in the histogram is no less than the
number of the parameters to be estimated, which is solely
determined by the image and the target property.

Thus, the point that the artificial intervention can found
its place is to change the kernel related JK(c), i.e., to change
the ways of extracting the representative information from
the objects, which motivates the methods of using multiple
kernels. Two examples will be given in Sec 3.2 and Sec. 3.3,
and our proposed method in Sec. 4.

3.2. Example 2: Kernel Concatenation
We can concatenate multiple kernels to increase the di-

mensionality of the measurement (i.e., the histogram). Sup-
pose there are w kernels, each of them produces a his-
togram measure for the object, pi(c) = UT Ki(c), where
i = 1, . . . , w. By vertically stacking these histograms into
p and q, it is easy to show that based on the Theorem, the
observability is given by checking rank(MT M), where

M =
1
2
d(p)−

1
2




UT

. . .
UT






JK1

...
JKw


 , (9)

1For matrix H, rank(HT H) = rank(H)



which may hopefully have full column rank to enable a
unique solution to ∆c. This makes sense since more fea-
tures have been used. This is actually the multiple kernel
method suggested in [7]. In fact, the kernel concatenation
implies the optimization problem as:

min
∆c

w∑
i=1

‖√q −
√

pi(c + ∆c)‖2.

3.3. Example 3: Kernel Combination
Besides kernel concatenation in Sec. 3.2 that uses more

features, another feasible solution is kernel combination to
produce new features by aggregating the histogram vectors
from multiple kernels (with normalization):

q =
w∑

i=1

UT Ki, p =
w∑

i=1

UT Ki(c).

Then the measurement equation is written as:
√

q −
√

p(c) = M∆c,

where

M =
1
2
d(p)−

1
2 UT

w∑
i=1

JKi
. (10)

This may also make the matrix MT M full rank. In
essence, as long as the measurement matrix M can well de-
pict the characteristics around c, we can find a proper ∆c in
the neighborhood that minimizes

√
q − √

p(c + ∆c).
Here, we give an illustrative example. For comparison,

we employ the same roof kernels as in [7], with length l,
span s, center c and normal vector n.

Kroof (x; c,n) =
4

(l ∗ s2)
max(

s

2
− ‖(x − c) · n‖, 0).

Intuitively, this is a truncated triangular kernel with pre-
ferred orientation n. We implement a single roof kernel,
a concatenation of two roof kernels with orthogonal orien-
tations as Eq. 9 and a combination of the same two roof
kernels as Eq. 10 to track a chalk box as shown in Fig. 1.
The surfaces of value 1 − ‖√q −√

p‖2 w.r.t ∆c generated
by these three methods in one of the tracking iterations are
plotted in Fig. 2.

It is clear that because of the rank deficiency, a single ker-
nel cannot perceive the changes of ∆c in some specific di-
rections. While concatenated or combined kernels can well
approximate the neighborhood values and ensure to find the
∆c minimizing the error ‖√q − √

p‖, (in Figure 2, that is
maximizing 1 − ‖√q − √

p‖2). Concatenated kernels and
combined kernels have shown similarly better performance.

However, although these two multiple kernel methods
may outperform the single kernel method, neither of them
provides a principled way of designing multiple kernels.

(a) Single kernel

(b) Kernel concatenation

(c) Kernel combination

Figure 1. A comparison of single kernel (top
row), kernel concatenation (middle row), and
kernel combination (bottom row).

(a) (b) (c)

Figure 2. The surfaces of 1−‖√q−√
p‖2 of (a)

single kernel, (b) kernel concatenation, and
(c) kernel combination.

4. Multiple Collaborative Kernels
As shown by the examples in Sec. 3, it is clear that we ex-

pect better performance than single kernel methods by using
multiple kernels in the measurement process (e.g., Eq. 6).
Based on the kernel observability Theorem, we notice that
most existing multiple kernel methods [3, 7], including ker-
nel concatenation and kernel combination, do not utilize the
state constraints (i.e., Eq. 7), which should also be used to
cope with rank deficiency. The neglect of the state con-
straints will largely limit the applicability of these methods,
especially for complex motions. This is also one reason that
holds the kernel methods back from tracking multiple tar-
gets, since simply assigning independent kernels on multi-
ple targets is unlikely to solve the problem.

A new scheme, multiple collaborative kernels, is pro-
posed in this section by exploiting the state equation Ω(x) =
0. We show that this is also an efficient way to improve the
“observability” of the tracking system (Sec. 4.1). Our anal-
ysis also reveals the “collaboration” of multiple kernels that
makes possible efficient computation (Sec. 4.2).

4.1. Enhancing the Observability

To start with, an obvious and commonly encountered
prototype of Ω(x) = 0 for multiple targets would be the



structural constraint. Taking a rigid rod as a simple ex-
ample, see Fig. 3, we now show the improved “kernel-
observability”.

Figure 3. The length constraint on a rod.
Considering the slim shape of the rod, it is difficult to

track it with one simple symmetric kernel. Alternatively, we
can relax its motion by representing it as the joint motion of
the two ends, while enforcing the length constraint on this
relaxed (higher-dimensional) motion. Two simple symmet-
ric kernels take charge of the two ends respectively. The
benefit of doing this, besides recovering the rod position, is
the estimation of the rod orientation.

By exploring the structural constraint, say, the rod is of
fixed length L, we have2,

‖c1 − c2‖2 = L2, (11)

where, c1 and c2 are the resulting centers of the kernels
placed at the ends. Then the objective function, which
jointly considers both of the two kernels, will be formulated
as:

O(c1, c2) =
2∑

i=1

‖√qi−
√

pi(ci)‖2+γ‖L2−‖c1−c2‖2‖2,

where q1, p1(c1) are the target model and the measured
candidate associated with one of the ends, similarly with
q2 and p2(c2). This formulation compromises the feature
similarities and the structural constraint, with γ being the
tradeoff. By linearizing it at (c1, c2), we have a linear sys-
tem (with state equation and measurement equation):


l = G

[
∆c1

∆c2

]

y = M
[
∆c1

∆c2

] , (12)

where

q =
[
q1

q2

]
,p =

[
p(c1)
p(c2)

]
,y =

[√
q1 −

√
p1(c1)√

q2 −
√

p2(c2)

]
,

M =
[
M1 0
0 M2

]
,

Mi = 1
2diag(p(ci))−

1
2 UT

i JK(ci), i = 1, 2

G = 2
[
(c1 − c2)T (c2 − c1)T

]
,

l = L2 − ‖c1 − c2‖2.

2This simple constraint is for illustrative purpose. More complex con-
straint will be readily incorporated.

Based on the kernel observability Theorem in Sec. 3,
the observability of this formulation is given by checking
rank(MT M + γGT G). This is equivalent to the column

rank of

[
M√
γG

]
, which will be no less than that of M.

Then, we can generalize the above idea by consider-
ing multiple kernels with a certain structural constraint
Ω(c1, c2, . . . , cw) = 0. The objective function will thus
have the form,

O(c1, c2, . . . , cw) =
w∑

i=1

‖√qi −
√

pi(ci)‖2

+γ‖Ω(c1, c2, . . . , cw)‖2.
(13)

After the linearization w.r.t. ∆c1,∆c2, . . . ,∆cw, we
have the following general system state equation and mea-
surement equation: {

l = G∆c
y = M∆c , (14)

where

∆c =




∆c1

∆c2

. . .
∆cw


 , y =



√

q1 −
√

p(c1)√
q2 −

√
p(c2)

. . .√
qw − √

p(cw)


 ,

M =



M1 0 0 0
0 M2 0 0

0 0
. . . 0

0 0 0 Mw


 ,

G =
[

∂Ω
∂c1

∂Ω
∂c2

· · · ∂Ω
∂cw

]
,

l = −Ω(c1, c2, . . . , cw).

(15)

Similarly, the unique motion can be estimated, provided that[
M√
γG

]
has full column rank.

Now, it is worth pointing out that without the introduced
constraint Ω(·), i.e., G = 0, the solution will be reduced to

y = M∆c, (16)

which is equivalent to solving the w kernel tracking prob-
lems independently, requiring M to have full column rank,
i.e., every kernel needs to be observable.

The advantage of the collaborative kernels is that it does
not require all the kernels to be fully observable. Even if
some of the kernels get bad, e.g., distracted by the clutters,
the other kernels may still be able to “pull” the ill-behaved
kernels back to the track according to the inherent constraint
embedded in Eq. 14. As long as (MT M + γGT G) is full
rank, our method can tolerate those unobservable kernels. In
theory, such a good property is guaranteed by the fact that

rank(
[

M√
γG

]
) ≥ rank(M).



More importantly, notice that the structural constraint is
just one of the prototypes of the system description, Ω(x) =
0, the above paradigm of design for multiple collaborative
kernels can be readily extended to other system descriptions
with different physical meanings, such as the more compli-
cated motion dynamics or the learned motion priors.

4.2. The Collaboration
The solution to the linear system in our formulation

(Eq. 14) for multiple collaborative kernel tracking is given
by:

∆c = (MT M + γGT G)−1(MT y + γGT l). (17)

Due to the relaxation of the system states, the dimension
of the matrix (MT M+γGT G) can be quite large (the sum
of motion parameters of all individual kernels). Thus, it is
computationally demanding to calculate its inverse. Con-
sidering the special structure of M, we obtain a much more
efficient method, which amazingly reveals the collaboration
among multiple kernels.

By applying matrix inversion lemma3, we can obtain,

∆c = (I − D)(MT M)−1(MT y + γGT l), (18)

where D = γ(MT M)−1GT (γG(MT M)−1GT + I)−1G
Providing that MT M is non-singular, this equation

means that we can save the computational cost on (MT M+
γGT G)−1 by computing (γG(MT M)−1GT + I)−1 and
(MT M)−1 instead. Generally, the dimensionality of
(γG(MT M)−1GT + I), which equals the number of con-
straint, is smaller than the parameters to be estimated, i.e.,
the dimensionality of (MT M + γGT G). Moreover, the
calculation of (MT M)−1 is not difficult since it has a block-
diagonal structure form (recalling the structure of M in
Eq. 15). All of these count to a potential decrease in the
computational cost.

Noticing that the solution to the unconstrained problem
(i.e., independent kernels) is given by:

∆cu = (MT M)−1MT y = M†y, (19)

where M† is the pseudo-inverse of M. This unconstrained
solution can be calculated easily with linear cost w.r.t. the
number of kernels, since M is a block diagonal matrix. Any
single kernel tracking method can be applied here.

Using the unconstrained solution ∆cu, we can rewrite
the solution to the constrained problem (i.e.,Eq. 18) as:

∆c = (I − D)∆cu + z(c), (20)

where z(c) = γ(I − D)(MT M)−1GT l. The mechanism
of the collaboration among multiple kernels is pronounced:

3(A + BD)−1 = A−1 − A−1B(DA−1B + I)−1DA−1, where
A is a n by n matrix, B is a n by m matrix and D is a m by n matrix

each individual single-kernel tracker follows its designated
target (a small part of the entire target of interest) by its own
means, and exchanges “corrections” to other single-kernel
tracker. Such a collaboration ends up with an equilibrium
where the entire target is tracked and the structural con-
straints among multiple kernels are satisfied.

The collaboration actually suggests a very efficient recur-
sive method of calculating the constrained solution. We can
alternate two steps until convergence: first relax the con-
straints to solve the unconstrained one by Eq. 19, and then
adjust the unconstrained estimates according to Eq. 20, with
less computational cost.

∆ck+1 ←− (I − Dk)[M(∆ck)]†yk + zk, (21)

which is very similar to the fixed point iteration and con-
verges very fast.

This collaborative solution is very useful to multiple tar-
get tracking. Because we avoid estimating the motion states
from the joint parameter space. Instead, we solve the di-
vided problems in the reduced solution space, then applying
regularized terms to meet the certain constraint.

5. Experiments

In this section, we report our experiments of the proposed
multiple collaborative kernel method to track structured ob-
jects and articulated objects, and the comparison to multiple
independent kernel tracker.

5.1. Tracking structured object

Object with certain spatial structure is a commonplace in
many tracking tasks. But some of them, such as a handset or
a rod-shaped bottle, cannot be easily handled by the tracker
with a single symmetric kernel. See Fig. 4 and Fig. 5. Our
experiments validate the proposed method of multiple col-
laborative kernels that can track these targets successfully
and estimate the target orientation as a byproduct.

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 4. Tracking a handset.

Fig. 4 shows 4 sample frames from a sequence of a ro-
tating handset. The histogram in the RGB space is taken
as the feature. We first apply two independent normal ker-
nels at both ends of the handset, colored as red and blue,
respectively. The result is shown in Fig. 4(a). We should



notice that the motion along the handset is not fully observ-
able for both kernels, and the appearances of the two ends
of the handset are identical. The two kernels drift along the
handset and eventually lose the track.

With the same kernels but collaborating them based on
our method, we introduce a length constraint, ‖c1 − c2‖2 =
L2, with L given by the initialization. The result is shown in
Fig. 4(b). As predicted, the collaboration of the two kernels
leads to a successful tracking result. This experiment shows
a quite meaningful property of the collaborative kernel ap-
proach: although not all the kernels are fully observable, the
collaboration can still make the ensemble observable. In all
experiments, we set γ in Eq. 13 to be 1.

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 5. Tracking a rod-shaped bottle.

Fig. 5 shows another experiment on a rod-shaped bottle.
We first place two independent normal kernels at the ends.
The histogram of H-value of the HSV space is used as the
object feature. Sample frames of the result of using inde-
pendent kernels are shown in Fig. 5(a). Notice that the mo-
tion of the lower-end, indicated by the kernel in blue, is not
fully observable, since the image regions in the lower part
of the bottle are similar. Thus the blue kernel is vulnerable
to distraction when the two kernels function independently.
In contrast, the collaboration of the two kernels contributes
to a more reliable tracking result, as shown in Fig. 5(b).

(a) using multiple independent kernels.

(b) using multiple collaborative kernels.

Figure 6. Tracking a finger.

The proposed collaborative scheme also provides another
benefit. When a certain target is our focus-of-attention but
unfortunately cannot be stably tracked, we can refer to an-
other easily tracked object as an auxiliary to gain a better
result. In Fig. 6, we aim to track the fingertip in a clutter.
By placing a kernel on the easily tracked wrist, we constrain
the two kernels with a fixed length. The result of using our

method is shown in Fig. 6(b). In fact, The roles of the object
of attention and the auxiliary are interchangeable through-
out the process in order to ameliorate the potential tracking
failure of either one. Two independent kernels, as shown
in Fig. 6(a), of course are unable to recover from tracking
failure in the clutter.

5.2. Tracking articulated objects

Another useful application of multiple collaborative ker-
nel tracking is to track articulated targets, such as human
body articulation. To the best of our knowledge, this is the
first work extending kernel methods into this task.

Fig. 7 shows sample frames of an experiment, in which a
person moves his two arms. We apply two pairs of collab-
orative kernels on the elbows and the hands. The tracking
result of our approach is shown in Fig. 7(b). On the con-
trary, the method based on four independent kernels leads
to a much inferior performance, as shown in Fig. 7(a).

Another experiment on an articulated structure consist-
ing of a arm and a bottle in hand is shown in Fig. 8. We
apply three kernels to the elbow, the hand and one end of
the bottle, respectively. Compared with the result yielded
by independent kernels (in Fig. 8(a)), two pairs of collabo-
rative kernels (elbow & hand, hand & bottle tip) provide a
much more robust performance as shown in Fig. 8(b).

The structural constraint used here serves as a basic
means facilitating the implementation of multiple collabo-
rative kernels on more complex tracking tasks.

6. Conclusions

To summarize, in this paper, a criterion is obtained on
the issue of “kernel-observability”, which leads to a princi-
pled way of kernel design with prevention of singularity in
kernel based tracking problems. Based on this, a multiple
collaborative kernel tracking scheme is proposed. Different
from the most existing kernel based algorithms, which are
confined by independent kernels and single target, we show
that by exploiting the inherent relationship among multiple
kernels, not only the “kernel-observability” is improved, but
also the applicability of the kernel based methods is natu-
rally extended to cope with articulated targets and complex
motions. This helps to gain more insight into the role that
kernel plays in the tracking problems.

However, we are using the geometric constraint in this
paper to improve the kernel-observability, which is rigid in
its current form. The focus of our future work will be ex-
ploring how to incorporate richer system models to account
for more complicated motions and how to make the kernel
design adaptable to various environmental changes.

Appendix

We give a brief proof of Theorem 1. Given the system
state equation (Eq. 7) and the measurement equation (Eq. 6),



(a) using four independent kernels.

(b) using two pairs of collaborative kernels.

Figure 7. Tracking the articulated body with two arms.

(a) using three independent kernels.

(b) using two pairs of collaborative kernels.

Figure 8. Tracking an articulated structure.

we form an objective function that penalizes the measure-
ment mismatch and the deviation from system constraints:

L(x)
�
= ‖Mx − y‖2 + λ‖Gx − b‖2,

where λ > 0. Setting the derivative to zero, we have:

x∗ = (MT M + λGT G)−1(MT y + λGT b).

This is equivalent to the least square solution to the follow-
ing system: [

M√
λG

]
x =

[
y√
λb

]
.

Thus the solution is unique iff the rank of MT M + λGT G

is full, or

[
M√
λG

]
has full column rank.
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