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Abstract

This paper presents a decentralized approach to multiple
target tracking. The novelty of this approach lies in the
use of a set of autonomous while collaborative trackers to
overcome the tracker coalescence problem with linear com-
plexity. In this approach, the individual trackers are au-
tonomous in the sense that they can select targets to track
and evaluate themselves, and they are also collaborative
since they need to compete for the targets against those
trackers that are close to them through communication. The
theoretical foundation of this new approach is based on
the variational analysis of a Markov network that reveals
the collaborative mechanism through a fixed point iteration
among these trackers and the existence of the equilibriums.
In addition, a trained object detector is incorporated to help
sense the potential newly appearing targets in the dynamic
scene. Experimental results on challenging video sequences
demonstrate the effectiveness and efficiency of the proposed
method.

1 Introduction
A major difficulty of multiple target tracking lies in the fact
that the tracker are insensitive to the differences among the
targets such that they may not be distinguishable from each
other, which leads to a combinatorial problem on target-
tracker association. We can call it as the “identical” targets
problem. The neglect of this problem (e.g., by using mul-
tiple independent tracker) will generally lead to the tracker
coalescence phenomenon, i.e., several trackers are associ-
ated to one same target while other targets lose track. Co-
alescence often takes place especially when the targets are
close or present occlusions [9, 20].

Most existing solutions to this problem are based on
the centralized methodology by considering joint data as-
sociation. Due to the exploring of a high-dimensional
joint state space, these methods are generally computational
intensive. For example, the multiple hypothesis tracker
(MHT) [2, 5] and the joint probabilistic data association fil-

ter (JPDAF) [13] have to exhaust all possible associations,
and the sampling-based methods [6, 7, 11, 16, 21] demand
a huge number of particles.

Such centralized solutions are fine to a powerful proces-
sor. However, they are not appropriate for the emerging
application of sensor networks, in which there are a large
number of sensing units that have the functionality of sens-
ing, computing and communicating. However, these units
are power-limited to prevent much computation and com-
munication [10]. Thus, to make good use of such sensor
networks for target tracking, complex computation must be
distributed into the network, since once a certain unit takes
charge of sensing, its computational load on target track-
ing needs to be migrated to other idle units. Although this
research is being carried out at the computer architecture
level, it is more desirable to find a decentralized scheme
at the algorithm-level for efficient tracking of multiple tar-
gets, since it will leads to the essential parallelization and
distributed computing.

In this paper, we present a new and efficient decentral-
ized visual tracking method for multiple “identical” tar-
gets. The novelty of our approach lies in the use of a
set of autonomous while collaborative trackers to overcome
the tracker coalescence problem with linear complexity. In
this approach, the individual trackers are autonomous in the
sense that they can select targets to track and evaluate them-
selves, and they are also collaborative since they need to
compete for the targets against those trackers that are close
to them through communication.

The theoretical foundation of the new approach is based
on a Markov network formulation, where each hidden node
in the network represents the state of an autonomous tracker.
The trackers can be either in active or inactive status, indi-
cating if they are currently following targets or not. The
trackers are self-aware since they can determine their own
status by an entropy-based evaluator. The edges of the
network represent the constraints among these individual
trackers induced by the target competition. The structure
of the network keeps changing with the states of the track-
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ers. The collaboration mechanism of these netted trackers is
revealed by the information exchanges of these trackers in
a fixed point-like iteration that reaches equilibriums, based
on the variational analysis of the Markov network.

In addition, a roughly trained AdaBoost-based target de-
tector [18] is equipped to each tracker to help sense the po-
tential newly appearing targets in the dynamic scene, there-
fore background subtraction is not necessary to our method,
although it can largely help the case of fixed backgrounds.
The use of object detectors within each tracker also sup-
ports the construction of an effective importance function,
which leads to a more effective variational inference. Ex-
tensive experiments on the challenging video sequences are
conducted to demonstrate the effectiveness and efficiency
of the proposed method.

2 Related Work
Many multiple target tracking methods have been devel-
oped during the past few years, where most of them are
based on the centralized joint state space inference either
under the parametric or non-parametric formulations. The
parametric methods, such as multiple hypothesis tracking
(MHT) [2, 5] and joint probabilistic data association filter-
ing (JPDAF) [13] handle the coalescence problem by the
joint data association principle in which one image observa-
tion can only support a single target hypothesis and one tar-
get hypothesis can only occupy a single observation, there-
fore suffering from the combinatorial complexity due to the
exhaustive enumeration for all possible associations. Based
on Monte Carlo sampling techniques, non-parametric meth-
ods [6, 7, 11, 16, 21] can tackle the coalescence problem in a
top-down process that generates and evaluates a large num-
ber of hypotheses, thus also confronted by a similar high
computational cost due to the exponential demand of the in-
crease of particles. All these approaches are actually deal-
ing with the centralized state space directly, which results
in the inevitable combinatorial or exponential complexity
in the algorithm level that is hardly scalable.

The existing approaches can also be classified into two
categories according to whether a fixed background model
is employed. Background subtraction normally offers a
strong localization clue for detecting each new target en-
tering the scene. Whenever a new target is appearing, a new
tracker can be immediately instantiated to follow it [4]. The
fixed background assumption is also the essential reason
why the configuration level optimization techniques, such
as jump-diffusion Markov chain Monte Carlo in [21] and
variants of particle filtering [7, 16], can be applied to in-
ference the number of targets existing in the scene over the
union of joint state space of multiple targets, since under
this assumption the observation likelihood can be calculated
based on the whole image information. Foreground area
is evaluated by the foreground target model, background

area is also assessed by the maintained background model,
which in combination makes the configuration level reason-
ing feasible. However, this nice property does not exist un-
der the changing background situations, since there is gen-
erally no way to maintain a powerful background model to
explain all non-target areas in the dynamic scene. Therefore
existing approaches dealing with the dynamic background
scenarios are either assuming to track fixed number of tar-
gets [6, 11, 13, 20], which obviously limits its generaliza-
tion, or adopting an target detector to help determine if any
new target appears in the scene [12]. However, in [12] it
stays unclear how the coalescence problem can be reliably
solved under their single particle filtering framework.

Different from these existing methods, we proposes a de-
centralized approach to multiple target tracking by using a
set of collaborative autonomous trackers. Compared to the
state of the art, this new approach proves to be computation-
ally efficient and algorithm-level parallelizable.

3 Collaborative Trackers
As indicated in Sec. 1, the methods based on a set of in-
dependent trackers (denoted as M.i.T. methods) are insuffi-
cient to the task of multiple target tracking, especially when
the targets are similar. This difficulty is not uncommon
since the image observation model used in the trackers may
not distinguish the nuance within a class of objects. Thus,
the tracker coalescence problem occurs, when several tar-
gets are close or when they occlude each other. As indicated
in [20], the root of coalescence lies in the violation of the
independence assumption due to the so-called conditional
dependency induced by the mixed image observations.

Different from the centralized methodology that consid-
ers the joint data associations, the proposed approach con-
sists of a set of collaborative autonomous trackers, each of
which copes with a single target. These trackers are au-
tonomous since they, by themselves, search for targets to
track and evaluate themselves (Sec. 3.2). At the same time,
they are collaborative since they communicate, exchange
intelligence and cooperate (Sec. 3.3). These two mecha-
nisms are integrated under the formulation of a Markov Net-
work (Sec. 3.1).

3.1 A Tracker Network Formulation
We denote the state (i.e., the motion to be estimated) of
each individual tracker at time t by xi,t, its associated im-
age observation by zi,t, the joint target states by Xt =
{x1,t, . . . ,xM,t}, and the joint observation by Zt for a set
of M trackers. We denote Zt = {Z1, . . . ,Zt}.

The problem of estimating the posterior of the joint
state Xt from image measurements Zt can be casted as a
Bayesian inference problem of a Markov Network, as illus-
trated in Figure 1, where the circles are the hidden variables
and the squares are the evidence variables.
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Figure 1: Collaborative trackers as a Markov network.

Each pair of a circle node (i.e., xi,t) and a square node
(i.e., zi,t) represents an individual tracker, in which the di-
rected link connecting them represents the image observa-
tion model p(zi,t|xi,t). These trackers can switch between
two modes: active (shown as solid) or inactive (shown as
dotted). When a tracker is following a target, it is active; and
inactive otherwise. The details of tracker self-evaluation is
given in Sec. 3.2. Thus, we write the joint conditional like-
lihood as:

p(Zt|Xt) =
M∏
i=1

pi(zi,t|xi,t) (1)

At the same time, these individual trackers are correlated
(shown as the links in the graph) when their state variables
are constrained. For example, when several trackers are
close, they are competing targets for tracking, thus enforc-
ing an exclusive constraint that a target must not be asso-
ciated to more than one tracker. If trackers are far apart
enough, such a constraint does not apply and the problem
degenerates to the independent case. Therefore, the struc-
ture of the Markov network changes during tracking. It is
worth mentioning that the pair-wise state constraint model
has also been successfully applied in articulated hand track-
ing based on a similar markov network formulation [15].

The constraints apply to the individual trackers no mat-
ter whether they are currently active or inactive. We model
such constraints as a motion prior term p(Xt), and represent
it as a general Gibbs distribution:

p(Xt) =
1
Zc

∏
i∈V

ψi(xi,t)
∏

(i,j)∈E

ψij(xi,t,xj,t) (2)

where V denotes the set of nodes and E the set of edges
in the graph, ψi(xi,t) is the local prior for tracker xi,t

and is explicitly modelled as the dynamic prior propagated
from previous time instance, i.e., ψi(xi,t) ∝ p(xi,t|Zt−1),
ψij(xi,t,xj,t) is a potential function stipulating the motion
constraints between neighboring nodes xi,t and xj,t. To
model the above competition (or exclusive) constraints, the

potential function shall have a smaller value when the pair
of trackers become closer, such that it is less likely of hav-
ing crowded trackers. As a special design, this potential
function can be modelled as follows:

ψij(xi,t,xj,t) ∝ ed(xi,t,xj,t)
T Σ−1

ij d(xi,t,xj,t) (3)

where d(xi,t,xj,t) = xi,t−xj,t is the difference of the state
variables of the competitive trackers, and Σij characterizes
the size of possible competition region in the sate space.

By this means, the coalescence problem can be largely
prevented with the introduction of the competition mech-
anism among the trackers, and the capturing of the newly-
appeared targets can be fulfilled as well. For example, when
the competition presents among active trackers, such a po-
tential term acts to overcome the coalescence problem as
described before. When the competition presents among
inactive trackers, this potential term helps to force these in-
active trackers to search different image regions for newly
appearing targets to track. When the competition happens
between an active tracker and an inactive one, such an elas-
tically exclusive force becomes unidirectional, i.e. only the
active tracker can exclude the inactive one to prevent the
case where the inactive tracker “hijacks” the target being
tracked by the active one. These mechanisms are explicitly
formulated as the priors in Eq. 2, and play an important role
in the collaborations among the set of individual trackers.

3.2 Self-awareness and Mode Switching
At each time instant t, the structure of the tracker net-
work is determined according to the relative positions of the
trackers, calculated by the conditional mean state estimator
xt =

∫
xtp(xt|zt)dxt.

Many existing multiple target tracking approaches as-
sume fixed backgrounds [4, 5, 7, 16, 21], since the pixel
level likelihood facilitates efficient detection of the appear-
ing and disappearing of the targets. In this paper, we do not
limit our approach to this assumption. Therefore, to make
possible the capturing of the new targets in dynamic video
scenes, each autonomous tracker is equipped with a rough
local range detector that only searches its nearby regions.
When a new target enters the video scene, it may not be im-
mediately sensed and tracked by any of the trackers due to
their limited monitoring areas. But their collaboration will
gradually distribute them to cover the entire image region
such that the new targets can be eventually detected and
tracked. In general, the process of pickup is quick in several
frames, depending on the size of the tracker network. This
is also validated in our experiments. Although this may in-
duce detection lag, it saves computation significantly. An
extreme case is to set the detection range of each tracker to
be the entire image to obtain instant detection, but incurring
demanding computation. Thus, in practice, we need to bal-
ance between the detection lag and the computational cost.
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As described in Sec. 3.1, individual trackers are au-
tonomous and should be able to evaluate themselves. They
need to determine and switch the modes (i.e., active or in-
active) by themselves. We denote by rt the binary perfor-
mance indicator for each tracker.

Based on the inference result p(xt|zt), there may exist
different ways to obtain a performance indicator for each
tracker. We observe that when each single tracker is ex-
periencing good tracking conditions, the underlying poste-
rior p(xt|zt) will mainly demonstrate some sharp unimode
distribution. On the contrary, a more uniform prior implies
larger uncertainty of the motion estimation, i.e., the tracking
result is less confident and thus not satisfactory. Therefore,
an entropy measure can be used as a good performance met-
ric to evaluate the tracking performance. Specifically, we
define the performance indicator rt as follows:

rt =
{

1 if − ∫
p(xt|zt)logp(xt|zt) < τ

0 otherwise
(4)

where rt = 1 indicates active trackers since the target seems
to be successfully followed by the tracker, while rt = 0 im-
plies inactive trackers otherwise, such as the tracker loses
track due to the interferences from the cluttered background
or simply because the previously tracked target leaves the
video scene. The threshold τ can be empirically deter-
mined.

The modes of an autonomous tracker determine its dy-
namics model p(xi,t|xi,t−1) (where i indexes the tracker).
Thus a track can switch its behaviors autonomously based
on the active or inactive mode determined by itself:

p(xi,t|xi,t−1) =
{

pa(xi,t|xi,t−1) if ri,t−1 = 1
pu(xi,t|xi,t−1) otherwise

(5)

where pa(xi,t|xi,t−1) is a constant acceleration motion
model, and pu(xi,t|xi,t−1) is a uninformative uniformly
random walk around the tracker’s previous conditional
mean state estimator xi,t−1.

Camouflages may affect the tracking performance sig-
nificantly, no matter whether these camouflages arise from
the same types of targets in the nearby region or simply due
to the background clutters that resemble the target. Thus, it
is not robust when tracking one target. This difficulty can
be largely alleviated by the joint tracking of multiple simi-
lar targets since the joint data association can largely reduce
the risk of loss track of any. Casting this idea into a decen-
tralized methodology, we believe the collaborations among
individual trackers act as a distributed way for data associa-
tion.

3.3 Collaboration and Decentralization
How can the trackers in the network collaborate? Is there an
optimal collaboration strategy? We present in this section a
theoretical foundation that supports our proposed collabo-
rative tracker.

3.3.1 Variational Analysis and Decentrailization
With the modelling of p(Zt|Xt) and p(Xt) in Sec. 3.1, the
joint posterior of the tracker is given by:

p(Xt|Zt) ∝ p(Zt|Xt)p(Xt)

∝
∏
i∈V

pi(zi,t|xi,t)p(xi,t|Zt−1)
∏

(i,j)∈E

ψij(xi,t,xj,t)

(6)

It seems infeasible to calculate such a complicated posterior
in a direct manner, since it involves multiple dimensional in-
tegration. Because it is very likely that the Markov networks
in our formulation contain loops when three or more track-
ers are linked together, belief propagation [3] may also not
be appropriate here. In contrast to belief propagation, prob-
abilistic variational analysis [8, 19, 20] can be employed for
approximation, especially for loopy networks.

As in [20], a fully factorized variational density
Q(Xt) =

∏
i∈V Qi(xi) can be used to approximate the

true posterior p(Xt|Zt). We can find the optimal approx-
imation in the sense that the Kullback-Leibler (KL) diver-
gence between this variational distribution and the posterior
is minimized, i.e.:

Q∗(Xt) = arg min
Q

KL(Q(Xt)||p(Xt|Zt)) (7)

The solution of this optimization problem is given by the
following fixed point equation [19]:

Qi,t(xi,t) ←− 1
Z ′

i

pi(zi,t|xi,t)

×
∫

p(xi,t|xi,t−1)p(xi,t−1|zi,t−1)

× Mi,t(xi,t) (8)

where Mi,t(xi,t) is derived as

Mi,t(xi,t) = exp{
∑

j∈N (i)

∫
xj,t

Qj,t(xj,t) log ψij(xi,t,xj,t)},

(9)
where Z ′

i is a constant partition function, and N (i) is the
neighborhood of the tracker i.

Eq. 8 shows that posterior of a tracker i is determined
by three factors: its own image likelihood pi(zi,t|xi,t) mea-
sure, its own dynamics predictions p(xi,t|zi,t−1), and more
importantly, the “collaborative message” Mi,t(xi,t) passed
from its neighborhood trackers xN (i),t that compete the
common image resources against it. It can be shown that
the computational complexity of the collaborative tracking
based on this fixed point iterations is linear with respect to
the number of netted trackers, which is actually a signifi-
cant improvement over the methods that work directly on
the joint state spaces. In Eq. 8, it is clear that the basic com-
putation unit is the posterior estimation for each individual
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tracker, therefore, the computationally demanding tracking
task in Eq. 6 has been decentralized to the set of netted au-
tonomous trackers with the cost of communication and col-
laboration.
3.3.2 Mixture Density of Importance Sampling
Considering the fact that the posteriors of each tracker may
not be Gaussian, the above fixed point collaboration can be
well implemented based on sequential Monte Carlo tech-
nique, in which a particle set is employed to represent the
variational density Qi,t(xi,t), i.e.,

Qk
i,t(xi,t) ∼ {s(n)

i,t (k), π(n)
i,t (k)}N

n=1 (10)

where s and π denote the sample and its weight, N is the
number of samples, and k is the iteration index during the
fixed point iterations.

Although we can generate the new sample set
{s(n)

i,t , π
(n)
i,t }N

n=1 of tracker i for the current time instant
t solely from its dynamics model p(xi,t|xi,t−1), a better
way to achieve the effective sampling is to incorporate the
bottom-up image information at the current frame into con-
sideration, and design informative importance functions to
guide the particle sampling [12, 14]. Since in our formula-
tion, each autonomous tracker is equipped with a local re-
gion object detector, which obviously facilitates the tracker
to collect the bottom up information to construct an effec-
tive importance sampling. At time t, tracker i detects C po-
tential targets within its monitoring area, and each of these
detections is depicted by the detected location and scale
{Oc,t, c ∈ C}. We construct the following mixture density
as an effective importance function:

Ii,t(xi,t) = α[
∑C

c=1 ωc,tN(xi,t|Oc,t,
∑

c,t)]
+(1 − α)[p(xi,t|xi,t−1)] (11)

where N is a Gaussian density with mean vector Oc,t

and diagonal covariance matrix
∑

c,t, the Gaussian mix-
ture weights ωc,t are empirically determined based on the
detection’s location relative to the current position of the
tracker. The parameter α balances between target detec-
tion and tracker’s dynamics. When the tracker is under
good conditions, α should be small and the sensing region
for tracker’s target detection will also be reduced such that
the dynamics model plays the dominant role. On the other
hand, if the tracker is experiencing a tracking failure or un-
able to detect anything, α will become large and the detec-
tion region will also expand to facilitate the search of the
lost target or any potential new targets.

Therefore, based on Eq. 8, the sequential Monte Carlo
implementation of the proposed collaborative tracker can
be summarized as in Figure 2.

4 Experiments
The proposed approach is implemented to perform experi-
ments on tracking sports players in real-life video sequences

1. Structure Determination of Markov Network:
At time t, determine the Markov network structure accord-
ing to the relative positions and performance indicators of
the trackers from time t − 1.

2. Importance Sampling:
For tracker i, i ∈ M , generate new samples {s(n)

i,t }N
n=1

from importance function Ii,t(xi,t).

3. Importance Re-weighting:
For each s

(n)
i,t , set its re-weight

ω̃
(n)
i,t = [

∑N
m=1 π

(m)
i,t−1p(s

(n)
i,t |s(m)

i,t−1)]/Ii,t(s
(n)
i,t )

4. Observation Likelihood Calculation:
For each s

(n)
i,t , perform likelihood calculation

w
(n)
i,t = p(zi,t|s(n)

i,t )

5. Iteration: Initially set k = 0 and k = k + 1;

(a) calculate the “message” from neighbors:

m
(n)
i,t (k) =

∑
j∈N (i)

N∑
m=1

π
(m)
j,t (k − 1) log ψij(s

(n)
i,t , s

(m)
j,t ).

(b) Re-weight the particles by:

π
(n)
i,t (k) = em

(n)
i,t (k) · w(n)

i,t · ω̃(n)
i,t .

(c) normalize to obtain

Qk
i,t(xi,t) ∼ {s(n)

i,t , π
(n)
i,t (k)}

.
Figure 2: The Monte Carlo implementation of the proposed col-
laborative tracker.

of soccer and hockey games. In both these experiments,
a set of 16 trackers is casted to cover the changing back-
ground scenes. Each tracker is equipped with an object
detector, which is trained using AdaBoost, to help sense
the potential appearing sports players within its local range.
The training data of the detector for each testing sequence
is collected by manually labelling the sports players regions
from randomly selected 50 frames of that sequence.

The individual tracker is a rectangle region tracker,
where the target state xi is modelled by 2D similarity trans-
formation parameters, i.e. translation and scale. The dy-
namics model p(xi,t|xi,t−1) is either a constant acceler-
ation model or a uniformly random walk model depend-
ing on the performance indicator ri,t−1, as described in
section 3.2. The likelihood function p(zi|xi) is a color-
histogram based observation model built in HSV color
space, which is known insensitive to illumination changes.
The histogram model of the target is also trained using the
same data set as of training AdaBoost detector. 100 par-
ticles are used to represent the posterior of each tracker,
which leads to only 1600 particles in total, linear with the
number of trackers, to monitor the appearing and disappear-
ing of sports players in the highly dynamic scenes. Un-
der this parameter setting, our collaborative trackers runs
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around 15 fps on a P4 2GHz PC (Note that our decentral-
ized scheme is theoretically parallel at the algorithm-level,
therefore with code optimization, much faster performance
can be easily achieved).

We firstly test the proposed approach on tracking mul-
tiple soccer players in a video sequence of soccer match,
in which the appearing and disappearing of players often
happen along the sequence. The maximum number of play-
ers simultaneously presenting in the scene is 8. Note that
in this sequence there are two team players, one is wearing
white sports clothes, while the other is wearing red. There-
fore, our 16 trackers are equally divided into two sets, which
share the same trained object detector but have different im-
age likelihood functions, each specifically trained for one
team.

The gradually detecting of the present soccer players in
the viewing scene is shown in Figure 3 that are correspond-
ing to the 2, 18, 29 frames of the sequence respectively.
The casted autonomous trackers, which are inactive ini-
tially, start to roam around the scene with random walk to
sense their potential targets, while at the same time forc-
ing their neighboring inactive ones to search around other
unchecked areas by communicating with them through vari-
ational message, as shown in Figure 2. In general it will lead
to a roughly uniform coverage over the whole image area as
can be seen in Figure 3. The red thick rectangles in the
Figure illustrate the active trackers which have successfully
locked on targets, while the thin blue ones mean they are in-
active and still roaming around to search for any potentially
new targets. Labels are also displayed to help identify each
tracker uniquely.

Some selected tracking results of the proposed approach
are demonstrated in Figure 4 (Inactive trackers are not dis-
played for better illustration). The present soccer players
are successfully tracked with uniquely assigned identifiers
even under the severe interactions and occlusions. The in-
volved collaborations among targets are depicted by the
blue links representing the edges in the underlying Markov
network structure (Please note that the network structure
changes with time as shown in the Figure). With the help
of collaborations among targets, the coalescence problem is
successfully handled along the whole sequence.

In comparison, 16 multiple independent trackers M.i.T.
are also tested to perform detecting and tracking with the
same sequence. Every setting is the same as above except
the missing of collaborative message passing. The com-
parison results using the proposed approach and M.i.T. are
demonstrated in Figure 5, where the left column in the Fig-
ure is the original source frames, the middle column corre-
sponds to our proposed approach, and the right one is the
results from M.i.T.. For clear illustrations, only the track-
ing results from the pink areas of the original frames are
shown in the middle and right columns. The frame numbers

are 141 (top), 215 (bottom) respectively. In the following,
for clarification purpose, all the identifiers we described are
corresponding to the players in the proposed approach, i.e.
the identifiers in the middle column, since there identities
are maintained correctly for each player. In frame 141, the
M.i.T. loses tracking the red team player 9 due to his pre-
vious crossing with the player 8. Actually, this interaction
between these two players can be clearly seen in the frame
127 of Figure 4. In frame 215, the coalescence problem
becomes more severe in the M.i.T. case, where the player
9, although previously lost in frame 141, and then sensed
and tracked by other nearby inactive trackers, also “hijack”
the tracker of the player 8, which leads to the lose track of
player 8. In M.i.T., although the set of trackers equipped
with the object detector may successfully cover all appear-
ing targets within the dynamic scene, the inevitable coales-
cence problem there will result in targets identity switching,
then dramatically hurt the tracking performance.

Secondly, a video sequence captured from a hockey
game is tested, in which many hockey players appear and
disappear in the field and present severe interactions. The
tracking results of the sequence are originally reported
in [12], which therefore provides a direct comparison of our
algorithms with theirs. By explicitly introducing the col-
laborative mechanisms among the spatial adjacent trackers,
our proposed approach robustly follows most of the hockey
players and handles the coalescence problem satisfactorily,
as can be seen in Figure 6, while in [12], a simple K-means
clustering is proposed to maintain multiple modalities of the
underlying particle filtering, therefore may easily result in
the identity confusions of hockey players before and after
clustering. Please note that the few hockey players are not
successfully sensed in the sequence, which are mainly due
to the imperfect object detector since it is only trained based
the labelled data from 50 frames of the sequence.

5 Discussion and Conclusions
We propose a novel decentralized approach to multiple tar-
get tracking problem, where a set of autonomous while col-
laborative trackers are introduced to overcome the tracker
coalescence problem with linear complexity. The au-
tonomous means each individual tracker is self-aware since
it can determine its own status, such as following a target
or sensing potential new targets by an entropy-based evalu-
ator; while the collaborative implies the set of trackers may
also need to communicate with their neighboring ones to
deal with the coalescence problem corporately. The theo-
retical foundation of this new approach is based on the vari-
ational analysis of a Markov network which reveals an in-
trinsically parallel variational message passing mechanism.
In addition, a trained object detector is incorporated to help
sense the potential newly appearing targets in the dynamic
scene, therefore background subtraction is not necessary to
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Figure 3: Soccer player detections using 16 autonomous trackers with local range AdaBoost detector, frame numbers are 2, 18, 29
respectively. The red thick rectangles illustrate active trackers, while the thin blue means inactive ones. See text for details.

.

Figure 4: Tracking soccer players using the proposed approach, frame number 59, 75, 127, 186, 233. The blue links among the targets
illustrate the structure of the Markov network. Please see the attached video for details.

our method. The use of object detectors within each tracker
also supports the construction of an effective importance
function, which leads to an more effective variational in-
ference.

Since the proposed approach of collaborative tracking
multiple targets is a general framework, it does not make
any assumptions about the individual autonomous tracker.
Therefore we are expecting to incorporate any promising
progresses from the robust single target tracking methods
into our formulation. One of the representatives is on-line
feature selection in [1], where by exploiting the possible
disjoint set of discriminative features for multiple targets
when they are spatially far away, then when they are coming
close, by constraining the corresponding trackers only em-
ploy the discovered disjoint feature set, the switching iden-
tity problem may be more reliably solved.
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