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Abstract 
 
In this paper, we propose a novel sequential variational maximum a posteriori (MAP) algorithm to recover the 
articulated human body motion from video for perceptual interfaces. Most probabilistic methods for visual tracking 
adopt the mean values of the motion posteriors as the estimate. This is due to the general difficulty of the global 
optimization involved in the MAP estimation. However, the mean estimate is confronted with the tracking failure 
resulted from the multi-mode motion posteriors. We show, with theoretic guarantee, that the MAP estimate could be 
asymptotically achieved from a probabilistic variational approach. This new algorithm, namely sequential 
variational MAP, could recover the human articulation more robustly. It also achieves linear complexity w.r.t. the 
number of body parts, which greatly relieves the curse-of-dimensionality. Our experimental results demonstrate the 
effectiveness and efficiency of the proposed algorithm for articulated human body tracking, and its applicability to 
vision based perceptual interfaces. 
 
 

1 Introduction 
 
Vision based perceptual interface provides a fully non-invasive way of intelligent human computer interaction (HCI). 
Such kinds of systems are very important in virtual environment, intelligent home and autonomous video 
surveillance, etc.. Since gesture and body language play very important roles in our daily communication, they are 
and should be very important inputs to a vision based perceptual interface. 
 
To utilize human articulation for perceptual interfaces, it is essential to achieve the robust tracking of the articulated 
motion. There are mainly two approaches: the deterministic approach formulates the problem as a parameter 
estimation problem (Bregler and Malik 1998, Ju, Blacky and Yacoobz 1996, Rehg and Kanade 1995). The solution 
is usually provided by some nonlinear optimization techniques; while the probabilistic approach formulates the 
problem as a Bayesian inference problem (Deutscher, Blake and Reid 2000, Wu, Hua and Yu 2003, Sigal, Bhatia, 
Roth and Black 2004). And the solution is provided by sequentially recovering the articulated motion posteriors. 
 
The articulated structure of the human body results in a very high dimensional representation. This confronts both 
approaches, e.g., we need to optimize an objective function of at least 25 degrees of freedom to recover the best 
estimate of the full human body motion. The computation demand may increase exponentially w.r.t. the 
dimensionality. Nevertheless, the probabilistic approach became popular due to its flexibility of incorporating useful 
prior information into the articulated motion tracking system in a principled way. 
 
Because of the convenience in calculation, the mean values of the recovered motion posteriors are often taken as the 
estimate results (Isard and Blake 1996, Wu et al. 2003, Hua and Wu 2004, Sigal et al. 2004). However, this is 
inadequate when the posteriors are multi-mode. For example, in contour tracking, the motion posteriors can be non-
Gaussian and multi-mode, especially when the background is cluttered (Isard and Blake 1996). Therefore, the mean 
estimate may significantly deviate from the MAP estimate. And thus it is not able to indicate the true motion. 
 
We propose a novel sequential algorithm to recover the MAP estimate of the motion posteriors. By constraining the 
mean field variational distribution to be Gaussian, a deterministic annealing scheme can be nicely incorporated into 
the mean field fix-point iterations. Upon convergence, the mean of the variational Gaussian will be very likely to 
converge to the MAP estimate. This new algorithm achieves linear complexity w.r.t. the number of body parts, 



which greatly relieves the curse-of-dimensionality in the particle filtering based algorithm (Isard and Blake 1996). 
 
Section 2 discusses the related work in the literature; a distributed probabilistic representation of the human 
articulation is presented in Section 3; then, two theorems of the KL  divergence are proved, which are the theoretic 
foundation of this paper; the details of the sequential variational MAP algorithm is presented in Section 5; various 
experimental results are demonstrated in Section 6; we conclude the paper with some future work in Section 7. 
 

2 Related work 
 
We briefly discuss the previous work on probabilistic articulated human body tracking in this section. 
 
For probabilistic articulated human body tracking, sequential Monte Carlo algorithm provides a flexible means of 
Bayesian inference (Isard and Blake 1996), but it also suffers from the exponential increase of the computation 
demand w.r.t. the dimensionality. This confronts the direct sequential Monte Carlo simulation on a centralized joint 
angle representation of the human body due to the high dimensionality (Cham and Rehg 1999, Deutscher et al. 2000, 
MacCormick and Isard 2000, Wu, Lin and Huang 2001). Several techniques were proposed to improve the 
efficiency, e.g., a multiple hypothesis tracking algorithm was proposed by only keeping the salient modes of the 
motion posteriors for more efficient Monte Carlo simulation (Cham and Rehg 1999); the partitioned sampling 
(MacCormick and Isard 2000) algorithm performs the Monte Carlo simulation in a hierarchical way based on the 
partition of the parameter space; while (Wu et al. 2001) proposed to learn a manifold from the natural hand motion 
to reduce the dimensionality. 
 
In contrast, a distributed representation models the motion of each body parts individually, but they are subject to 
the constraints from the neighboring body parts. The representatives are the cardboard people (Ju et al. 1996), the 
Markov network representation (Wu et al. 2003) and the loose-limbed model (Sigal, Isard, Sigelman and Black 
2004), to list a few. In (Wu et al. 2003), an efficient sequential mean field Monte Carlo algorithm (MFMC), which 
reveals a set of collaborative particle filters, was nicely derived from a mean field variational analysis (Jordan and 
Weiss 2002). Later, (Sigal, Isard, Sigelman and Black 2004, Sigal, Bhatia, Roth and Black 2004) applied the 
PAMPAS algorithm (Isard 2003) or the nonparametric belief propagation algorithm (Sudderth, Ihler, Freeman and 
Willsky 2003), to perform the Bayesian inference on the loose-limbed body model. Both algorithms greatly relieve 
the curse-of-dimensionality through the efficient Bayesian inference facilitated by the distributed representation. 
 
The algorithms discussed above can recover good approximate inference of the posterior distributions, but they are 
unable to recover the MAP estimate thus the mean estimates are always taken as the results. This may cause serious 
tracking failure when the articulated motion posteriors are multi-mode. Based on the theorems proved in Section 4, 
we propose a sequential variational MAP algorithm, which is able to sequentially recover the MAP estimates of the 
motion posteriors as well as retain the efficiency in computation. 
 

 
Figure 1:  Markov network: a probabilistic distributed representation of human body. 



3 Markov network: a probabilistic distributed representation 
 
In this section, we propose a probabilistic distributed representation of the human articulation based on a Markov 
network similar to that in (Wu et al. 2003). In this representation, the motion of each body parts is modeled 
individually by a random variable. But each of the random variables is subject to the constraints from the 
neighboring subparts, e.g., the motion of the lower arm is constrained by the motion of the upper arm, as shown in 
Figure 1. 
  

Denote L  as the set of all the subscripts, then each LiX i ∈,  individually models the motion of one of the body 

part indexed by the subscript, e.g., the subscript “lul” denotes the left-upper-leg, “rla” denotes the right-lower-arm, 

etc.. Also, each undirected link in the Markov network represents a potential function ),( ji XXψ , which models 

the motion constraints between two neighboring body parts. And each iX is associated with an image observation 

iZ  by a directed link, which represents the image likelihood function )|( ii XZφ . Denote },{ LiXX i ∈= , and 

},{ LiZZ i ∈= , the joint probability of the Markov network is 
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where NZ  is a normalization constant and E  represents the set of all the undirected links.  Temporal extension of 

the Markov network results in the dynamic Markov network to model the human articulation, as shown in Figure 2. 
 

Denote },{ LiXX T
iT ∈=  and },{ LiZZ T

iT ∈=  as the set of articulated motion and the set of image 

observations of all the body parts at time instant T , respectively. Also denote },....,,{ 21:1 TT ZZZZ = as all the 

image observations up to the current time instant T . Each horizontal directed link in the dynamic Markov network 
in Figure 2 is associated with the individual motion dynamics of each of the body parts. Thus a fully factorized 
dynamic model is assumed, i.e., 
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Then, the Bayesian inference here is to sequentially recover the posterior distributions 
 

 
Figure 2:  Part of the dynamic Markov network to model the articulated human body motion.   
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where QZ  is a normalization constant. In Section 5, we will show how to sequentially recover the MAP estimate 

from an annealed mean field analysis on Equation 3. We will firstly reveal two theorems of the KL  divergence 
between a Gaussian distribution and an arbitrary p.d.f., in Section 4 since they are the theoretic foundation of the 
proposed algorithm in Section 5. 
 

4 KL divergence between a Gaussian  and an arbitrary p.d.f. 
 
The KL  divergence between two p.d.f. )(xq  and )(xp  is defined as 
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It functions as a measurement of the similarity between two distributions. It has the property that it is zero when 
)(xq  and )(xp are equal and is positive otherwise. But it is not a real distance since it is not symmetric, i.e., 

))(||)(())(||)(( xqxpKLxpxqKL ≠ . We reveal and prove the following two theorems based on the properties 

of the KL  divergence. They provide the theoretic foundation of the sequential variational MAP algorithm in 
Section 5. 
 

Theorem 1 For an arbitrary p.d.f. nxxp ℜ∈),( , which is positive everywhere with an unique global maximum, 

assuming )(xq  be a Gaussian distribution with mean µ� and covariance � , we have 

x
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Proof:  According to the definition of KL  divergence, we have:  
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Generally, we also have the following corollary from Theorem 1. 



Corollary 1 The local minima of ))(||)((lim)(
0

xpxqKLf
>−�

=µ�  have a monotonically one-to-one 

correspondence to the local maxima of )(xp , i.e., the global minimum of )(µ�f  corresponds to the global 

maximum of )(xp  and vice versa. 
 
Proof: The conclusion is straightforward from the proof of the Theorem 1, since log function is a monotonically 

increasing function.        � 
 
It is worth noting that )(µ�f may go to infinity, but its topology at infinity can still be characterized by 

)(log µ�p− .  

 
5 Sequential variational MAP 
 
The probabilistic inference of Equation 3 by mean field analysis firstly involves the mean field approximation of the 
motion posteriors at each time instant T , i.e., 
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Embedding Equation 6 at time instant 1−T  into Equation 3, we have 
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Then we can construct the following cost function 
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where ( )TjQH ,  is the entropy of the distribution ( )T
iTj XQ ,  and 

( ){ } ( )�∏
∈

=
iLj

TTT
T
jTj

T
iTTQ dXZXPXQXZXPE

\
:1,:1 ,log)(|,log .                          (9) 

We can maximize )(QJT to obtain an approximate inference of each )|( :1T
T
i ZXP . This is achieved by 

formulating a Lagrangian multiplier with the constraints that ( ) 1, =�
T
iTi XQ . Then using basic calculus of 

variations, take the variation of the Lagrangian w.r.t. each ( )T
iTi XQ ,  and set them to zero, we obtain the following 

set of mean field fix-point equations 
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where SZ  is the normalization constant. Embedding Equation 7 into Equation 10, we obtain the following 

sequential mean field fix-point equations. 
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With the highlight of Theorem 1 and Corollary 1, to pursuit the MAP estimate of the motion posteriors, we further 

constrain each )(,
T
iTi XQ  to be a Gaussian distribution with fixed covariance � , i.e., 
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Figure 3: the sequential Variational MAP algorithm 
 

Note that maximizing ( )QJT  is equivalent to minimizing ( ) 		
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maximization problem constrained by Equation 12, we follow a similar strategy of gradient projection (Rosen 1960). 

We firstly relax )(,
T
iTi XQ to be any valid p.d.f., the mean field analysis will result in the fix-point equations in 

Equation 11. Then, we project the solution to the functional space spanned by the set of Gaussian distributions with 

fixed covariance �  by setting the mean T
iµ� to be the expectation of the unconstrained )(,

T
iTi XQ , i.e., 
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This is the set of fix-point equations to update the Gaussian mean field distribution with fixed covariance � . Based 
on this, we can nicely incorporate a deterministic annealing scheme into the Gaussian constrained mean field 
analysis in Equation 13. This could be achieved by initially setting the elements of the covariance �  to be very 

large. Then it will be decreased asymptotically toward zero. At each fixed � , we iterate Equation 13 until 

convergence, which uses the converged mean T
iµ�  under the previous �  as the initialization. Then upon 

convergence of the whole annealed iterations, from Theorem 1 and Corollary 1, the mean of the variational Gaussian 

distribution will be converged to the global MAP estimate of the posterior ( )TT ZXP :1| . 

Generally, the annealing process of � should be carefully designed. For ease of control, we re-enforce �  to be 

diagonal, i.e., nΤΙ=� , where ],,[ 1 nΤΤ=Τ �  is a ndimensional constant vector and nΙ is the nn×  identity 

Sequential Variational Maximum a Posteriori Algorithm 
 
 

Input: Unconstrained )( 1
1,

−
−

T
iTi XQ  and the MAP estimate 1−T

iµ�  at 1−T , Li ∈

Output: Unconstrained )(,
T
iTi XQ  and the MAP estimate T

iµ� at T , Li ∈  

 

1. Initialization: Annealing control parameter 0=m ; ],,[ maxmax
1max nΤΤ=Τ �  be very large where the 

annealing starts and ],,[ minmin
1min nΤΤ=Τ �  be very small near zero where the annealing stops; nΙ be the 

nn×  identity matrix; Set 1
0,

−= T
i

T
i µµ ��

as the initialization of the set of mean vectors of the Gaussian 

distribution. 
 
 2. Mean field iteration: Iterate the unconstrained mean field fix-point Equation 10 until convergence to obtain 

)(,
T
iTi XQ , Li ∈ . 

3. Annealing: 1+= mm , 
m
maxΤ

=Τ , then nΤΙ=� ; T
mi

T
mi 1,, −= µµ ��

; if minΤ>Τ , goto Step 4, else goto 

Step 5. 
 

4. Gaussian mean field: Update T
mi ,µ� based on the current value of Tmi ,µ�  and the fixed � according to  

Equation 13.  Iterate this step to convergence. Then jump back to Step 3. 
 

5. Result: T
mi

T
i ,µµ �� = , Li ∈  are the MAP estimation, and )(,

T
iTi XQ , Li ∈ , are the optimal 

unconstrained mean field approximation, of  )|( :1T
T
i ZXP  



matrix. Then we only need to control n  parameters for annealing instead of controlling 2
)1( +nn  parameters. Note that 

we must also keep the unconstrained mean field distribution )( 1
1,

−
−

T
iTi XQ  at time instant 1−T to perform the 

annealed Gaussian constrained mean field iteration of Equation 13 at the time instant T .  We propose the sequential 
variational MAP algorithm as shown in Figure 3. A hyperbolic decreasing annealing scheme was adopted. It 
generally achieves good results as shown in our experiments. 

 

6 Experiments 
 
6.1 Recovering human articulation 
 
We implemented the sequential variational MAP algorithm by Monte Carlo simulation to recover the full human 
body motion from a long video sequence of 767 frames. In the experiment, each body part is represented by a 

quadrangle shape and tracked in a 6-dimensional probabilistic affine space. The potential function ),( ji XXψ  of 

two connected body parts is modeled by a Gaussian radial basis function. And we use both the visual cues of edge 

and intensity to construct the image likelihood functions )|( ii XZφ . They are all similar to that in (Wu et al. 

2003). 
 
The proposed sequential variational MAP algorithm recovers the articulated full-body motion very well across the 
video sequence. Some of the sample results1 are in Figure 4. For comparison, we also implemented the mean field 
Monte Carlo (MFMC) algorithm in (Wu et al. 2003) and multiple independent CONDENSATION trackers (MiCT) to 
track the human articulation in the same video sequence. Experiments show that the MFMC algorithm failed to track 
the articulated motion after the 368th frame and the MiCT tracker failed to capture the articulation from the start.  
 

Since different component of the affine motion vector iX  has different range, we designed different annealing 

scheme for them, e.g., for the translation component, 8max, =Τ i , while for the scaling component, 6.0max, =Τ i . 

We design 6 annealing steps and in the first step of the annealing, we iterate the mean field equations for 6 times and 
in the following annealing steps, we run the mean field fix-point equations for 3 times. This setting is based on the 
empirical observation that only at the first annealing step that the mean field equations need more iterations to 
converge. The algorithm can thus run at the speed of 0.2 frames per second. While the MFMC algorithms can run at 
the speed of 0.6 frames per second where we iterate the mean field fix-point equations for 6 times at each time 
instant. The proposed sequential variational MAP algorithm does achieve linear complexity w.r.t. the number of 
body parts, the arguments are similar to that in  (Wu et al. 2003) . 
 
6.2 Smart finger mouse 
 
We also applied the proposed algorithm to track the 3 link index finger to demonstrate the potence of developing it 
to a vision based mouse controller. The articulated motion of the finger is modeled by a Markov network with 3 
nodes. We use similar potential functions as well as image observation likelihood functions as in Section 6.1. We 
define two states of the finger articulation: the key-up state corresponds to when one stretches the index finger to be 
a near straight line, which we denote as state “0”; and the key-down state corresponds to when the index finger is 
like a bow shape, which we denote as state “1”. 
 
Actually, these two states can be easily characterized by the 2D joint angles of the recovered finger articulation. 

Denote the joint angle between the distal phalanx link and the middle phalanx as 1θ  and the joint angle between the 

middle phalanx and the proximal phalanx as 2θ , then the recognition of the two are performed by the following 

formula, i.e., 

                                                 
1 More tracking results of the sequential variational MAP algorithm could be found in the online video at 
http://www.ece.northwestern.edu/~ganghua/HCIi2005/SVMapArticulate.avi 
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Figure 4: Articulated human body tracking by the sequential variational MAP algorithm 

 

�
�
�

≤
>

=
T

T
F C

C
S

21

21

coscos,1

coscos,0

θθ
θθ

,                                                             (14) 

where TC  is a decision threshold which in our experiment we set it to be 0.9. We present some of the sampling 
results in Figure 5. We also showed a green cross sign in the image, which corresponds to the boundary point of the 
joint between the middle phalanx and the proximal phalanx. It functions as the mouse cursor. And we also have 
shown the recognized finger state in the left top corner of the image as “key down” and “key up”. The video 
sequence has a total 364 frames, our algorithm robustly tracked and recognized the states of the finger articulation 
across it. Some of the sample results2 are shown in Figure 5. Without any optimization on the C++ code, the current  

                                                 
2 More results can be found online at http://www.ece.northwestern.edu/~ganghua/HCII2005/Finger.avi 
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Figure 5: Variational MAP for tracking and recognition of finger motion. 
 
algorithm can run at the speed of 7 frames per second with 50 samples for each body part and 6 annealing steps. The 
experiments demonstrate the applicability of applying the proposed algorithm for vision based perceptual interface. 
 
In fact, after the finger articulation was robustly recovered and the states were robustly recognized, we can further 
recognize actions such as “click” and “double-clicks” by using some time series modeling techniques such as hidden 
Markov model, etc.. Since the motivation of this paper is still focusing on developing algorithms for recovering 
human articulation more robustly, we defer that part to be our future work.  
 
7 Conclusion and future work 
 
In this paper, we propose a novel sequential variational maximum a posterior algorithm to robustly recover the 
human articulations from the videos. Different from the previous probabilistic algorithms for tracking articulated 
motion, which generally take the mean value of the motion posteriors as the estimate, we develop a principled 
variational approach to sequentially recover the MAP estimate of the articulated motion posteriors. As demonstrated 
in the experiments, the recovered motion parameters can then be adopted as the input for vision based intelligent 
human computer interaction.  
 
Our future work include more theoretical investigations on the convergence rate and faster annealing schemes, as 
that will facilitate to meet the real time requirements for human computer interaction. We will also try to optimize 
our current implementations of the algorithm and further develop the prototype finger mouse system, e.g., we will 
seek to develop a principled method for the self-initialization of the proposed sequential variational MAP algorithm. 
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