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Abstract

In this paper, we propose a novel sequential vaoriatl maximum a posteriori (MAP) algorithm to reeovthe
articulated human body motion from video for petoapinterfaces. Most probabilistic methods foruastracking
adopt the mean values of the motion posteriorshasestimate. This is due to the general difficoltyhe global
optimization involved in the MAP estimation. Howewbe mean estimate is confronted with the tragailure
resulted from the multi-mode motion posteriors. shew, with theoretic guarantee, that the MAP edtintauld be
asymptotically achieved from a probabilistic vartetal approach. This new algorithm, namely sequanti
variational MAP, could recover the human articutatimore robustly. It also achieves linear compiewmitr.t. the
number of body parts, which greatly relieves thesetof-dimensionality. Our experimental results dasirate the
effectiveness and efficiency of the proposed algorifor articulated human body tracking, and itgplgability to
vision based perceptual interfaces.

1 Introduction

Vision based perceptual interface provides a fotig-invasive way of intelligent human computer iatgion (HCI).
Such kinds of systems are very important in virtealvironment, intelligent home and autonomous video
surveillance, etc.. Since gesture and body langpégyevery important roles in our daily communioati they are
and should be very important inputs to a visioreblgserceptual interface.

To utilize human articulation for perceptual ingerés, it is essential to achieve the robust trgckfrthe articulated
motion. There are mainly two approaches: the detestic approach formulates the problem as a pamme
estimation problem (Bregler and Malik 1998, Ju,dBlaand Yacoobz 1996, Rehg and Kanade 1995). Tiwicro
is usually provided by some nonlinear optimizatieshniques; while the probabilistic approach foraes the
problem as a Bayesian inference problem (Deuts®iake and Reid 2000, Wu, Hua and Yu 2003, SigagtR,
Roth and Black 2004). And the solution is providgdsequentially recovering the articulated motiostgriors.

The articulated structure of the human body rednl& very high dimensional representation. Thisfamts both
approaches, e.g., we need to optimize an objeftinetion of at least 25 degrees of freedom to recdkie best
estimate of the full human body motion. The compota demand may increase exponentially w.r.t. the
dimensionality. Nevertheless, the probabilisticrapgph became popular due to its flexibility of ingorating useful
prior information into the articulated motion tréog system in a principled way.

Because of the convenience in calculation, the mahres of the recovered motion posteriors arendéigen as the
estimate results (Isard and Blake 1996, Wu et @32 Hua and Wu 2004, Sigal et al. 2004). Howetlgs, is
inadequate when the posteriors are multi-mode ekample, in contour tracking, the motion posteriwas be non-
Gaussian and multi-mode, especially when the backgt is cluttered (Isard and Blake 1996). Thereftre mean
estimate may significantly deviate from the MAPirstte. And thus it is not able to indicate the tnuation.

We propose a novel sequential algorithm to rectveiMAP estimate of the motion posteriors. By craistng the
mean field variational distribution to be Gaussiameterministic annealing scheme can be nicelgrparated into
the mean field fix-point iterations. Upon convergenthe mean of the variational Gaussian will bey Vigely to

converge to the MAP estimate. This new algorithrhiees linear complexity w.r.t. the number of bqabrts,



which greatly relieves the curse-of-dimensionadlityhe particle filtering based algorithm (IsarcieBlake 1996).

Section 2 discusses the related work in the liteeata distributed probabilistic representationtioé human

articulation is presented in Section 3; then, tiveorems of theKL divergence are proved, which are the theoretic
foundation of this paper; the details of the setjaemariational MAP algorithm is presented in Sewt5; various
experimental results are demonstrated in Sectiove6onclude the paper with some future work intisecr.

2 Related work

We briefly discuss the previous work on probabdistrticulated human body tracking in this section.

For probabilistic articulated human body trackisgguential Monte Carlo algorithm provides a flegibheans of
Bayesian inference (Isard and Blake 1996), butsib suffers from the exponential increase of thenmatation
demand w.r.t. the dimensionality. This confronts tirect sequential Monte Carlo simulation on atredized joint
angle representation of the human body due toitffedimensionality (Cham and Rehg 1999, Deutschet. 000,
MacCormick and Isard 2000, Wu, Lin and Huang 20(8¢veral techniques were proposed to improve the
efficiency, e.g., a multiple hypothesis trackingaithm was proposed by only keeping the salienti@soof the
motion posteriors for more efficient Monte Carlonsiation (Cham and Rehg 1999); the partitioned sagp
(MacCormick and Isard 2000) algorithm performs ltente Carlo simulation in a hierarchical way basedthe
partition of the parameter space; while (Wu e801) proposed to learn a manifold from the natheadd motion

to reduce the dimensionality.

In contrast, a distributed representation modedsntiotion of each body parts individually, but tree subject to
the constraints from the neighboring body partse Tépresentatives are the cardboard people (Ju E296), the
Markov network representation (Wu et al. 2003) #mgl loose-limbed model (Sigal, Isard, Sigelman Bhatk
2004), to list a few. In (Wu et al. 2003), an dffit sequential mean field Monte Carlo algorithmH¥IC), which
reveals a set of collaborative particle filters swacely derived from a mean field variational gs& (Jordan and
Weiss 2002). Later, (Sigal, Isard, Sigelman andcBl2a004, Sigal, Bhatia, Roth and Black 2004) amplibe
PamMPAS algorithm (Isard 2003) or the nonparametric befisfpagation algorithm (Sudderth, Ihler, Freeman and
Willsky 2003), to perform the Bayesian inferencetba loose-limbed body model. Both algorithms dyeadlieve

the curse-of-dimensionality through the efficiermtyBsian inference facilitated by the distributearesentation.

The algorithms discussed above can recover goobzipmate inference of the posterior distributiohst they are
unable to recover the MAP estimate thus the metim&®s are always taken as the results. This raagecserious
tracking failure when the articulated motion poster are multi-mode. Based on the theorems prowesection 4,
we propose a sequential variational MAP algoritlrhich is able to sequentially recover the MAP eaties of the
motion posteriors as well as retain the efficieimcgomputation.
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Figure 1: Markov network: a probabilistic distributed repression of human body.



3 Markov network: a probabilistic distributed representation

In this section, we propose a probabilistic disttdul representation of the human articulation based Markov
network similar to that in (Wu et al. 2003). In ghiepresentation, the motion of each body partsiasleled
individually by a random variable. But each of trendom variables is subject to the constraints fithe
neighboring subparts, e.g., the motion of the loaren is constrained by the motion of the upper asnshown in
Figure 1.

DenoteL as the set of all the subscripts, then eXghi [ L individually models the motion of one of the body
part indexed by the subscript, e.g., the substpt denotes theeft-upper-leg “rla” denotes theight-lower-arm
etc.. Also, each undirected link in the Markov netirepresents a potential functigh( X, , Xj), which models

the motion constraints between two neighboring bpalys. And eachX; is associated with an image observation
Z, by a directed link, which represents the imageliliked functiongZ, | X;). Denote X ={X,,i L}, and
Z ={Z,,i L}, the joint probability of the Markov network is

F)(X1Z)=Zi ‘/’(Xi’xj)l_l(dzilxi)’ (1)

N {i, }0E ioe
where Z, is a normalization constant arfd represents the set of all the undirected linkemforal extension of
the Markov network results in the dynamic Markowwrerk to model the human articulation, as showRigure 2.

Denote X; ={X;,iOL} and Z, ={Z,i0L} as the set of articulated motion and the set cdgien

observations of all the body parts at time insthntrespectively. Also denot& .; ={Z,,Z,,....,Z; } as all the

image observations up to the current time instantEach horizontal directed link in the dynamic Marknetwork
in Figure 2 is associated with the individual motidynamics of each of the body parts. Thus a ffatorized
dynamic model is assumed, i.e.,
P(Xr.y | X) = [TPXTIXT). @
1L
Then, the Bayesian inference here is to sequgntetiover the posterior distributions
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Figure2: Part of the ghamic Markov network to model the articulated harbady motion.
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where ZQ is a normalization constant. In Section 5, we wilbw how to sequentially recover the MAP estimate

from an annealed mean field analysis on Equatiow@.will firstly reveal two theorems of thKL divergence
between a Gaussian distribution and an arbitradhyf.pin Section 4 since they are the theoretimftation of the
proposed algorithm in Section 5.

4 KL divergence between a Gaussian and an arbitrary p.d.f.

The KL divergence between two p.dd(X) and p(X) is defined as

KL(@0O Nl p09) = [a(x)log 12 @
99000

It functions as a measurement of the similaritymeetin two distributions. It has the property thasizero when
g(x) and p(Xx) are equal and is positive otherwise. But it is aakal distance since it is not symmetric, i.e.,

KL(g(xX) ]| p(X)) # KL(p(x)]]a(X)) . We reveal and prove the following two theoremsdabon the properties

of the KL divergence. They provide the theoretic foundatidnthe sequential variational MAP algorithm in
Section 5.

Theorem 1 For an arbitrary p.d.f. p(x), x 0O " which is positive everywhere with an unique glabalximum,
assumingq(X) be a Gaussian distribution with megh and covariance). , we have

lim argminKL(q(x)|| p(x)) = argmaxp(x) ®)
=00, "

Proof: According to the definition oKL divergence, we have:

lim argmin KL(q(x)]| p(x))

- Qi‘oarg;nin{ NI .3) |og(%’xf’)’2) x}

= ymoargfnin{j N(x| @&, 2)logN(x| 4, Z)dx—J- N(x| @&, 2)log p(x)dx}
= ymoargfnin{— |og((2ne)n det(z))— j N(x| 1, ) log p(x)dx}

= ymoarg[nin{—'[ N(x| @&, 2)log p(x)dx}

= ymoargfnin{— j d(x - f1)log p(x)dx}

= lim argmin{- log p(z)}

= argmaxp(Xx) |

Generally, we also have the following corollaryrfrdheorem 1.



Corollary 1 The local minima off(/fl)=£imoKL(q(X)||p(X)) have a monotonically one-to-one

correspondence to the local maxima p{X), i.e., the global minimum df(Z) corresponds to the global
maximum ofp(X) and vice versa.

Proof: The conclusion is straightforward from the prooftieé Theorem 1, sinckdg function is a monotonically

increasing function. I

It is worth noting thatf (£Z) may go to infinity, but its topology at infinity nastill be characterized by
—log p(4).

5 Sequential variational MAP

The probabilistic inference of Equation 3 by me@hdfanalysis firstly involves the mean field apgroation of the
motion posteriors at each time instadnt i.e.,

P(X;|Zyr) = |_|Q|T(X|T) (6)
1oL
Embedding Equation 6 at time instaht—1 into Equation 3, we have
1 ~ » »
POX; 1 Zir) = [ 1XD)] []PO 1X Q74X )X ™)
Q 0L I

Then we can construct the following cost function

J; (Q) =logP(Z,;) - KL(I_' Qr (XiT MIP(X: 124 )J
100 , (8)
==Y H(Q )+ [ Qi (X] JEoflogP(Xr, 2. )1 XT X

joL
where H (QJ’T) is the entropy of the distributio®; (X,T) and
Eq{l()g P(XT’Z]_'T)I XiT}:§ Qj,T(XjT)IOg P(XT7Z1‘T)dXT - ()
oLl

We can maximizeJ; (Q) to obtain an approximate inference of edefX,' |Z,;) . This is achieved by
formulating a Lagrangian multiplier with the corastits that_[QiyT (XiT)Zl. Then using basic calculus of

variations, take the variation of the LagrangiantweachQ, (XiT) and set them to zero, we obtain the following
set of mean field fix-point equations

Q. (x7)= Ziexp(EQ{log P(X;, 2. )| XT}), (10)

where Zg is the normalization constant. Embedding Equaffointo Equation 10, we obtain the following
sequential mean field fix-point equations.

Q. (x7)= %co(zr X ) POKT X )Q, (X7 Jax exp(j%(i)% (X} Jogu (X, XI)j

(11)
With the highlight of Theorem 1 and Corollary 1,dorsuit the MAP estimate of the motion posteriave, further

constrain eactQ, ; (X;") to be a Gaussian distribution with fixed covarai, i.e.,

Qi,T(XiT) = N(XiT |/7|T1Z) 12)



Sequential Variational Maximum a Posteriori Algorithm

Input: UnconstrainedQ, ;_,(X{ ) and the MAP estimat@ " atT -1, i 0L
Output: UnconstrainedQ ; (X;") and the MAP estimatg/ at T, i L

1. Initialization: Annealing control parametem=0; T__ =[T,"",...,T,"*] be very large where t
annealing starts and,,, =[T,"",...,T™] be very small near zero where the annealing stqpse the
NXn identity matrix; Set[/IO Z,DiT_l as the initialization of lte set of mean vectors of the Gaus

distribution.

2. Mean field iteration: Iterate the unconstrained mean field fi@int Equation 10 until convergence to ob

Q. (X7).iOL.

T - ~
3. Annealingg m=m+1, T=-"2 then} =TI ; &' =g ;if T>T_ goto Step 4, else gc
m , ,

Step 5.

4. Gaussan mean field: Update [1le based on the current value thle and the fixedX. according t
Equation 13. Iterate this step to convergencenTim@p back to Step 3.

5 Result: ' =f' ., i0L are the MAP estimation, an ;(X[), iOL , are the optim:

unconstrained mean field approximation, P(X;" | Z,+)

Figure 3: the sequential Variational MAP algorithm

Note that maximizing (Q) is equivalent to minimizingKL(l_I Qi (X,T)H P(X;,Z41 )J . To solve the
1L
maximization problem constrained by Equation 12 fel®w a similar strategy of gradient projectidRasen 1960).

We firstly reIain’T (XiT) to be any valid p.d.f., the mean field analysid wékult in the fix-point equations in
Equation 11. Then, we project the solution to thecfional space spanned by the set of Gaussiatbdisbns with
fixed covariance). by setting the mea;zfliT to be the expectation of the unconstrai@iqr (XiT) ,l.e.,

= ez O Pb b e ™ g g
C

This is the set of fix-point equations to update @aussian mean field distribution with fixed coaace 2. . Based
on this, we can nicely incorporate a deterministitmealing scheme into the Gaussian constrained rielan
analysis in Equation 13. This could be achievednitjally setting the elements of the covarianketo be very
large. Then it will be decreased asymptotically aotvzero. At each fixe@. , we iterate Equation 13 until
convergence, which uses the converged mﬁdn under the previou®. as the initialization. Then upon
convergence of the whole annealed iterations, fiborem 1 and Corollary 1, the mean of the vamatiGaussian
distribution will be converged to the global MARigste of the posterioP(XT |Z .+ ) .

Generally, the annealing process Xfshould be carefully designed. For ease of conivel,re-enforce. to be
diagonal, i.e.>. =Tl , whereT =[T,,...,T,] is andimensional constant vector ahg is the N n identity



matrix. Then we only need to contridl parameters for annealing instead of controlbﬂ%ﬂ parameters. Note that

we must also keep the unconstrained mean fieldilulision inT_l(XiT_l) at time instanil —1 to perform the

annealed Gaussian constrained mean field iterafi@muation 13 at the time instamt. We propose the sequential
variational MAP algorithm as shown in Figure 3. Apkrbolic decreasing annealing scheme was adofited.
generally achieves good results as shown in ougraxents.

6 Experiments

6.1 Recovering human articulation

We implemented the sequential variational MAP dtpar by Monte Carlo simulation to recover the faliman
body motion from a long video sequence of 767 frane the experiment, each body part is represebyed

quadrangle shape and tracked in a 6-dimensionalapilistic affine space. The potential functil;(t‘(Xi , Xj) of
two connected body parts is modeled by a Gaussidialrbasis function. And we use both the visuascaf edge
and intensity to construct the image likelihood diions ¢XZ; | X,). They are all similar to that in (Wu et al.
2003).

The proposed sequential variational MAP algoritleoovers the articulated full-body motion very watross the
video sequence. Some of the sample re'saitsin Figure 4. For comparison, we also implemerhe mean field
Monte Carlo (MFMC) algorithm in (Wu et al. 2003)camultiple independent @VDENSATIONtrackers (MiCT) to
track the human articulation in the same video eagea. Experiments show that the MFMC algorithmefailo track
the articulated motion after the 368ame and the MICT tracker failed to capture thizalation from the start.

Since different component of the affine motion wecK,; has different range, we designed different anngali

= 06.

We design 6 annealing steps and in the first stélpeoannealing, we iterate the mean field equatfon 6 times and
in the following annealing steps, we run the meald ffix-point equations for 3 times. This settiisgbased on the
empirical observation that only at the first anireglstep that the mean field equations need memtions to

converge. The algorithm can thus run at the spé@d2drames per second. While the MFMC algoritfoaa run at
the speed of 0.6 frames per second where we itématenean field fix-point equations for 6 timeseaich time

instant. The proposed sequential variational MAgodlhm does achieve linear complexity w.r.t. themier of

body parts, the arguments are similar to thatWwu €t al. 2003) .

scheme for them, e.g., for the translation compodep,; =8, while for the scaling component, _.;

6.2 Smart finger mouse

We also applied the proposed algorithm to track3tiek index finger to demonstrate the potencel@feloping it
to a vision based mouse controller. The articulatexdion of the finger is modeled by a Markov netarith 3

nodes. We use similar potential functions as wellnaage observation likelihood functions as in Bec6.1. We
define two states of the finger articulation: the/fup state corresponds to when one stretchesdes finger to be
a near straight line, which we denote as state 404 the key-down state corresponds to when thexifidger is
like a bow shape, which we denote as state “1”.

Actually, these two states can be easily charasdrby the 2D joint angles of the recovered fingeiculation.
Denote the joint angle between the distal phalarkdnd the middle phalanx @ and the joint angle between the

middle phalanx and the proximal phalanx@s then the recognition of the two are performedthsy following
formula, i.e.,

! More tracking results of the sequential variatiohdhP algorithm could be found in the online videb a
http://www.ece.northwestern.edu/~ganghua/HCIi200BA8pArticulate.avi
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Figure 4: Articulated human body tracking by the sequentalational MAP algorithm

o} cosg, cosd, >C
SF :{ 1 2 T ’ (14)

1 c0sé, cosf, <

whereC; is a decision threshold which in our experimentseeit to be 0.9. We present some of the sampling

results in Figure 5. We also showed a green ciigssiis the image, which corresponds to the boungaipt of the
joint between the middle phalanx and the proxintalanx. It functions as the mouse cursor. And ve® &lave
shown the recognized finger state in the left topner of the image as “key down” and “key up”. Thideo
sequence has a total 364 frames, our algorithm tigbwmacked and recognized the states of the firrgtculation
across it. Some of the sample resudt® shown in Figure 5. Without any optimizationtba C++ code, the current

2 More results can be found online at http://www.eoehwestern.edu/~ganghua/HCI12005/Finger.avi
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#232 ' #233
Figure5: Variational MAP for tracking and recognition of §ar motion.

algorithm can run at the speed of 7 frames pemskadgth 50 samples for each body part and 6 anmgalieps. The
experiments demonstrate the applicability of apygythe proposed algorithm for vision based peradpiterface.

In fact, after the finger articulation was robustbcovered and the states were robustly recognized;an further
recognize actions such as “click” and “double-ditky using some time series modeling techniqueh sis hidden
Markov model, etc.. Since the motivation of thipeais still focusing on developing algorithms fecovering
human articulation more robustly, we defer that pabe our future work.

7 Conclusion and futurework

In this paper, we propose a novel sequential variat maximum a posterior algorithm to robustly aeer the

human articulations from the videos. Different fradhe previous probabilistic algorithms for trackiagiculated
motion, which generally take the mean value of itihation posteriors as the estimate, we develop rcipted

variational approach to sequentially recover theRVi#stimate of the articulated motion posteriorsdésonstrated
in the experiments, the recovered motion parame@nsthen be adopted as the input for vision basetligent

human computer interaction.

Our future work include more theoretical investigas on the convergence rate and faster anneatingnses, as
that will facilitate to meet the real time requiremts for human computer interaction. We will algotb optimize
our current implementations of the algorithm andhfer develop the prototype finger mouse system, &e will
seek to develop a principled method for the setfalization of the proposed sequential variatioM#P algorithm.
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