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ABSTRACT

Lung nodule detection, especially ground glass opacity (GGO)
detection, in helical computed tomography (CT) images is
a challenging Computer-Aided Detection (CAD) task due to
the enormous variances in nodules’ volumes, shapes, appear-
ances, and the structures nearby. Most of the detection algo-
rithms employ some efficient candidate generation (CG) al-
gorithms to spot the suspicious volumes with high sensitivity
at the cost of low specificity, e.g. tens even hundreds of false
positives per volume. This paper proposes a learning based
method to reduce the number of false positives given by CG
based on a new general 3D volume shape descriptor. The
3D volume shape descriptor is constructed by concatenating
spatial histograms of gradient orientations, which is robust to
large variabilities in intensity levels, shapes, and appearances.
The proposed method achieves promising performance on a
difficult mixture lung nodule dataset with average 81% detec-
tion rate and 4.3 false positives per volume.

Index Terms— Medical imaging, computer aided analy-
sis, computer vision, lung nodule detection, shape descriptor.

1. INTRODUCTION

Rapid growth in volume of lung nodule, i.e. small mass of tis-
sues in lung, often reveals an early stage of lung cancer which
is one of the leading fatal cancers in western countries. With
early detection, the mean 5 year survival rate of lung cancer
can dramatically increases from 14% to 49% [1], however,
the vast amount of chest radiography to be interpreted man-
ually are too burdensome for radiologists, which calls for an
automation way to assist the diagnosis with CAD approach.

Although computer-aided lung nodule detection has been
studied since early of 90s, it has not been taken into common
clinical practice. The fundamental challenge is the lack of
a clear definition and an in-depth understanding of nodules
from the image perspective. Generally speaking, for object
detection in vision, we need to know the model of the tar-
get or in simple words what we are looking for, i.e. what
image attributes or features can reveal the presence of the
targets and distinguish them from similar objects. Usually,
the model comes from either the empirical knowledge or the

training data, which largely determines the detection perfor-
mance. Unfortunately, for lung nodules, we could only rely
on very rough assumptions: the nodules often appear as small
round shadows with spherical or ellipsoidal shapes in CT im-
ages. However, in practice, the detection system faces much
more complicated cases: no nodules are perfect spherical but
exhibit very large variations in intensities, sizes, shapes, ap-
pearances, and the surrounding structures, as shown in Fig.1.
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Fig. 1. Illustration of different types of nodules: (a) a small
nodule attached to lung wall or pleural; (b) a vascularized
nodule; (c) a solid large nodule with irregular non-spherical
shape; (d) a non-solid nodule.

The lung nodules can be mainly categorized into 3 types:
solid, part-solid and non-solid ones. Most of the previous re-
search have focused on detection of solid nodules [2, 3, 4,
5, 6, 7, 8], while fewer attention is paid to part- and non-
solid ones [9]. However, recent medical study indicated that
non-solid or ground glass opacity (GGO) nodules, which have
more irregular shapes and vague boundaries, are more likely
to develop to malignant cancer than solid ones [10].

Besides the aforementioneddifficulties, challenges for lung
nodule detection also include vast data to be processed and



lack of positive samples. Typical thin slice CT screening has
512 × 512 × 400 12-byte data in one volume, therefore, in
terms of efficiency, nodule detection task is usually split to
two steps: 1) lung nodule candidate generation (CG) which
aims to achieve high sensitivity, and 2) false positive reduc-
tion which aims to achieve high specificity. The CG algorithm
is fast but may generate several hundred candidates per vol-
ume. The purpose of this paper is to study the false positive
reduction problem in lung GGO nodule detection. Two ex-
amples of false positives are shown in Fig. 2.

Fig. 2. Illustration of sample false positives.

Inspired by [11], we propose to employ a learning-based
method to differentiate GGO with general 3D shape descrip-
tors which do not explicitly assume the ellipsoidality of the
GGO nodules. As the GGO nodules have much irregular
shapes and vague boundaries, the features should be rough
and not rigid. The new descriptor is based on weighted spatial
histograms of gradient orientations, which is robust to differ-
ent intensity levels, shapes and appearances. For each volume
of interest (VOI) given by CG, the orientations of 3D gradi-
ents within a rough segmentation mask are represented by two
angles, i.e. the angle when the gradient is projected to X-Y
plane and the angle between the Z-axis and the gradient. The
weighted 2D histograms of these two angles for 8 quadrants
with the segment’s geometrical center as the origin are con-
catenated to a vector as the 3D shape descriptor of this VOI.
The weights of gradients are determined by the product of
gradient magnitudes and a spatial kernel. An SVM classifier
trained on these descriptors is used to classify the candidates
to nodules and non-nodules so as to reduce the false positives.
The proposed method achieves promising results on a mixture
dataset including 324 nodules (81 GGOs) for 216 patients1.

2. RELATED WORK

Quite a lot of different approaches have been proposed to-
wards lung nodule detection since early of 90s. There are two
primary factors in most of algorithms: features and classifi-
cation models. Features extracted from raw radiography data
summarize the 3D data in concise form and provide the evi-
dences for classification models. Classification models grasp
the essential discriminative power inside the features andgen-
eralize to unseen data.

1We would like to acknowledge Dr. M.Ujita (Jikei Medical University,
Japan), Dr. J.Ko and Dr. D.Naidich (NYU Med Ctr, USA) for their clinical
contributions to this work.

The features have been applied to lung nodule detection
are extensive, ranging from simple image statistics, e.g. edges,
gradient magnitudes, hough transform, circularity of region,
contrastness and area, to sophisticated ones e.g. wavelets, ra-
dial volume distribution [6], and surface normal overlap [5] et
al. [2] presented a comprehensive survey about lung nodule
detection methods prior to 2001.

The classification methods can be mainly categorized to
two types: template-based [3, 4, 12] and learning-based [6,
7, 8]. Template-based methods have to be able to tolerate the
deviation from the template using robust matching criteria. In
addition, there may be some unusual nodules or non-nodules
which do not satisfy the template. For learning-based models,
the training data have to cover the possible variances for the
nodules and non-nodules as much as possible, which is also
very hard to be satisfied. The state of the art of lung nod-
ule detection for solid nodules was achieved by asymmetric
cascade of sparse hyperplane classifiers [8] with87.5% sen-
sitivity vs. 1 false positive per volume in a particular dataset.

GGO nodules are more difficult than the solid ones for
both template-based and learning-based methods mainly due
to the large variations. It is not only difficult to obtain a tem-
plate to tolerate the variations but also hard to gather sufficient
training data. The intensities and appearances of GGO nod-
ules vary greatly, therefore most of the conventional simple
image statistics cannot capture the essentials of GGO and itis
hard to design templates. [9] tried Gaussian reference mod-
els to detect the GGO candidates and applied artificial neural
networks to reduce the false positives. 25 GGO were detected
with approximately 543 false positives in 715 CT slices which
amounts to more than 30 false positives per volume. In this
paper, we employ SVM classifier trained on a new general
3D shape descriptors based on limited assumptions that the
shapes of the GGO nodules, i.e. the spatial distributions of
gradient orientations, are similar.

3. 3D VOLUME SHAPE DESCRIPTOR

Since clear prior knowledge about GGO nodules is not avail-
able, strong assumptions such as ellipsoidal shapes with clear
surfaces are not proper. From our observation, Hounsfield
values of GGO nodules and even the magnitudes of the gradi-
ents vary a lot. Therefore, with the assumption that the shape
patterns of the GGO nodules are similar, we propose to con-
struct the shape descriptor based on the gradient orientations
as features for false positive reduction. With a rough estima-
tion of the nodule segment, the histograms of gradient orienta-
tions for 8 quadrants are concatenated to represent the shape.
The contribution of each gradient is weighted by the gradient
magnitude and a spatial kernel to emphasize the voxels on the
edges and those close to the segment boundaries. This shape
descriptor has the advantages of generality, sparseness, and
roughness. It can describe the rough shapes of the nodules
without explicit assumptions. Even the nodule is attached to
lung wall or other structures, majority of the histograms of



gradient orientations will agree with that of other GGOs.
Given the marker points of nodule candidates generated

by CG, we first need to estimate the segments of these candi-
dates. In our approach we perform the nodule segmentation
with an efficient divergent gradient field response (DGFR) [13]
method. For each marker of nodule candidate, a 43-voxel cu-
bic VOI is extracted. 43 is selected empirically since it is
sufficiently large for most GGO nodules. DGFR segmenta-
tion followed by a watershed algorithm labels all voxels in
the VOI. With the marker as the seed we employ breadth-first
search to obtain the segmentation by region growing. In case,
the segmentation cannot provide a valid segments, we regard
this candidate as non-nodule.

With the binary mask of nodule candidate given by rough
segmentation, we align the candidate before calculating the
descriptor. By performing PCA on the 3D coordinates of the
points inside the binary mask, we rotate the VOI and the mask
according to their primary orientations. The flow chart of the
algorithm is summarized in Fig. 3. The details about the entire
procedure are presented in next section as well as the classifier
training and cross-validation scheme.
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Fig. 3. Flowchart of the algorithm procedure.

4. FALSE POSITIVE REDUCTION PROCEDURE

4.1. Segmentation

Given the43 × 43 × 43 3D VOI V and the marker point
s = {sx, sy, sz}, we need to know the scope of the candi-
date which will be used to generate the shape descriptor. The
watershed algorithm is applied to estimate the segmentation
based on DGFR [13] and followed by a region growing pro-
cedure with breadth first search. The segmentation module
gives a binary maskM of the nodule candidate, where

M(x, y, z) =
1 voxel(x, y, z) is on the segment
0 voxel(x, y, z) is not on the segment.

(1)
Note, if the DGFR cannot provide a reasonable mask, i.e the
volume is less than 10 voxels, this candidate will be regarded
as non-nodule and excluded from training and testing.

The segmentation is carried out for both full and half res-
olutions. In terms of scale selection, we have tried several

schemes and find empirically the scheme that selects the one
which gives larger difference of Gaussian (DOG) [11] re-
sponse ons works well, which is the approximation of Lapla-
cian operator. If the segment is small, i.e. the volume is less
than 512 voxels, to facilitate calculation of the histograms, we
up-sample the segment and the mask to16× 16× 16.

4.2. Descriptor Generation

For the segmentM(x, y, z) = 1, we align to its 3 primary di-
rections with PCA by rotating around the geometrical center
g = {gx, gy, gz}. The rotated VOI and mask are denoted as
Vr andMr. The 3D gradients of voxels inside the segment
are calculated with 3D Sobel operators. Each gradient can
be represented as a 3D vector{dx, dy, dz} with the magni-
tudeDm(x, y, z). The orientation can be represented by two
anglesθXY andθZ :

θXY (x, y, z) = arctan(
dy

dx
)

θZ(x, y, z) = arctan(

√

dx2 + dy2

dz
), (2)

whereθXY is the angle of the 3D gradient when projected
to X-Y plane andθZ is the angle between the gradient and
Z-axis.

Using the geometrical centerg as the origin, the 3D vol-
ume is divided to 8 quadrants, as illustrated in Fig. 3. A
weighted 2D histogramHi, i = 1, · · · , 8 on {θXY , θZ} is
calculated for each quadrant. The weight is the product of the
gradient magnitudeDm(x, y, z) and a spatial kernel

Km(x, y, z) = 1 − G(gx, σx)G(gy, σy)G(gz , σz), (3)

which gives more weights to the gradients near the segment
boundaries. The bin of the 2D histogram is calculated as

Hi(u) =
∑

Dm(x, y, z)Km(x, y, z)

δ(θXY (x, y, z) − uXY , θZ(x, y, z) − uZ),(4)

whereδ is the Kronecker delta function andθXY andθZ are
quantized to bin(uXY , uZ). In the spatial Gaussian kernel
G(gx, σx), the varianceσx is set to the radius of the segment
in X direction, so on so forth.

The weights are mainly determined by the gradient mag-
nitudes. So to avoid orientations of gradients with extremely
large magnitudes dominate the histograms, we set a thresh-
old to alleviate their influences. If one bin exceeds0.2 we
truncate it to0.2 and iteratively re-normalize the histogram.

The 8 2D histograms are concatenated to construct the
final shape descriptor. Two kinds of descriptors with differ-
ent lengths are implemented. In the long descriptors,θXY is
quantized to 8 bins where each bin stands for45o and 4 bins
for θZ , so the length8× 32 = 256. In the short descriptors, 4
bins forθXY and 2 bins forθZ , that is8×8 = 64 dimensional.



4.3. Classification

SVM classifier, specifically LibSVM [14], is employed to
classify the candidates based on the proposed 3D shape de-
scriptor. The GGO nodules are rare compared with the false
positives. To deal with the unbalanced training data, besides
setting higher costs for positive data in training, we also ro-
tate the GGO samples to generate more positive training data.
In testing, the shape descriptors are calculated for the remain-
ing GGO nodules and false positives and classified with the
trained SVM classifiers.

5. EXPERIMENTAL RESULTS

5.1. Settings

We test the performance of 64- and 256-dimensional descrip-
tors on a mixture dataset including 216 volumes with 324
nodules (81 GGOs) and 9590 false positives given by the CG.
Each volume has 400 slices on average and the sizes of nod-
ules range from 2mm to 18mm. The dataset is divided to
training and validation sets as shown in Table. 1. P(T) and
N(T) indicate the numbers of positive and negative samples
used in training, while P(V) and N(V) represent the numbers
of positive and negative samples in validation set. Note that
each positive training sample is rotated 5 times to generate
more positive samples for training. For each setting, we eval-
uate the performance with the average sensitivity (Sens.) and
false positives per volume (FPs.) for 100 tests as well as the
standard deviation of sensitivity (Std.) as in Table. 1.

Table 1. Cross validation performance.
P(T) N(T) P(V) N(V) Sens. Std. FPs.

64D 224 567 100 9590 79.9% 4.86% 5.33
254 567 70 9590 80.8% 4.78% 5.63

256D 224 567 100 9590 80.2% 3.97% 5.18
254 567 70 9590 81.0% 4.94% 4.31

5.2. Performance

For the 9590 false positives, 4905 are excluded by the DGFR
segmentation since the volumes of segments are not valid. We
test the performance on 2 validation sets with randomly se-
lected 70 and 100 nodules respectively. The ROC curves are
obtained by adjusting the variance of the kernel in SVM train-
ing. The costs for positive samples are set to 100 versus 1
for negative samples and the regularization term is 1000. As
shown in Fig. 4, the lines link the mean sensitivities and the
error bars show their standard deviations, which demonstrate
that the performance of 64-dimensional and 256-dimensional
descriptors are comparable.

6. CONCLUSION

In this paper, we propose to use new 3D volume shape de-
scriptors based on spatial histograms of gradient orientations
as features to reduce the false positives in lung GGO nodule
detection. The advantages of the proposed shape descriptors
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Fig. 4. ROC curves of 64D and 256D descriptors for testing 70
GGO nodules, respectively.

are their generality and the strong generalization capability to
remove false positives. The descriptors can be combined with
other features to further improve the performance and have
the potential to be applied in other medical image analysis
applications, e.g. colon polyp and tumor detection.
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