
Spatial Random Partition for Common Visual Pattern Discovery

Junsong Yuan, Ying Wu
EECS Department, Northwestern University

2145 Sheridan Road, Evanston, IL, USA 60208
{j-yuan, yingwu}@northwestern.edu

Abstract

Automatically discovering common visual patterns from
a collection of images is an interesting but yet challenging
task, in part because it is computationally prohibiting. Al-
though representing images as visual documents based on
discrete visual words offers advantages in computation, the
performance of these word-based methods largely depends
on the quality of the visual word dictionary. This paper
presents a novel approach base on spatial random parti-
tion and fast word-free image matching. Represented as a
set of continuous visual primitives, each image is randomly
partitioned many times to form a pool of subimages. Each
subimage is queried and matched against the pool, and then
common patterns can be localized by aggregating the set of
matched subimages. The asymptotic property and the com-
plexity of the proposed method are given in this paper, along
with many real experiments. Both theoretical studies and
experiment results show its advantages.

1. Introduction
It is of great interest to automatically discover common

visual patterns (if any) in a set of unlabeled images. Re-
cent research has suggested its applicability in many po-
tential applications, such as content-based retrieval [8], im-
age categorization [5], object discovery [10, 6, 13], recog-
nition [11] and segmentation [3, 10, 9, 15, 14], image irreg-
ularity detection [1] and similarity measure [2].

Because no prior knowledge on the common patterns is
provided, this task is very challenging, even for our human
eyes. Let’s look at the example in Fig. 1. This is much
more difficult than pattern detection and retrieval, because
the set of candidates for possible common patterns is enor-
mous. Validating a single candidate (which is equivalent
to pattern detection) has been computationally demanding,
and thus evaluating all these candidates will inevitably be
prohibiting, if not impossible.

This difficulty may be alleviated by developing robust
partial image matching methods [1, 5, 13], but this is not a

Figure 1. Can you find those common posters (patterns in this case)
in the two images? There are three of them (see Sec. 4). It is not
an easy task, even for our human eyes.

trivial task. Another idea is to transform images into visual
documents so as to take advantage of text-based data min-
ing techniques [12, 10, 16]. These methods need to quan-
tize continuous primitive visual features into discrete labels
(i.e., “visual words”) through clustering. The matching of
two image regions can be efficiently performed by compar-
ing their visual-word histograms while ignoring their spatial
configurations. Although these methods are efficient, their
performances are largely influenced by the quality of the vi-
sual word dictionary. It is not uncommon that the dictionary
includes visual synonyms and polysemys that may signifi-
cantly degrade the matching accuracy. In addition, since a
large number of images is generally required to determine
the dictionary, these methods may not be suitable if pattern
discovery needs to be performed on a small number of im-
ages.

This paper presents a novel approach to efficient pattern
discovery based on spatial random partition. Each image is
represented as a set of continuous visual primitives, and is
randomly partitioned into subimages for a number of times.
This leads to a pool of subimages for the set of images
given. Each subimage is queried and matched against the
subimage pool. As each image is partitioned many times,
a common pattern is likely to be present in a good number
of subimages across different images. The more matches
a subimage query can find in the pool, the more likely it
contains a common pattern. And then the pattern can be
localized by aggregating these matched subimages. In ad-
dition, the proposed method for matching image regions

1

is word-free as it is performed directly on the continuous
visual primitives. An approximate solution is proposed to
efficiently match two subimages by checking if they share
enough similar visual primitives. Such an approximation
provides an upper bound estimation of the optimal match-
ing score.

This new method offers several advantages. (1) It does
not depend on good image segmentation results. Accord-
ing to its asymptotic property, the patterns can be recov-
ered regardless of its scale, shape and location. (2) It can
automatically discover multiple common patterns without
knowing the total number a priori, and is robust to rota-
tion, scale changes and partial occlusion. The robustness of
the method only depends on the matching of visual primi-
tives. (3) It is word-free but still computationally efficient,
because of the use of the locality sensitive hash (LSH) tech-
nique.

2. Proposed Approach
2.1. Algorithm overview

Given a number of T unlabeled images, our objective
is to discover common spatial patterns that appear in these
images. Such common patterns can be identical objects or
categories of objects. The basic idea of the proposed spatial
random partition method is illustrated in Fig. 2.

We extract a set of visual primitives VI = {v1, ..., vm}
to characterize each image I. Each visual primitive is de-
scribed by v = {x, y, �f}, where (x, y) is its spatial location
and �f ∈ �d is its visual feature vector. Collecting all these
visual primitives, we build the visual primitive database
Dv = VI1 ∪ VI2 ∪ ... ∪ VIT , whose size is denoted by
N = |Dv|, where T is the total number of images. To index
visual primitives, each v is associated with a unique integer
z (1 ≤ z ≤ N) for retrieving it from Dv . Our algorithm is
summarized in Alg. 1.

Algorithm 1: Spatial Random Partition for Pattern Dis-
covery

input : a collection of unlabeled images: DI = {Ii}
output: a set of subimage regions that correspond to

common spatial patterns

Hashing: ∀ image Ii ∈ DI , randomly partition it into1

G × H subimages for K times. This outputs the
subimage database DR (Sec. 2.2).
Matching: ∀ subimage Ri ∈ DR, query it in DR.2

This leads to a small set of popular subimages that have
enough matches in DR (Sec. 2.3).
Voting: ∀ Ii ∈ DI , vote the corresponding regions of3

the discovered popular subimages R ⊂ Ii and
accumulate all the votes to form a voting map (Sec. 2.4)
Localization: ∀ Ii ∈ DI , segment its voting map to4

localize the common patterns (Sec. 2.4)

k=1

k=2

k=3

t=1 t=2 t=3

Figure 2. Illustration of the basic idea of spatial random partition.
There are three images, each of which contains the same common
pattern P , which is represented by the orange rectangle. Each
column corresponds to a same image (t = 1, 2, 3). Note this com-
mon pattern exhibits variations like rotation (the second image)
and scale changes (the third image). We perform a G × H (e.g.
3 × 3) partitions for each image for K (e.g. 3) times. Each of
the first three rows shows a random partition (k = 1, 2, 3). The
highlight region of each image indicates a good subimage (7 in
total out of 81 candidates) that contains the common pattern. All
of these good subimages are also popular ones as they can find
enough matches (or supports) in the pool. The bottom row is a
simple localization of the pattern, which is the intersection of the
popular subimages in the corresponding image.

2.2. Spatial random partition
For each image I ∈ DI , we randomly partition it

into G × H non-overlapping subimages {Ri} and perform
such partition K times independently. We end up with
in total M = G × H × K × T subimages and form
a subimage database DR = {Ri}M

i=1. Each generated
subimage is characterized by a “bag of visual primitives”:
R = (VR, CR), where VR ⊂ VI denotes the set of vi-
sual primitives contained in R and CR is the bounding
box of R. Under a certain partition k ∈ {1, 2, ..., K},
the G × H subimages are non-overlapping, and we have
VI = VR1 ∪ VR2 ∪ ... ∪ VRG×H . However, subimages
generated from different partitions possibly overlap.

Under each partition, we are concerned on whether there
exists a good subimage that contains the common pattern
P . This depends on if pattern P is broken under this parti-
tion. Without losing generality, we assume that the pattern
P appears at most once in each image. Supposing the spa-

tial size of the image I is (Ix, Iy) and the bounding box of
the common pattern P is CP = (Px, Py), we calculate the
non-broken probability for P as the probability that none of
the (G − 1) + (H − 1) partition lines penetrates CP :

p = (1 − Px

Ix
)G−1(1 − Py

Iy
)H−1. (1)

Given a partition of an image, we can find at most one
good subimage with probability p, if the image contains no
more than one such pattern. For instance in Fig. 2, there are
in total 7 good subimages and 2 other ones are missed.

2.3. Matching and discovering popular subimages
The objective is to match subimages pair-wisely and

discover “popular” ones from the pool DR. Here a popular
subimage is the one that contains a common pattern P and
has enough matches in DR.

subimage matching
Unlike the “bag of words” method, we cannot match subim-
ages through “histogram of words” since our visual primi-
tives are not quantized into words. Instead, ∀ R,Q ∈ DR,
we measure the similarity by matching their visual primi-
tives VR and VQ directly. Matching can be formulated as
an assignment problem:

Sim(VR,VQ) = max
F

|VR|∑
i=1

s(vi,F(vi)), (2)

where F(·) is the assignment function F : VR → VQ,
i.e., for each vi ∈ VR, F assigns its matching uj =
F(vi) ∈ VQ. Each vi can match only one uj and verce
vice; s(vi,F(vi)) is the similarity measure between vi and
its assignment uj . Two subimages are matched if their sim-
ilarity Sim(VR,VQ) ≥ λ, where λ > 0 is the subimage
matching threshold. Generally, it is non-trivial and compu-
tationally demanding to solve this assignment problem.

In this paper, we present an approximate solution to this
problem with a linear complexity. Firstly, we perform a
pre-processing step on the visual primitive database Dv .
This is the overhead of our pattern discovery method. For
each v ∈ Dv , we perform the ε- Nearest Neighbors (ε-NN)
query and define the retrieved ε-NN set of v as its match-set

Mv = {u ∈ Dv :
∥∥∥�fv − �fu

∥∥∥ ≤ ε}. In order to reduce

the computational cost in finding Mv for each v, we apply
LSH [4] that performs efficient ε-NN queries.

After obtaining all the match-sets, ∀ v, u ∈ Dv, we de-
fine their similarity measure s(v, u) as:

s(v, u) =

{
exp−‖�fv−�fu‖2

α , if v ∈ Mu

0, otherwise
, (3)

where α > 0 is a parameter and Mu depends on the thresh-
old ε. s(v, u) is a symmetric measure as v ∈ Mu ⇔ u ∈
Mv. This visual primitive matching is illustrated in Fig. 3.

v u uv

u
a
b
e

v
a
c
f

Mv
Mu

S(v,u)>0

a
b
c
d

a
b
e
f

Mv M u

S(v,u)=0

Figure 3. Similarity measure of two visual primitives s(v, u),
where a,b,c,d,e,f denote visual primitives. We notice s(v, u) = 0
when v /∈ Mu and u /∈ Mv .

Now suppose that VR = {v1, v2, ..., vm} and VQ =
{u1, u2, ..., un} are two sets of visual primitives. We can
approximate the match between VR and VQ in Eq. 4, by
evaluating the size of the intersection between VR and the
match-set of VQ:

S̃im(VR,VQ)
�
= |VR ∩MVQ | (4)

≥ max
F

|VR|∑
i=1

s(vi,F(vi)) (5)

= Sim(VR,VQ), (6)

where S̃im(VR,VQ) is a positive integer; MVQ =
Mu1 ∪ Mu2 ... ∪ Mun denotes the match-set of VQ.
We apply the property that 0 ≤ s(v, u) ≤ 1 to prove
Eq. 5. As shown in Fig. 4, S̃im(VR,VQ) can be viewed
as the approximate flow between VR and VQ. Based
on the approximate similarity score, two subimages are
matched if S̃im(VR,VQ) ≥ λ. Since we always have
S̃im(VR,VQ) ≥ Sim(VR,VQ), the approximate simi-
larity score is a safe bounded estimation. The intersection
of two sets VR and MVQ can be performed in a linear time
O(|VR| + |MVQ |) = O(m + nc), where c is the average
size of the match-set for all v. Since m ≈ n, the complexity
is essentially O(mc).

Figure 4. Similarity matching of two subimages. Each point is a
visual primitive and edges show correspondences between visual
primitives. The flow between VR and VQ can be approximated
by the set intersection S̃im(VR,VQ).

Finding popular subimages
Based on the matching defined above, we are ready to find
popular subimages. Firstly, we denote GR ⊂ DR as the
set of good subimages which contain the common pattern
P : ∀ Rg ∈ GR, we have P ⊂ Rg . A good subimage
becomes a popular subimage if it has enough matches in the
pool DR. As we do not allow Rg to match subimages in the
same image as Rg , its popularity is defined as the number
of good subimages in the rest of (T − 1) × K partitions.
As each partition k can generate one good subimage with
probability p (Eq. 1), the total matches Rg can find is a
binomial random variable: YRg ∼ B(K(T − 1), p), where
p depends on the partition parameters and the shape of the
common pattern (Eq. 1). The more matches Rg can find
in DR, the more likely that Rg contains a common pattern
and more significant it is. On the other hand, unpopular R
may not contain any common spatial pattern as it cannot
find supports from other subimages.

Based on the expectation of matches that a good subim-
age can find, we apply the following truncated 3-σ criterion
to determine the threshold for the popularity:

τ = μ − 3σ = (T − 1)Kp− 3
√

(T − 1)Kp(1 − p), (7)

where μ = E(YRg) = (T − 1)Kp is the expectation of
YRg and σ2 = V ar(YRg) = (T −1)Kp(1−p) is the vari-
ance.For every subimage R ∈ DR, we query it in DR\It

to check its popularity, where It is the image that generates
R. If R can find at least �τ� matches, it is a popular one.

2.4. Voting and locating common patterns
After discovering all the popular subimages (denoted by

set SR ⊂ GR), they vote for the common patterns. For
each image, we select all popular subimages that are associ-
ated with this image. Aggregating these popular subimages
must produce overlapped regions where common patterns
are located. A densely overlapped region is thus the most
likely location for a potential common pattern P . Each pop-
ular subimage votes its corresponding pattern in a voting
map associated with this image.

Since we perform the spatial random partition K times
for each image, each pixel l ∈ I has up to K chances to
be voted, from its K corresponding subimages Rk

l (k =
1, ..., K) that contains l. The more votes a pixel receives,
the more probable that it is located inside a common pat-
tern. More formally, for the common pattern pixel i ∈ P ,
the probability it can receive a vote under a certain random
partition k ∈ {1, 2, ..., K} is:

Pr(xk
i = 1) = Pr(Rk

i ∈ SR)
= Pr(Rk

i ∈ GR)Pr(vote(Rk
i) ≥ �τ� |Rk

i ∈ GR)
= pq, (8)

where the superscript k indexes the partition and the sub-
script i indexes the pixel; Rk

i is the subimage that contains

i; p is the prior that i is located in a good subimage, i.e.
Pr(Rk

i ∈ GR), the non-broken probability of P under a
partition (Eq. 1); q is the likelihood that a good subimage
Rk

i is also a popular one, which depends on the number
of matches Rk

i can find. Specifically, under our popular
subimage discovery criterion in Eq. 7, q is a constant. Given
a pixel i, {xk

i , k = 1, 2, ..., K} is a set of independent and
identically distributed (i.i.d.) Bernoulli random variables.
Aggregating them together, the votes that i ∈ P can re-
ceive is a binomial random variable XK

i =
∑K

k=1 xk
i ∼

B(K, pq). Thus we can determine the common pattern re-
gions based on the number of votes they receive.

Under each partition k, P is voted by the popular subim-
age Rk

P ∈ SR. Since Rk
P contains P , it gives an estimation

of the location for P . However, a larger size of Rk
P im-

plies more uncertainty it has in locating P and thus its vote
should take less credit. We thus adjust the weight of the vote
based on the size of Rk

P . ∀ i ∈ P , we weight the votes:

XK
i =

K∑
k=1

wk
i xk

i , (9)

where wk
i > 0 is the weight of the kth vote. Among the

many possible choices, in this paper we set wk
i = area(I)

area(Rk
i)

,

meaning the importance of the popular subimage Rk
i . The

larger the area(Rk
i), the smaller weight its vote counts.

Sec. 3.1 will discuss the criteria and principle in selecting a
suitable wk

i . Finally, we can roughly segment the common
patterns given the voting map, based on the expected num-
ber of votes a common pattern pixel should receive. This
rough segmentation can be easily refined by combining it
with many existing image segmentation schemes, such as
the level set based approach.

3. Properties of the Algorithm
3.1. Asymptotic property

The correctness of our spatial random partition and vot-
ing strategy is based on the following theorem that gives the
asymptotic property.

Theorem 1 Asymptotic property
We consider two pixels i, j ∈ I, where i ∈ P ⊂ I is lo-
cated inside one common pattern P while j /∈ P is located
outside any common patterns (e.g. in the background). Sup-
pose XK

i and XK
j are the votes for i and j respectively,

considering K times random partitions. Both XK
i and XK

j

are discrete random variables, and we have:

lim
K→∞

P (XK
i > XK

j) = 1. (10)

The above theorem states that when we have enough times
of partitions for each image, a common pattern region P
must receive more votes, so that it can be easily discovered

and located. The proof of Theorem 1 is given in the
Appendix. We briefly explain its idea below.

Explanation of Theorem 1
We consider two pixels i ∈ P and j /∈ P as stated in Theo-
rem 1. We are going to check the total number of votes that
i and j will receive after K times partitions of I.

i

j

R3

R1

R4

R2

P
i

j

R3

R1

R4

R2

P

Figure 5. Illustration of the EVR. The figures show two different
random partitions on the same image. The small orange rectangle
represents the common pattern P . We compare two pixels i ∈ P
and j /∈ P . The large blue region represents R′

j , the EVR of
j; while R′

i = P . In the left figure, R′
j is broken during the

partition while R′
i is not. Thus i get a vote because R4 (shadow

region) is a popular subimage and the whole region is voted; while
j does not receive the vote. In the right image, both R′

i and R′
j

are broken during the partition, so neither i and j is voted as no
popular subimage appears.

For each pixel l ∈ I, we define its Effective Vote Region
(EVR) as:

R′
l = argmin

R
area(R|P ⊆ R, l ∈ R), (11)

where R is a rectangle image region that contains both the
common pattern P and the pixel l. Fig. 5 illustrates the
concept of EVR. Based on the definition, both EVR R′

i and
R′

j contain P . For the “positive” pixel i ∈ P , we have:
R′

i = P . On the other hand, for the “negative” pixel j /∈ P ,
it corresponds to a larger EVR R′

j , and we have R′
i ⊂ R′

j .
Like pixel i, whether j /∈ P can get a vote depends on

whether its subimage Rk
j is a popular one. Suppose the

spatial size of the EVR R′
j is (Bx, By). Similar to Eq. 1,

the non-broken probability of R′
j is:

pj = (1 − Rx

Ix
)G−1(1 − Ry

Iy
)H−1. (12)

Following the same analysis in Eq. 8, xk
j is a Bernoulli

random variable:

Pr(xk
j) =

{
pjq, xk

j = 1,

1 − pjq, xk
j = 0,

(13)

where q is the likelihood of the good subimage being a pop-
ular one, which is a constant unrelated with pj (Eq. 7). Thus
whether a pixel j /∈ P can receive a vote depends on the size
of its EVR. When considering K times random partitions,

the total number of votes for pixel j /∈ P is also a binomial
random variable Xj =

∑K
k=1 xk

j ∼ B(K, pjq).
Since R′

i ⊂ R′
j , we have Bx > Px and By > Py . It

is easy to see pi > pj by comparing Eq. 1 and 12. When
we consider the unweighted voting (i.e. wk

i = wk
j = 1), i

is expected to receive more votes than j because E(XK
i) =

piqK > E(XK
j) = pjqK . In the case of the weighted

voting, we can estimate the expectation of XK
i as:

E(XK
i) =

K∑
k=1

E(wk
i xk

i) =
K∑

k=1

E(wk
i)E(xk

i) (14)

=
K∑

k=1

pqE(wk
i) = pqKE(wi), (15)

where we assume wk
i be independent to xk

i and E(wi) is
only related to the average size of the popular subimage.
Therefore to prove Theorem 1, we need to guarantee that
E(XK

i) = piqKE(wi) > pjqKE(wj) = E(XK
j). It fol-

lows that we need to select suitable weighting strategy such
that piE(wi) > pjE(wj). A possible choice is given in
Sec. 2.4.

It is worth mentioning that the expected number of votes
E(XK

i) = piqKE(wi) depends on the spatial partition
scheme G×H ×K , where pi depends on G and H (Eq. 1),
q depends on both p and K (Eq. 7), and wi depends on G
and H as well. Our method does not need the prior knowl-
edge of the pattern, but knowing the shape of the pattern
can help choose better G and H , which leads to faster con-
vergence (Theorem 1). A larger K results in more accurate
patterns but needs more computation. In general, G and H
are best selected to match the spatial shape of the hidden
common pattern P and the larger the K , the more accurate
our approximation is but more computation is required.

3.2. Computational complexity analysis
Let M = |DR| = G × H × K × T denote the size

of the subimage database DR. In general, M is much less
than N = |Dv|, the total number of visual primitives, when
selecting hashing parameters suitably. Because we need to
evaluate

(
M
2

)
pairs, the complexity for discovering popu-

lar subimages in DR is O(M2(mc)), where mc is the cost
for matching two sets of visual primitives m = |VR| and
n = |VQ| as analyzed before, where c is a constant. The
overhead of our approach is to find the Mv for each v ∈ Dv

(formation of DR is of a linear complexity O(N) and thus
ignored). By applying LSH, each query complexity can be
reduced from O(dN) to less than O(dN

1
a) where a > 1 is

the approximation factor [4] and d is the feature dimension.
As we have in total N such queries, the total overhead cost
is O(dN1+ 1

a).
We further compare the computational complexity of our

method to two existing methods [1] [12] in Table 1. The
overhead of [12] comes from clustering visual primitives

Method overhead matching discovering

[12] O(dNki) O(k) O(N2k)
[1] none O(Nd + mb) O(N(Nd + mb))
Ours O(dN1+ 1

a) O(mc) O(M2mc)

Table 1. Computational complexity comparision. The total cost is
the overhead part plus the discovering part.

into k types of words through the k-means algorithm, and
i is the number of iterations. We estimate the discover-
ing complexity of [1] by assuming that there are in total
O(N) number of queries for evaluation, each time apply-
ing the fast inference algorithm proposed in [1], where b is
the constant parameter. It is clear that our method is com-
putationally more efficient as M << N . In the example
shown in Fig. 1, we detect N = 3416 visual primitives
for two images. When performing a hashing scheme as
G × H × K = 4 × 3 × 30, we generate M = 360 × 2
subimages. The CPU cost of the overhead of performing
LSH is around 7.6 seconds (without parameter optimiza-
tion), and the CPU cost of pattern discovery is around 4.7
seconds where the average cost of each subimage matching
is less than 0.1 millisecond.

4. Experiments
We apply Scale Invariant Features (SIFT) [7] as the vi-

sual primitives although other local invariant features are
certainly possible. Each SIFT descriptor �fv is a 128-d vec-
tor which characterizes the local invariance of a visual prim-
itive v. We set ε = 200 in the LSH-based ε-NN query; the
subimage matching threshold is λ = 40. All the images
are of size 640 × 480 and each image can generate 1000 to
3000 visual primitives. Without specific indication, we ap-
ply the random partition scheme G×H ×K = 4× 3× 50,
where G×H is selected according to the aspect ratio of each
image. All the experiments are performed on a Pentium-4
3.19GHz machine with 1GB RAM. The algorithm is imple-
mented in C++.

4.1. Common pattern discovery
The results of the pattern discovery on the two images in

Fig. 1 are presented in Fig. 6. As each voting subimage is a
rectangle, the voting map is a union of weighted rectangles.
The brightness of the regions indicates the total votes each
pixel receives, i.e. the likelihood belonging to a common
pattern. At the moment, pattern boundary is not accurate
enough as a very naive fixed threshold E(Xk

i) (Eq. 15) is
applied. Depending on applications, accurate segmentation
may not matter much. But if required, the boundaries can
be further improved by incorporating other image segmen-
tation techniques.

To evaluate our algorithm, we use 8 image datasets,
where each dataset contains 1 to 3 different common pat-
terns and each common pattern has 2 to 4 instances within

Figure 6. The input is from Fig. 1. The 1st and the 2nd row show
the voting maps and the rough segmentations respectively. The
three common patterns are listed from the 3rd to the 5th row. Be-
sides variations like rotation and scale change, the second poster
suffers from partial occlusion in the left image. The hit ratio and
the background ratio are hr = 0.76 and br = 0.29 respectively.

the dataset. Each dataset contains 4 to 8 images where some
of them may not contain any common pattern. Around
half of the images have multiple common patterns. The in-
stances of each common pattern exhibit possible variations
like rotation, partial occlusion, scale and slightly viewpoint
changes and are located in clutter backgrounds. Given an
image dataset, we evaluate the performance by checking
how accurate the regions containing the common patterns
are recovered. Let R and GT be respectively the discov-
ered common pattern regions and the bounding boxes of
ground truth patterns. The performance is evaluated by
using two criteria: hit ratio hr = |GT∩R|

|GT | and the back-

ground ratio br = |R|−|R∩GT |
|R| . Table 2 presents the per-

formance. Since common patterns are of different shapes
and sizes, it is unfair to apply a unique non-broken proba-

Input Output (K=25) Output (K=50) Output (K=75)

Figure 7. The input is a set of four images (the 1st column). Each row corresponds to an image. The common pattern “no parking sign”
appears in the first three images. A comparison of applying the different partition times K is shown in the 2nd (K = 25), 4th (K = 50)
and 6th (K = 75) columns. The 3th, 5th and 7th columns are voting maps associated with the corresponding images.

bility p for all image dataset. For each image dataset, the
best result is reported by searching optimal p from 0.15
to 0.30. We describe each dataset as the common pat-
tern it contains: DatasetA ={Fedex}, DatasetB ={Stop
Sign}, DatasetC={No Parking Sign}, DatasetD={Tea
Box}, DatasetE={Tag}, DatasetF ={Book, Tea Box and
Tag}, DatasetG={Books}, DatasetH={Posters}.

Dataset A B C D E average

Hit Ratio 0.95 0.98 0.92 0.45 0.91 0.84
Bk Ratio 0.41 0.55 0.45 0.15 0.36 0.38

Dataset F∗ G∗ H∗ average
Hit Ratio 0.80 0.85 0.76 0.80
Bk Ratio 0.53 0.37 0.29 0.40

Table 2. Performance evaluation. The superscript ∗ denotes the
dataset containing multiple common patterns. See text for details.

Another example of pattern discovery in multiple images
is presented in Fig. 7. Three of the four input images con-
tain the common pattern: “no parking sign”, and the fourth
image does not. We compare results under various parti-
tion times K (K=25,50,75). One false alarm appears when
K = 25. This is caused by fake popular subimages. How-
ever when a larger K is selected, these fake popular subim-
ages can be rejected as the threshold for popularity increases
with K . In general, larger K produces more accurate local-
ization of the patterns, which supports Theorem 1.

4.2. Image irregularity detection
The spatial random partition method can also be applied

for single image irregularity detection. Firstly, we perform
the G × H × K spatial partitions on the input image to
generate a subimages database. Secondly, for each gener-

ated subimage, we match it with all others. In contrast to
common pattern discovery, we select the unpopular subim-
ages instead of the popular ones for irregularity detection.
The subimage matching is performed based on Eq. 4, but a
lower threshold is applied. Therefore common subimages
are more easily to be matched. If there exists an irregu-
lar pattern in the image, then a subimage containing this
irregular pattern is very likely to be an unpopular one as
it cannot match other subimages. After discovering all un-
popular subimages, they vote for the irregular pattern and
build the accumulated voting map similar to the discussion
in Sec. 2.4. The only difference lies in the weighting strat-
egy of voting. Now we weight the vote in proportion to the
size of the unpopular subimage, i.e. wk

i ∝ area(Rk
i), be-

cause a larger unpopular subimage is more likely to include
an irregular pattern. Fig. 8 shows an example of irregular-
ity detection. We perform K = 75 partitions to obtain a
good boundary. In order to avoid detecting the blank back-
ground, subimages that contain very few visual primitives
are ignored.

5. Conclusion
We present a novel method based on spatial random par-

tition for common pattern discovery and image irregularity
detection. Our method is robust to various pattern varia-
tions. Although no word dictionary is needed, our method
is still efficient because it employs LSH for fast ε-NN query
and uses the bounded approximation for subimage match-
ing. The asymptotic property of the proposed algorithm
provides a theoretical guarantee for its performance. Par-
tition times K trades-off between the accuracy of the lo-
calization and the speed. Although only SIFT features

Input Example of an Unpopular Subimage Voting Map (K=75) Irregularity Detection
Figure 8. Spatial random partition for image irregularity detection. An instance of the random partition and the unpopular subimage are
shown in the 2nd image. The subimage that contain green circles (denoting visual primitives) is the unpopular one. After segmenting the
voting map (the 3rd image), we obtain the final irregularity detection result (the 4th image).

are used in the experiments reported, our method is gen-
erally applicable in using many other types of visual prim-
itives (e.g. over-segment regions) and features (e.g. color
histograms). The only requirement is that two subimages
should be matched when they share a common pattern.

6. Appendix
We prove theorem 1 here. Given two pixels i and

j, let both {xk
i }K

k=1 and {xk
j }K

k=1 be sequences of i.i.d.
Bernoulli random variables indicating whether the corre-
sponding pixel can receive a vote at the partition k. As-
suming xk

i and xk
j are independent given i and j, we have:

XK
i − XK

j =
K∑

k=1

xk
i −

K∑
k=1

xk
j =

K∑
k=1

(xk
i − xk

j), (16)

where elements {(xk
i −xk

j)}K
k=1 are also i.i.d. random vari-

ables. It is easy to see that E(xk
i − xk

j) = pi − pj . Thus ac-
cording to the weak law of large numbers, we have ∀ ε > 0

lim
K→∞

Pr(|X
K
i − XK

j

K
− pi + pj | < ε) = 1. (17)

Now let ε = pi−pj

2 > 0, we have

lim
K→∞

Pr(
(XK

i − XK
j)

K
>

pi − pj

2
) = 1. (18)

Since pi − pj > 0, it follows

lim
K→∞

Pr(XK
i − XK

j > 0) = 1. (19)

Acknowledgment
This work was supported in part by National Science

Foundation Grants IIS-0347877 and IIS-0308222.

References

[1] O. Boiman and M. Irani. Detecting irregularities in images
and in video. In Proc. IEEE Intl. Conf. on Computer Vision,
2005. 1, 5, 6

[2] O. Boiman and M. Irani. Similarity by composition. In Proc.
of Neural Information Processing Systems, 2006. 1

[3] E. Borenstein and S. Ullman. Learning to segment. In Proc.
European Conf. on Computer Vision, 2004. 1

[4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distribution. In
Proc. of Twentitieth Annual Symposium on Computational
Geometry, 2004. 3, 5

[5] K. Grauman and T. Darrell. Unsupervised learning of cat-
egories from sets of partially matching image features. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2006. 1

[6] P. Hong and T. S. Huang. Spatial pattern discovery by learn-
ing a probabilistic parametric model from multiple attributed
relational graphs. Discrete Applied Mathematics, pages 113–
135, 2004. 1

[7] D. Lowe. Distinctive image features from scale-invariant
keypoints. Intl. Journal of Computer Vision, 2004. 6

[8] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2007. 1

[9] C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Coseg-
mentation of image pairs by histogram matching: incorpo-
rating a global constraint into mrfs. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, 2006. 1

[10] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and
A. Zisserman. Using multiple segmentation to discover ob-
jects and their extent in image collections. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2006. 1

[11] U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is
bottom-up attention useful for object recognition? In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition,
2004. 1

[12] J. Sivic and A. Zisserman. Video data mining using config-
urations of viewpoint invariant regions. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, 2004. 1, 5, 6

[13] K.-K. Tan and C.-W. Ngo. Common pattern discovery using
earth mover’s distance and local flow maximization. In Proc.
IEEE Intl. Conf. on Computer Vision, 2005. 1

[14] S. Todorovic and N. Ahuja. Extracting subimages of an un-
known category from a set of images. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, 2006. 1

[15] J. Winn and N.Jojic. Locus: Learning object classes with un-
supervised segmentation. In Proc. IEEE Intl. Conf. on Com-
puter Vision, 2005. 1

[16] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation pat-
terns: from visual words to visual phrases. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2007. 1

