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ABSTRACT
Data mining techniques that are successful in transaction
and text data may not be simply applied to image data that
contain high-dimensional features and have spatial struc-
tures. It is not a trivial task to discover meaningful visual
patterns in image databases, because the content variations
and spatial dependency in the visual data greatly challenge
most existing methods. This paper presents a novel ap-
proach to coping with these difficulties for mining meaning-
ful visual patterns. Specifically, the novelty of this work lies
in the following new contributions: (1) a principled solution
to the discovery of meaningful itemsets based on frequent
itemset mining; (2) a self-supervised clustering scheme of
the high-dimensional visual features by feeding back discov-
ered patterns to tune the similarity measure through met-
ric learning; and (3) a pattern summarization method that
deals with the measurement noises brought by the image
data. The experimental results in the real images show that
our method can discover semantically meaningful patterns
efficiently and effectively.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining, Image databases; I.5.3 [Pattern Recogni-
tion]: Clustering—Algorithms

General Terms
Algorithms

Keywords
image data mining, meaningful itemset mining, pattern sum-
marization, self-supervised clustering

1. INTRODUCTION AND RELATED WORK
Meaningful patterns can be those that appear frequently,

thus an important task for data mining and pattern dis-
covery is to identify repetitive patterns. Frequent itemset
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mining (FIM) and its extensions [9] [21] [7] have been ex-
tensively studied. However, a highly repetitive pattern may
not be informative or semantically meaningful. Therefore
a more important task is to extract informative and po-
tentially interesting patterns (e.g. semantically meaningful
patterns) in possibly noisy data. This can be done by min-
ing meaningful patterns either through post-processing the
FIM results or proposing new data mining criteria, including
mining compressed patterns [3] [19] [23], approximate pat-
terns [29] [1] [14] and pattern summarization [28] [26] [27].
These data mining techniques may discover meaningful fre-
quent itemsets and represent them in a compact way.

Such research in structured data (e.g., transaction data)
and semi-structured data (e.g., text) has aroused our curios-
ity in finding meaningful patterns in non-structured multi-
media data like images and videos [20] [24] [31] [10]. For ex-
ample, once we can extract some invariant visual primitives
such as interest points [15] or salient regions [17] from the
images, we can represent each image as a collection of such
visual primitives characterized by high-dimensional feature
vectors. By further quantizing those visual primitives to dis-
crete “visual items” through clustering the high-dimensional
features [24] [30], each image is represented by a set of trans-
action records, with each transaction corresponds to a local
image patch and describes its composition of visual primi-
tive classes (items). After that, data mining techniques like
FIM can be applied to such a transaction database induced
from images for discovering meaningful visual patterns.

Although this idea appears to be quite exciting, the leap
from transaction data to images is not trivial, because of
two fundamental differences between them. Above all, un-
like transaction and text data that are composed of discrete
elements without ambiguity (i.e. predefined items and vo-
cabularies), visual patterns generally exhibit large variabili-
ties in their visual appearances. A same visual pattern may
look very different under different views, scales, lighting con-
ditions, not to mention partial occlusion. It is very difficult,
if not possible, to obtain invariant visual features that are
insensitive to these variations such that they can uniquely
characterize visual primitives. Therefore although a discrete
item codebook can be forcefully obtained by clustering high-
dimensional visual features (e.g., by vector quantization [18]
or k-means clustering [24]), such “visual items” tend to be
much more ambiguous than the case of transaction and text
data. Such imperfect clustering of visual items brings large
challenges when directly applying traditional data mining
methods into image data.
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In addition to the continuous high-dimensional features,
visual patterns have more complex structure than transac-
tion and text pattern. The difficulty of representing and dis-
covering spatial patterns in images prevents straightforward
generalization of traditional frequent pattern mining meth-
ods that are applicable for transaction data. For example,
unlike traditional transaction database where records are in-
dependent of each other, the induced transactions generated
by image patches can be correlated due to spatial depen-
dency. Although there exist methods [12] [32] [11] for spa-
tial collocation pattern discovery from geo-spatial data, they
cannot be directly applied to image data which are charac-
terized by high-dimensional features. Moreover, the spatial
co-occurrences of the items do not necessarily indicate the
real associations among them, because a frequent spatial
collocation pattern can be generated by the self-repetitive
texture in the image and thus is not semantically meaning-
ful. Thus, finding frequent patterns based on FIM may not
always output meaningful and informative patterns in the
image data.

Given a collection of unlabeled images, the objective of
image data mining is to discover (if there is any) seman-
tically meaningful spatial patterns that appear repetitively
among the images. For example, given a set of images each
of which contains an identical object (e.g. a book or a logo)
but with possibly different locations, scales and views, the
task is to efficiently discover and locate them in the im-
ages. This is a challenging problem because we have no
prior knowledge of the object’s size, location and pose, or
whether such object exists at all. Some existing methods
based on graph matching are computational demanding and
the solution is prone to local minimum [25] [10]. Thus more
efficient and robust algorithm is desirable. In this paper,
we aim at an even more challenging problem: given a cat-
egory of images, for example each image contains a frontal
face but from different persons, we expect to discover some
meaningful patterns like eyes and noses that have semantic
meanings and can well interpret the face category. To this
end, the following three issues need to be further addressed.

• Spatial dependency of visual primitives. To dis-
cover frequent patterns in image data using FIM, we
can induce a transaction database where each transac-
tion consists of a set of visual items charactering a lo-
cal image region. However, these induced transactions
are not independent as the local patches have spatial
overlaps in images. This phenomenon complicates the
data mining process for spatial data, because simply
counting the occurrence frequencies is doubtable and
a frequent pattern is not necessarily a meaningful pat-
tern. Thus special care needs to be taken;

• Ambiguities in visual items. The unsupervised
clustering of visual primitives is not perfect. A same
visual item may convey different semantic meanings.
Taking a circle-like visual primitive for example, it can
represent a human eye or a car wheel under different
context. Thus it brings ambiguities when discovering
meaningful patterns. The polysemy word phenomena
in text data also appears in images.

• Incomplete patterns. There are two kinds of imper-
fections when translating the image data into transac-
tion data. First of all, the visual primitives can be
miss detected in the feature extraction process, due to

occlusion of the visual primitive, bad lighting condi-
tion or the unreliable detector. Secondly, even a visual
primitive is extracted, it can be wrongly labeled into a
visual item because of quantization error. These two
types of errors will be reflected in the induced trans-
action database. Performing FIM in the noisy trans-
action database brings a big obstacle for recovering
semantic patterns. For example, a semantically mean-
ingful pattern may be split into a lot of incomplete
sub-patterns.

This paper presents a novel approach to discovering se-
mantically meaningful visual patterns from images. By ad-
dressing the above three difficulties, our contributions are
three-fold:

• new criteria for meaningful itemset discovery. The co-
occurrence frequency is no longer a sufficient condition
for the meaningful collocation patterns in images. A
more plausible meaningful itemset mining based
on likelihood ratio test and traditional FIM is proposed
to evaluate the significance of a visual itemset;

• self-supervised refinement of visual items. To reduce
the ambiguities in visual items, a top-down refinement
is proposed by taking advantage of the discovered vi-
sual patterns. They serve as self-supervision to tune
the metric in the high-dimensional feature space of vi-
sual primitives for better visual item clustering.

• pattern summarization. To handle the possible imper-
fections from the image data, a pattern summarization
method using normalized cut is proposed to further
cluster these incomplete and synonymous meaningful
itemsets into semantically-coherent patterns;

2. OVERVIEW
2.1 Notations and basic concepts

Each image in the database is described as a set of vi-

sual primitives: I = {vi =
�
~fi, xi, yi�}, where ~fi denotes

the high-dimensional feature and {xi, yi} denotes the spa-
tial location of vi in the image. For each visual primi-
tive vi ∈ I, its local spatial neighbors form a group Gi =
{vi, vi1 , vi2 , · · · , viK

}. For example, Gi can be the spatial
K-nearest neighbors (K-NN) or ε-nearest neighbors of vi (ε-
NN) under Euclidean distance. The image database DI =
{It}

T
t=1 can generate a collection of such groups, where each

group Gi is associated to a visual primitive vi. By further

quantizing all the high-dimensional features ~fi ∈ DI into
M classes through k-means clustering, a codebook Ω can
be obtained. We call every prototype Wk in the codebook
Ω = {W1, ..., WM} a visual item. Because each visual prim-
itive is uniquely assigned to one of the visual items Wi, the
group Gi can be transfered into a transaction Ti. More for-
mally, given the group dataset G = {Gi}

N
i=1 generated from

DI and the visual item codebook Ω (|Ω| = M), the induced
transaction database T is defined as follows.

Definition 1. Induced Transaction Database
The induced transaction database T = {Ti}

N
i=1 contains a

collection of N transactions with M visual items. A sparse
binary matrix XN×M can represent T, where xij = 1 de-
notes the ith transaction contains the jth visual item in the
codebook and xij = 0 otherwise.
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Figure 1: Overview for meaningful visual pattern discovery.

Such an induced transaction database is essentially based
on the centric reference feature model for mining association
rules [32], although collocation pattern models like [12] are
also feasible in our approach. Given the visual item code-
book Ω, a set P ⊂ Ω is called a visual itemset (itemset
for short). For a given itemset P, the transaction Ti which
includes P is called an occurrence of P, i.e. Ti is an occur-
rence of P, if P ⊆ Ti. Let T(P) denote the set of all the
occurrences of P in T, and the frequency of P is denoted as:

frq (P) = |T(P)| = |{i : ∀j ∈ P, xij = 1}|. (1)

For a given threshold θ, called a minimum support, item-
set P is frequent if frq(P) > θ. If an itemset P appears
frequently, then all of its sub-sets P ′ ⊂ P will also appear
frequently, i.e. frq(P) > θ ⇒ frq(P ′) > θ. To eliminate
this redundancy, we tend to discover closed frequent item-
sets [8]. The number of closed frequent itemsets can be much
less than the frequent itemsets, and they compress informa-
tion of frequent itemsets in a lossless form, i.e. the full list
of frequent itemsets F = {Pi} and their corresponding fre-
quency counts can be exactly recovered from the compressed
representation of closed frequent itemsets. Thus this guar-
antees that no meaningful itemsets will be left out through
FIM. The closed frequent itemset is defined as follows.

Definition 2. closed frequent itemset
If for an itemset P, there is no other itemset Q ⊇ P that can
satisfy T(P) = T(Q), we say P is closed. For any itemset
P and Q, T(P ∪ Q) = T(P) ∩ T(Q), and if P ⊆ Q then
T(Q) ⊆ T(P).

In this paper we apply the modified FP-growth algorithm
[6] to implement the closed FIM. As FP-tree has a prefix-tree
structure and can store compressed information of frequent
itemset, it can quickly discover all the closed frequent sets
from transaction dataset T.

2.2 Overview of our method
We present the overview of our visual pattern discovery

method in Fig. 1. In Sec. 3, we present our new criteria
for discovering meaningful itemsets Ψ = {Pi}, where each
Pi ⊂ Ω is a meaningful itemset. Further in Sec. 4, a top-
down self-supervised clustering method is proposed by feed-
ing back the discovered meaningful itemsets Ψ to supervise
the clustering process. A better visual item codebook Ω
is then obtained by applying the trained similarity metric
for better representing visual primitives. Finally, in Sec. 5,
in order to handle the incomplete sub-pattern problem, we
propose a pattern summarization method to further cluster
those meaningful itemsets (incomplete sub-patterns) and re-
cover the integral semantically meaningful pattern Hj .

3. DISCOVERING MEANINGFUL VISUAL
ITEMSETS

3.1 Visual Primitive Extraction
We apply the PCA-SIFT points [13] as the visual prim-

itives. Such visual primitives are mostly located in the in-
formative image regions such as corners and edges, and the
features are invariant under rotations, scale changes, and
slight viewpoint changes. Normally each image may contain
hundreds to thousands of such visual primitives based on
the size of the image. According to [13], each visual prim-
itive is a 41 × 41 gradient image patch at the given scale,
and rotated to align its dominant orientation to a canonical
direction. Principal component analysis (PCA) is applied
to reduce the dimensionality of the feature. Finally each vi-
sual primitive is described as a 35-dimensional feature vector
~fi. These visual primitives are clustered into visual items
through k-means clustering, using Euclidean metric in the
feature space. We will discuss how to obtain a better visual
item codebook Ω based on the proposed self-supervised met-
ric learning scheme in Sec. 4.

3.2 Meaningful Itemset Mining
Given an image dataset DI and its induced transaction

database T, the task is to discover the meaningful itemset
(MI) P ⊂ Ω (|P| ≥ 2). To evaluate the significance of an
itemset P ⊆ Ω, simply checking its frequency frq(P) in T is
far from sufficient. For example, even if an itemset appears
frequently, it is not clear whether such co-occurrences among
the items are statistically significant or just by chance. In
order to evaluate the statistical significance of a frequent
itemset P, we propose a new likelihood ratio test criterion.
We compare the likelihood that P is generated by the mean-
ingful pattern versus the likelihood that P is randomly gen-
erated, i.e. by chance.

More formally, we compute the likelihood ratio for an
itemset P ⊆ Ω based on the two hypotheses, where

H0: occurrences of P are randomly generated;
H1: occurrences of P are generated by the hidden pattern.

Given a transaction database T, the likelihood ratio L(P)

of an itemset P = {Wi}
|P|
i=1 can be calculated as:

L(P) =
P (P|H1)

P (P|H0)
= �N

i=1 P (P|Ti, H1)P (Ti|H1)� |P|
i=1 P (Wi|H0)

(2)

where P (Ti|H1) = 1
N

is the prior, and P (P|Ti, H1) is the
likelihood that P is generated by a hidden pattern and is ob-
served at a particular transaction Ti, such that P (P|Ti, H1) =
1, if P ⊆ Ti; and P (P|Ti, H1) = 0, otherwise. Consequently,
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based on Eq. 1, we can calculate P (P|H1) = frq(P)
N

. We also
assume that the items Wi ∈ P are conditionally independent
under the null hypothesis H0, and P (Wi|H0) is the prior of
item Wi ∈ Ω, i.e. the total number of visual primitives that
are labeled with Wi in the image database DI . We thus
refer L(P) as the “significance” score to evaluate the devi-
ation of a visual itemset P. In fact if P = {WA, WB} is a
second-order itemset, then L(P) is the mutual information
criterion, e.g., the lift criterion, to test the dependency.

It is worth noting that L(P) may favor high-order itemsets
even though they appear less frequently. Table 1 gives an
example, where 90 transactions have only items A and B; 30
transactions have A,B and C; 61 transactions have D and
E; and 19 transactions have C and E.

Table 1: Transaction database T1.
transaction number L(P)

AB 90 1.67
ABC 30 1.70
DE 61 2.5
CE 19 0.97

From Table 1, It is easy to evaluate the significant scores
for P1 = {A, B} and P2 = {A, B, C} with L(P1) = 1.67 and
L(P2) = 1.70 > L(P1). This result indicates that P2 is a
more significant pattern than P1 but counter-intuitive. This
observation challenges our intuition because P2 is not a co-
hesive pattern. For example, the other two sub-patterns of
P2, P3 = {A, C} and P4 = {B, C}, contain almost indepen-
dent items: L(P3) = L(P4) = 1.02. Actually, P2 should be
treated as a variation of P1 as C is more likely to be a noise.
The following equation explains what causes the incorrect
result. We calculate the significant score of P2 as:

L(P2) =
P (A, B, C)

P (A)P (B)P (C)
= L(P1)×

P (C|A, B)

P (C)
. (3)

Therefore when there is a small disturbance with the dis-
tribution of C over T1 such that P (C|A, B) > P (C), P2

will compete P1 even though P2 is not a cohesive pattern
(e.g. C is not related with either A or B). To avoid those
free-riders such as C for P1, we perform a more strict test
on the itemset. For a high-order itemset P (|P| > 2), we
perform the Student t-test for each pair of its items to check
if items Wi and Wj (Wi, Wj ∈ P) are really dependent (see
Appendix 8 for details.) A high-order itemset Pi is mean-
ingful only if all of its pairwise subsets can pass the test
individually: ∀i, j ∈ P, t({Wi, Wj}) > τ , where τ is the
confidence threshold for the t-test. This further reduces the
redundancy among the discovered itemsets.

Finally, to assure that a visual itemset P is meaningful,
we also require it to appear relatively frequent in the data-
base, i.e. frq(P) > θ, such that we can eliminate those
itemsets that appear rarely but happen to exhibit strong
spatial dependency among items. With these three criteria,
a meaningful visual itemset is defined as follows.

Definition 3. Meaningful Itemset (MI)
An itemset P ⊆ Ω is (θ, τ, γ)-meaningful if it is:

1. frequent: frq(P) > θ;

2. pair-wisely cohesive: t({Wi, Wj}) > τ, ∀i, j ∈ P;

3. significant: L(P) > γ.

3.3 Spatial Dependency
Suppose primitives vi and vj are spatial neighbors, their

induced transaction Ti and Tj will have large spatial over-
lap. Due to such spatial dependency among the transac-
tions, it can cause over-counting problem if simply calculat-
ing frq(P) from Eq. 1. Fig. 2 illustrates this phenomena
where frq(P) contains duplicate counts.

T
1

T
2

CE

D

ID

T1

T2

A B C E
A B D F

Frq({A,B}) = 2

T3 ...
B

F

Z

K
C

F

G

D

L

AA

Transaction

Database

Image Composed of Visual Items

Figure 2: Illustration of the frequency over-counting

caused by the spatial overlap of transactions. The item-

set {A, B} is counted twice by T1 = {A, B, C, E} and

T2 = {A, B, D, F}, although it has only one instance in the

image. Namely there is only one pair of A and B that co-

occurs together, such that d(A, B) < 2ε with ε the radius

of T1. In the texture region where visual primitives are

densely sampled, such over-count will largely exaggerate

the number of repetitions for a texture pattern.

In order to address the transaction dependency problem,
we apply a two-phase mining scheme. First, without consid-
ering the spatial overlaps, we perform closed FIM to obtain
a candidate set of meaningful itemsets. For these candi-
dates F = {Pi : frq(Pi) > θ}, we re-count the number of
their real instances exhaustively through the original image
database DI , not allowing duplicate counts. This needs one
more scan of the whole database. Without causing confu-
sion, we denote ˆfrq(P) as the real instance number of P
and use it to update frq(P). Accordingly, we adjust the

calculation of P (P|H1) =
ˆfrq(P)

N̂
, where N̂ = N/K denotes

the approximated independent transaction number with K
the average size of transactions. In practice, as N̂ is hard
to estimate, we rank Pi according to their significant value
L(P) and perform the top-K pattern mining.

Integrating all the contents in this section, our meaningful
itemsets mining (MIM) algorithm is outlined in Algorithm 1.

Algorithm 1: Meaningful Itemset Mining (MIM)

input : Transaction dataset T, MI parameters: (θ, τ, γ)
output: a collection of meaningful itemsets: Ψ = {Pi}

Init: closed FIM with frq(Pi) > θ: F = {Pi}, Ψ←− ∅;1

foreach Pi ∈ F do GetRealInstanceNumber(Pi)2

for Pi ∈ F do3

if L(Pi) > γ ∧ PassPairwiseTtest (Pi) then4

Ψ←− Ψ ∪ Pi5

Return Ψ6

4. SELF-SUPERVISED CLUSTERING OF
VISUAL ITEM CODEBOOK

Toward discovering meaningful visual patterns in images,
it is critical to obtain optimal visual item codebook Ω. A
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bad clustering of visual primitives brings large quantization
errors when translating the continuous high-dimensional vi-

sual features ~f ∈ Rd into discrete labels Wi ∈ Ω. Such
quantization error reflected in the induced transaction data-
base can affect the data mining results significantly, and thus
needs to be minimized.

To improve the clustering results, one possible method is
to provide some supervisions, e.g. partially label some in-
stances or give some constrains for pairs of instances belong-
ing to the same or different clusters. Such a semi-supervised
clustering method has demonstrated its ability in greatly
improving the clustering results [2]. However, in our un-
supervised clustering setting, there does not exist apparent
supervisions. Thus an interesting question is: is it possible
to obtain some supervisions from the completely unlabeled vi-
sual primitives ? Although it is amazing to see the answer is
yes, we can explain the reason based on the hidden structure
of the image data. It is worth noting that those visual prim-
itives are not independently distributed in the images and
appearing in the transactions. There are hidden patterns
that bring structures in the visual primitive distributions.
And such structures can be observed and recovered from the
transaction database. For example, if we observe that item
Wi always appears together with item Wj in a local region,
we can infer that they should be generated from a hidden
pattern rather than randomly generated. Each pair of Wi

and Wj is thus an instance of the hidden pattern. When
such hidden patterns (structures) of the data are discovered
through our meaningful itemsets mining, we can apply them
as supervision to further improve the clustering results.

By discovering a set of MIs Ψ = {Pi}, we firstly define
the meaningful item codebook as follows:

Definition 4. Meaningful Item Codebook Ω+

Given a set of meaningful itemsets Ψ = {Pi}, an item
Wi ∈ Ω is meaningful if it belongs to any P ∈ Ψ: ∃P ∈ Ψ,
such that Wi ⊂ P. All of the meaningful items form the

meaningful item codebook Ω+ = � |Ψ|
i=1 Pi.

Based on the concept of meaningful item codebook, the
original Ω can be partitioned into two disjoined subsets:
Ω = Ω+ ∪ Ω−, where Ω− = Ω\Ω+. For any Pi ∈ Ψ, we
have Pi ⊆ Ω+ and Pi * Ω−. Since only Ω+ can compose

MI, Ω+ is the meaningful item codebook. Correspondingly
we denote Ω− as the meaningless item codebook, because an
item Wi ∈ Ω− never appears in any Pi ∈ Ψ. In such a case,
Wi ∈ Ω− should be a noisy or redundant item that is not
of interests, for example, located in the clutter background
of the image.

For each class Wi ∈ Ω+, its positive training set D+
Wi

con-
tains the visual primitives vi ∈ DI that satisfy the following
two conditions simultaneously:

1. Q(vi) = Wi, where Q(·) is the quantization function
from the continuous high-dimensional feature to the
discrete item.

2. vi ∈ T(P1) ∪ T(P2) ∪ ... ∪ T(Pc), where Pj is the
meaningful itemset that contains Wi, namely ∀j =
1, ..., c, Wi ⊂ Pj .

In summary, not all vi labeled with Wi are qualified as pos-
itive training samples for item class Wi ∈ Ω+. We only
choose those visual primitives that can constitute meaning-
ful itemsets. Such visual primitives are very likely generated
from the hidden pattern H that explains the MI.

With these self-labeled training data for each meaningful
item Wi ∈ Ω+, we transfer the originally unsupervised clus-
tering problem into semi-supervised clustering. Still, our
task is to cluster all the visual primitives vi ∈ DI . But now
some of the visual primitives are already labeled after MIM.
Thus many semi-supervised clustering methods are feasible
to our task. Here we apply the nearest component analysis
(NCA) [5] to improve the clustering results by learning a
better Mahalanobis distance metric in the feature space.

Neighborhood Component Analysis (NCA)
Similar to linear discriminative analysis (LDA), NCA tar-
gets at learning a global linear projection matrix A for the
original features. However, unlike LDA, NCA does not need
to assume that each visual item class has a Gaussian distrib-
ution and thus can be applied to more general cases. Given
two visual primitives vi and vj , NCA learns a new metric A
and the distance in the transformed space is: dA(vi, vj) =

(~fi − ~fj)
T AT A(~fi − ~fj) = (A~fi −A~fj)

T (A~fi −A~fj).
The objective of NCA is to maximize a stochastic variant

of the leave-one-out K-NN score on the training set. In the
transformed space, a point vi selects another point vj as its
neighbor with probability:

pij =
exp(−‖A~fi −A~fj‖

2)

� k 6=i exp(−‖A~fi −A~fk‖2)
, pii = 0. (4)

Under the above stochastic selection rule of nearest neigh-
bors, NCA tries to maximize the expected number of points
correctly classified under the nearest neighbor classifier (the
average leave-one-out performance):

f(A) = �
i

�
j∈Ci

pij , (5)

where Ci = {j|ci = cj} denotes the set of points in the same
class as i. By differentiating f , the objective function can
be maximized through gradient search for optimal A. After
obtaining the projection matrix A, we update all the visual

features of vi ∈ DI from ~fi to A~fi, and re-cluster the visual

primitives based on their new features A~fi.

5. PATTERN SUMMARIZATION OF
MEANINGFUL ITEMSETS

As discussed before, there are imperfections when trans-
lating the image data into transactions. Suppose there exists
a hidden visual pattern Hj (e.g. a semantic pattern “eye” in
the face category) that repetitively generates a number of in-
stances (eyes of different persons) in the image database. We
can certainly observe such meaningful repetitive patterns
in the image database, for example, discovering meaningful
itemsets Pi based on Def. 3. However, instead of observing
a unique integral pattern Hj , we tend to observe many in-
complete sub-patterns with compositional variations due to
noise, i.e. many synonyms itemsets Pi that correspond to
the sameHj (see Fig. 3). Again, this can be caused by many
reasons, including the missing detection of visual primitives,
quantization error of visual primitives, and partial occlusion
of the hidden pattern itself. Therefore, we need to cluster
those correlated MIs (incomplete sub-patterns) in order to
recover the complete pattern H.

According to [28], if two itemsets Pi and Pj are correlated,
then their transaction set T(Pi) and T(Pj) (Eq. 1) should
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P1={A,B}

P3 = {A,C,D}

P2 = {A,B,C}

Recovery
H= {A,B,C}

Pattern

Summarization

H= {A,B,C}
Hidden Visual  Pattern

Noisy

Observation

Figure 3: Motivation for pattern summarization. An in-

tegral hidden pattern may generate incomplete and noisy

instances. The pattern summarization is to recover the

unique integral pattern through the observed noisy in-

stances.

also have a large overlap, implying that they may be gener-
ated from the same pattern H. As a result, ∀i, j ∈ Ψ, their
similarity s(i, j) should depend not only on their frequencies
ˆfrq(Pi) and ˆfrq(Pj), but also the correlation between their

transaction set T(Pi) and T(Pj). Given two itemsets, there
are many methods to measure their similarity including KL-
divergence between pattern profiles [28], mutual information
criterion and Jaccard distance [16]. We apply the Jaccard
distance here although others are certainly applicable. The
corresponding similarity between two MI Pi and Pj is de-
fined as:

s(i, j) = exp

1

1−
|T(Pi)∩T(Pj)|

|T(Pi)∪T(Pj)| . (6)

Based on this, our pattern summarization problem can be
stated as follows: given a collection of meaningful itemsets
Ψ = {Pi}, we want to cluster them into unjoined K-clusters.

Each cluster Hj = {Pi}
|Hj |

i=1 is defined as a meaningful vi-
sual pattern, where ∪jHj = Ψ and Hi∩Hj = ∅, ∀i, j. The
observed MI Pi ∈ H are instances of the visual pattern H,
with possible variations due to imperfections from the im-
ages. We propose to apply the normalized cut algorithm [22]
for clustering MI. Normalized cut is a well-known algorithm
in machine learning and computer vision community. Orig-
inally it is applied for clustering-based image segmentation.

Normalized Cut (NCut)
Let G = {V,E} denote a fully connected graph, where each
vertex Pi ∈ V is an MI, and the weight s(i, j) on each edge
represents similarity between two MIs Pi and Pj . Normal-
ized cut can partition the graph G into clusters. In the
case of bipartition, V is partitioned into two disjoined sets
A∪B = V. The following cut value needs to be minimized
to get the optimal partition:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
, (7)

where cut(A,B) = � i∈A,j∈B
s(i, j) is the cut value and

assoc(A,V) = � i∈A,j∈V
s(i, j) is the total connection from

the vertex set A to all vertices in G. To minimize the Ncut
in Eq. 7, we need to solve the following standard eigenvector
problem:

D− 1
2 (D− S)D− 1

2 z = λz, (8)

where D is a diagonal matrix with � j s(i, j) on its diagonal

and otherwise are 0; S is a symmetric matrix with s(i, j)

its element. The eigenvector corresponding to the second
smallest eigenvalue can be used to partition V into A and B.
In the case of multiple K-class partitioning, the bipartition
can be utilized recursively or just apply the eigenvectors
corresponding to the K + 1 smallest eigenvalues.

We summarize our visual pattern discovery algorithm as
follows.

Algorithm 2: Main Algorithm

input : Image dataset DI ,
ε or K for searching spatial ε-NN or K-NN,
MIM parameter: (θ, τ, γ),
number of meaningful patterns: |H|,
number of maximum iteration l

output: A set of meaningful patterns: H = {Hi}

Init: Get visual item codebook Ω0 and induced1

transaction DB T0
Ω; i←− 0;

while i < l do2

Ψi = MIM(Ti
Ω); /*get meaningful itemsets */3

Ωi
+ = ∪jPj , where Pj ∈ Ψi;4

Ai = NCA (Ωi
+ ,Ti

Ω); /*get new metric */5

Update Ωi and Ti based on Ai; /*re-clustering */6

if little change of Ωi then7

break;8

i←− i + 19

S = GetSimMatrix (Ψi);10

H = NCut (S, |H|); /*pattern summarization */11

Return H;12

6. EXPERIMENTS
6.1 Setup

Given a large image dataset DI = {Ii}, we first extract
the PCA-SIFT points [13] in each image Ii and treat these
interest points as the visual primitives. We resize all images
by the factor of 2/3. The feature extraction is on average
0.5 seconds per image. Multiple visual primitives can be
located at the same position, with various scales and ori-
entations. Each visual primitives is represented as a 35-d
feature vector after principal component analysis. Then k-
means algorithm is used to cluster these visual features into
a visual item codebook Ω. We select two categories from the
Caltech 101 database [4] for the experiments: faces (435 im-
ages from 23 persons) and cars (123 images of different cars).
We set the parameters for MIM as: θ = 1

4
|DI |, where |DI |

is the total number of images, and τ is associated with the
confidence level of 0.90. Instead of setting threshold γ, we
select the top phrases by ranking their L(P) values. We set
visual item codebook size |Ω| = 160 and 500 for car and face
database respectively when doing k-means clustering. For
generating the transaction databases T, we set K = 5 for
searching spatial K-NN to constitute each transaction. All
the experiments were conducted on a Pentium-4 3.19GHz
PC with 1GB RAM running window XP.

6.2 Evaluation of Meaningful Itemset Mining
To test whether our MIM algorithm can output meaning-

ful patterns, we want to check if the discovered MI are asso-
ciated with the frequently appeared foreground objects (e.g.
faces and cars) while not located in the clutter backgrounds.
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The following two criteria are proposed for the evaluation:
(1) the precision of Ψ: ρ+ denotes the percentage of dis-
covered meaningful itemsets Pi ∈ Ψ that are located in the
foreground objects, and (2) the precision of Ω−: ρ− denotes
the percentage of meaningless items Wi ∈ Ω− that are lo-
cated in the background. Fig. 4 illustrates the concepts of
our evaluation. In the ideal situation, if ρ+ = ρ− = 1, then
every Pi ∈ Ψ is associated with the interesting object, i.e.
located inside the object bounding box; while all meaning-
less items Wi ∈ Ω− are located in the backgrounds. In such
a case, we can precisely discriminate the frequently appeared
foreground objects from the clutter backgrounds, through
an unsupervised learning. Finally, we use retrieval rate η
to denote the percentage of retrieved images that contain at
least one MI.

Figure 4: Evaluation of meaningful itemsets mining.

The highlight bounding box (yellow) represents the fore-

ground region where the interesting object is located. In

the idea case, all the MI Pi ∈ Ψ should locate inside the

bounding boxes while all the meaningless items Wi ∈ Ω−

are located outside the bounding boxes.

In Table 2, we present the results of discovering meaning-
ful itemsets from the car database. The first row indicates
the number of meaningful itemsets (|Ψ|), selected by their
L(P). It is shown that when adding more meaningful item-
sets into Ψ, its precision score ρ+ decreases (from 1.00 to
0.86), while the percentage of retrieved images η increases
(from 0.11 to 0.88). The high precision ρ+ indicates that
most discovered MI are associated with the foreground ob-
jects. It is also noted that meaningful item codebook Ω+

is only a small subset with respect to Ω (|Ω| = 160). This
implies that most visual items actually are not meaningful
as they do not constitute the foreground objects. There-
fore it is reasonable to get rid of those noisy items from the
background. Examples of meaningful itemsets are shown in
Fig. 9 and Fig. 10.

Table 2: Precision score ρ+ and retrieval rate η for the

car database, corresponding to various sizes of Ψ. See

text for descriptions of ρ+ and η.

|Ψ| 1 5 10 15 20 25 30

|Ω+| 2 7 12 15 22 27 29
η 0.11 0.40 0.50 0.62 0.77 0.85 0.88
ρ+ 1.00 0.96 0.96 0.91 0.88 0.86 0.86

We further compare three types of criteria for selecting
meaningful itemsets P into Ψ, against the baseline of se-
lecting the individual visual items Wi ∈ Ω to build Ψ. The
three MI selection criteria are: (1) occurrence frequency:
ˆfrq(P) (2) T-score (Eq. 9) (only select the second order

itemsets, |P| = 2) and (3) likelihood ratio: L(P) (Eq. 2).
The results are presented in Fig. 5. It shows the changes
of ρ+ and ρ− with increasing size of Ψ (|Ψ| = 1, ..., 30).
We can see that all three MI selection criteria perform sig-
nificantly better than the baseline of choosing the most fre-

quent individual items as meaningful patterns. This demon-
strates that FI and MI are more informative features than
the singleton items in discriminating the foreground objects
from the clutter backgrounds. This is because the most fre-
quent items Wi ∈ Ω usually correspond to common features
(e.g. corners) which appear frequently in both foreground
objects and clutter backgrounds, thus lacking the discrim-
inative power. On the other hand, the discovered MI is
the composition of items that function together as a sin-
gle visual pattern (incomplete pattern though) which cor-
responds to the foreground object that repetitively appears
in the database. Among the three criteria, occurrence fre-
quency f̂ rq(P) performs worse than the other two criteria,
which further demonstrates that not all frequent itemsets
are meaningful patterns. It is also shown from Fig. 5 that
when only selecting a few number of MI, i.e. Ψ has a small
size, all the three criteria yield similar performances. How-
ever, when more MI are added, the proposed likelihood ra-
tio test method performs better than the other two, which
shows our MIM algorithm can discover meaningful visual
patterns.
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Figure 5: Performance comparison by applying three

different meaningful itemset selection criteria, also with

the baseline of selecting most frequent individual items

to build Ψ.

By taking advantage of the FP-growth algorithm for closed
FIM, our pattern discovery is very efficient. It costs around
17.4 seconds for discovering meaningful itemsets from the
face database containing over 60, 000 transactions (see Ta-
ble 3). It thus provides us a powerful tool to explore large
object category database where each image contains hun-
dreds of primitive visual features.

Table 3: CPU computational cost for meaningful item-

sets mining in face database, with |Ψ| = 30.

# images

|DI |
# transactions

|T|
closed FIM

[6]
MIM

Alg.1
435 62611 1.6 sec 17.4 sec

6.3 Refinement of visual item codebook
To implement NCA for metric learning, we select 5 mean-

ingful itemsets from Ψ (|Ψ| = 10). There are in total less
than 10 items shared by these 5 meaningful itemsets for both
face and car categories, i.e. |Ω+| < 10. For each class, we se-
lect the qualified visual primitives as training samples. Our
objective of metric learning is to obtain a better represen-
tation of the visual primitives, such that the the inter-class
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distance is enlarged while the intra-class distance is reduced
among the self-labeled training samples.

After learning a new metric using NCA, we reconstruct
the visual item codebook Ω through k-means clustering again,
with the number of clusters slightly less than before. The
comparison results of the original visual item codebooks and
those after refinement are shown in Fig. 6. It can be seen
that the precision ρ+ of Ψ is improved after refining the
item codebook Ω.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.84
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0.92
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η

ρ+

face w/o refinement
car w/o refinement
face w refinement
car w refinement

Figure 6: Comparison of visual item codebook before

and after self-supervised refinement.

6.4 Visual Pattern Discovery through Pattern
Summarization

For both car and face categories, we select the top-10
meaningful itemsets by their L(P) (Eq. 2). All discovered
MI are the second-order or third-order itemsets composed of
spatially co-located items. We further cluster these 10 MI
(|Ψ| = 10) into meaningful visual patterns using the normal-
ized cut. The best summarization results are shown in Fig. 7
and Fig. 8, with cluster number |H| = 6 and |H| = 2 for the
face and car category respectively. For the face category, the
semantic parts like eyes, noses and mouths are identified by
various patterns. For the car category, the wheels and car
bodies are identified.

To evaluate our pattern summarization results, we apply
the precision and recall scores defined as follows: Recall =
# detects / (# detects + # miss detects) and Precision =
# detects /( # detects + # false alarms). From Fig. 7 and
Fig. 8, it can be seen that the summarized meaningful visual
patterns Hi are associated with semantic patterns with very
high precision and reasonably good recall score.

7. CONCLUSION
Traditional data mining techniques are not directly ap-

plicable to image data which contain spatial information
and are characterized by high-dimensional visual features.
To discover meaningful visual patterns from image data,
we present a new criterion for discovering meaningful item-
sets based on traditional FIM. Such meaningful itemsets
are statistically more interesting than the frequent itemsets.
By further clustering these meaningful itemsets (incomplete
sub-patterns) into complete patterns through normalized
cut, we successfully discover semantically meaningful visual
patterns from real images of car and face categories.

In order to bridge the gap between continuous high dimen-
sional visual features and discrete visual items, we propose
a self-supervised clustering method by applying the discov-
ered meaningful itemsets as supervision to learn a better

feature representation. The visual item codebook can thus
be increasingly refined by taking advantage of the feedback
from the meaningful itemset discovery.

8. APPENDIX
Pair-wise Dependency Test.
If Wi, Wj ∈ Ω are independent, then the process of

randomly generating the pair {Wi, Wj} in a transaction
Ti is a (0/1) Bernoulli trial with probability P (Wi, Wj) =
P (Wi)P (Wj). According to the central limit theory, as
the number of trials (transaction number N) is large, the
Bernoulli distribution can be approximated by the Gaussian
random variable x, with mean µx = P (Wi)P (Wj). At
the same time, we can measure the average frequency of
{Wi, Wj} by counting its real instance number in T, such

that P (Wi, Wj) = ˆfrq(Wi, Wj)/N̂ . In order to verify if the
observation P (Wi, Wj) is drawn from the Gaussian distrib-
ution x with mean µx, the following T-score is calculated;
S2 is the estimation of variance from the observation data.

t({Wi, Wj}) =
P (Wi, Wj)− µx�

S2

N̂

(9)

=
P (Wi, Wj)− P (Wi)P (Wj)�

P ({Wi,Wj})(1−P (Wi,Wj))

N̂

(10)

≈
ˆfrq({Wi, Wj})−

1

N̂
ˆfrq(Wi) ˆfrq(Wj)�

ˆfrq({Wi, Wj})
.(11)
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Figure 9: Examples of meaningful itemsets from car category (6 out of 123 images). The cars are all side views, but

are of different types and colors and located in various clutter backgrounds. The first row shows the original images.

The second row shows their visual primitives (PCA-SIFT points), where each green circle denotes a visual primitive

with corresponding location, scale and orientation. The third row shows the meaningful itemsets. Each red rectangle

in the image contains a meaningful itemset (it is possible two items are located at the same position). Different colors

of the items denote different semantic meanings. For example, wheels are dark red and car bodies are dark blue. The

precision and recall scores of these semantic patterns are shown in Fig. 8.

Figure 10: Examples of meaningful itemsets from face category (12 out of 435 images). The faces are all front views

but are of different persons. Each red rectangle contains a meaningful itemset. Different colors of the visual primitives

denote different semantic meanings, e.g. green visual primitives are between eyes etc. The precision and recall scores

of these semantic patterns are shown in Fig. 7.
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