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Abstract

Most existing methods of semi-supervised clustering in-
troduce supervision from outside, e.g., manually label some
data samples or introduce constrains into clustering results.
This paper studies an interesting problem: can the supervi-
sion come from inside, i.e., the unsupervised training data
themselves? If the data samples are not independent, we
can capture the contextual information reflecting the depen-
dency among the data samples, and use it as supervision to
improve the clustering. This is called context-aware cluster-
ing. The investigation is substantialized on two scenarios of
(1) clustering primitive visual features (e.g., SIFT features)
with help of spatial contexts, and (2) clustering ‘0’–‘9’ hand
written digits with help of contextual patterns among dif-
ferent types of features. Our context-aware clustering can
be well formulated in a closed-form, where the contextual
information serves as a regularization term to balance the
data fidelity in original feature space and the influences of
contextual patterns. A nested-EM algorithm is proposed to
obtain an efficient solution, which proves to converge. By
exploring the dependent structure of the data samples, this
method is completely unsupervised, as no outside supervi-
sion is introduced.

1. Introduction
Unsupervised clustering is largely settled by the distance

metric that measures the dissimilarity or affinity between
two data points. This can be regarded as the internal force
driving the clustering. Typical examples include the k-
means clustering and spectral clustering. In practice, as it
is generally quite difficult to choose the right distance met-
ric in advance, we tend to learn a good metric by imposing
supervision. Acting as a constraint, supervised information
can be regarded as the external force that balances or adjusts
the effect of the internal force. In this way, we can say the
distance metric is tuned or learned. Supervision is gener-
ally introduced from outside, e.g., manually labeling some
samples as constraints to perform constrain-based cluster-

ing [12], or to perform co-training among multiple modali-
ties [3], or to perform metric tuning [10]. Then, here is an
interesting question: can the supervision come from inside,
i.e., the training data themselves? If so, it is still unsuper-
vised, and can be called self-supervised clustering.

This is possible when training data are not independent.
The dependency among data is the contextual information.
Let’s take web-page grouping as an example. The links
among web-pages provide information on dependency. We
group web-pages not only based on if they have similar con-
tents (features) but also if they share similar link pages (con-
texts). Contextual information brought by data dependency
provides an important clue for data mining [8]. In com-
puter vision research, many recent work showed that con-
textual information can be utilized to resolve the ambigui-
ties and uncertainties in many applications, including image
search [6], recognition [9] [1] [2], metric learning [11], and
image modeling [16].

If the data dependency can be well captured by the con-
textual patterns, which describe the co-occurrences of spe-
cific type of data samples in a higher level, it is possible to
use it as the supervision to improve clustering. Because the
contextual information is discovered from the unsupervised
training data themselves, we call such a self-supervised
clustering as context-aware clustering. We substantialize
it on two case studies where (1) we cluster primitive vi-
sual features (e.g., SIFT features) for finding local spatial
patterns in images, and (2) we cluster ‘0’–‘9’ hand writ-
ten digits with multiple features. By feeding back the con-
textual patterns as supervision which characterize the co-
occurrence statistics, we can resolve the ambiguous samples
based on the hints from their contexts.

The novelty of our work lies in two aspects. First of all,
we give a closed-form formulation of context-aware cluster-
ing, where the contextual information serves as a regulariza-
tion term in traditional k-means clustering. Secondly, due
to the nice analytical properties of the new formulation, we
present an efficient nested-EM algorithm for context-aware
clustering, which proves to converge. Both simulation and
real data validate the effectiveness of our method.
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2. Context-Aware Clustering
2.1. Motivating example: clustering visual primi-

tives
We illustrate our context-aware clustering in a case study

of clustering visual primitives. Each visual primitive is de-
noted as v = (x, y, f), where (x, y) is its spatial location,
and f denotes the feature vector describing v. In general
f ∈ R

d can be any possible visual features to character-
ize a local image region, like color histograms or SIFT-
like features [4] [5]. An image is a collection of visual
primitives, and we denote the visual primitive database as
Dv = {vi}N

i=1. After clustering these visual primitives into
words, we can label each vi ∈ Dv with l(vi) ∈ Ω, where Ω
is the visual word lexicon of size |Ω| = M .

The context of a visual primitive is its spatial neighbors
in the image, i.e., those visual primitives that collocate with
it (Fig. 1). For each visual primitive vi ∈ Dv , we define its
local spatial neighborhood, e.g. K-nearest neighbors (K-
NN) or ε-nearest neighbors (ε-NN), as its context group
Gi = {vi, vi1 , vi2 , · · · , viK

}. The context database is de-
noted by G = {Gi}N

i=1. Once the visual primitives are la-
beled by Ω, the context database G can be transfered to
a transaction database with N records, where each record
ti ∈ {0, 1}M is a binary vector representation of Gi by in-
dicating which words appear in group Gi. This transaction
database is a sparse binary matrix TM×N , where each col-
umn is a context transaction ti. The entry tij = 1 indicates
the jth transaction contains the ith word and tij = 0 other-
wise. In the case of using spatial K-NN to define context
group, we have

∑M
i=1 tij = K, ∀ j = 1, ..., N , because

each context group Gi contains K visual primitives.
An N × N sparse binary matrix Q can be used to de-

scribe the spatial context relations among the visual primi-
tives, where qij = 1 denotes that vi belongs to the context
group of vj , i.e. vi ∈ Gj ; and qij = 0 otherwise. Matrix
Q is symmetric when using ε-NN to define spatial neigh-
bors, while an asymmetric matrix when using K-NN. The
context matrix Q plays a central role in our context-aware
clustering as it introduces extra relations among data sam-
ples other than in the feature space. Besides spatial con-
texts, Q can present any other possible contextual informa-
tion among the N data samples. In Sec. 3.3, we give another
example of applying contextual information from multiple
features for clustering.

Based on the word lexicon Ω (|Ω| = M ), we can further
define a phrase lexicon Ψ = {Pi}M̃

i=1, where each phrase
Pi ∈ Ψ is a contextual pattern composed of a collection
of words, i.e. Pi ⊂ Ω. Compared with visual words which
label visual primitives v, visual phrases label transactions t.
As visual phrases describes the spatial dependencies among
visual words, they can be more meaningful patterns in a
higher level [14]. For example in Fig. 1, the existence of a
visual phrase P = {a, b} shows that two words a, b ∈ Ω

Symbol Definition
d dimensionality of the feature vector
N number of visual primitives
M number of visual words
M̃ number of visual phrases
tM×1 a context transaction
TM×N the transaction database
QN×N spatial context relations of visual primitives
ud×1 prototype of a visual word
ũM×1 prototype of a visual phrase
Ud×M prototypes of M visual words
ŨM×M̃ prototypes of M̃ visual phrases
RM×N label matrix of N primitives with M words
R̃M̃×N label matrix of N groups with M̃ phrases
DM×N distortion matrix of N primitives with M words
D̃M̃×N distortion matrix of N groups with M̃ phrases

Table 1. Notations of symbols. Bold upper case letters denote ma-
trices and bold lower case letters denote vectors.

b

a

ce
a b b

d

b

b

b
e

a

e

b

c

c

a

a

aa

a

c

c

Ga={ a, b, d, e}

a b c d e
ta=[1 1 0 1 1] T

Group
Representation

Transaction
Representation

ua=[1 1 0 0 0] T

Visual Phrase
Representation

Figure 1. Illustration of spatial contexts: context group G, transac-
tion t and visual phrase P . The left figure denotes an image and
each rectangle denotes a visual primitive. We suppose the visual
word lexicon contains 5 words: Ω = {a, b, c, d, e} and each visual
primitive is labeled by a word. The circle denotes a spatial context
group generated by a visual primitive a. The highlighted visual
primitives are instances of discovered visual phrase P = {a, b}.

co-occur frequently in local image regions and may form a
meaningful visual pattern. Each Pj ∈ Ψ is presented by a
binary vector ũj ∈ {0, 1}M which describes its word com-
positions, where ũj(i) = 1 indicates that the ith word is
contained in Pj . The matrix ŨM×M̃ is further applied to

represent Ψ, where each column of Ũ is a ũj . Correspond-
ingly, we use a real matrix Ud×M to represent Ω, where
each column is a feature vector to represent a word proto-
type uj ∈ R

d. All of our notations are listed in table 1.

2.2. Problem Formulation
We first review the k-means clustering and its solution

by the EM-algorithm. By performing traditional k-means
clustering on a collection of visual primitives vi ∈ Dv , the
following mean square distortion is minimized:
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J1 =
N∑

i=1

M∑
j=1

rij‖fi − uj‖2 = tr(RT D), (1)

where

• fi is the d×1 feature vector, and uj is the center of the
cluster (prototype of visual words); ‖ · ‖ denotes the
Euclidean distance and tr(·) denotes the matrix trace;

• DM×N denotes the distance matrix, where dij =
‖fj −ui‖2 denotes the distance between the jth visual
primitives and the ith visual word prototype;

• RM×N denotes the label indicator matrix of the visual
primitives, where rij = 1 if the jth visual primitive is
labeled with the ith word; and rij = 0 otherwise.

Standard EM-algorithm can be performed to minimize
the distortion in Eq. 1 by iteratively updating R (E-step) and
D (M-step). By minimizing the objective function J1, k-
means clustering tries to maximize the data likelihood under
mixture Gaussian distribution and assumes all observation
samples vi ∈ Dv are independent from one another:

Pr(Dv|Ω) =
N∏

i=1

Pr(vi|Ω). (2)

However, such an independent assumption does not hold
here because visual primitives have spatial dependency with
each other. Thus they are not independent in the feature
space. As a result, we need to take into consideration
these spatial contextual information and cannot cluster vi-
sual primitives only based on their features fi. In order to
consider both feature and contextual information for clus-
tering, we propose a regularized objective function based
on k-means:

J =
N∑

i=1

M∑
j=1

rij‖fi − uj‖2 + λ

N∑
i=1

M̃∑
j=1

r′ijdH(ti, ũj)

= tr(RT D) + λ × tr(R̃T D̃), (3)

where
• λ > 0 is a positive constant for regularization;
• r′ij is the binary label indicator of transactions, with

r′ij = 1 denoting that the ith transaction is labeled with
the jth visual phrase; and r′ij = 0 otherwise. Similar to

R, R̃N×M̃ is a matrix to describe the clustering results
of transactions t. For deterministic clustering, we have
the following constraints for R and R̃:

M∑
j=1

rij = 1,

M̃∑
j=1

r̃ij = 1, ∀ i = 1, ..., N. (4)

• dH(ti, ũj) denotes the Hamming distance between
two binary vectors: a transaction ti and a context pat-
tern ũj , where 1 is the M × 1 all 1 vector:

dH(ti, ũj) = M − [
tT
i ũj + (1 − ti)T (1 − ũj)

]
= tT

i 1 + ũT
j 1 − 2tT

i ũj . (5)

Given the objective function in Eq. 3 with M , M̃ and λ
are fixed parameters, our objectives are two-fold: (1) clus-
tering all the visual primitives vi into M classes (word lex-
icon Ω) and simultaneously (2) clustering all the context
transactions ti ∈ T into M̃ classes (phrase lexicon Ψ). The
clustering results are presented by R and R̃ respectively.
Since each visual primitive can generate a spatial context
group, we finally end up with two labels for every prim-
itive: (1) the word label of itself and (2) the phrase label
of the spatial group it generates. Compared with k-means
clustering which assumes convex (e.g. Gaussian) shape for
each cluster in the feature space, our regularization term can
modify the cluster into an arbitrary shape by considering
the influences from the higher phrase level. Similar to the
k-means clustering, this formulation is also a chicken-and-
egg problem where we cannot estimate D, D̃, R and R̃
simultaneously.

2.3. Iterative Solution: a Nested-EM algorithm

The objective function in Eq. 3 can be partitioned into
two parts:

J = tr(RT D)︸ ︷︷ ︸
J1

+λ × tr(R̃T D̃)︸ ︷︷ ︸
J2

,

where J1 = tr(RT D) and J2 = λ× tr(R̃T D̃) correspond
to the quantization distortions of visual primitives and
context groups respectively. Although it looks we could
minimize J by minimizing J1 and J2 separately, e.g.,
through two independent EM-processes, this is actually
infeasible because J1 and J2 are coupled. By further
analyzing J1 and J2, we find that although visual primitive
distortions D only depends on R, the context group dis-
tortions D̃ depends on both visual primitive labels R and
context group labels R̃. Thus it is infeasible to minimize J1

and J2 separately due to their correlation. In the following,
we show how to decouple the dependency between J1 and
J2 and propose our nested-EM algorithm.

Initialization:
1. Clustering all visual primitives {vi}N

i=1 into M
classes, e.g. through k-means clustering, based on the
Euclidean distance.

2. Obtaining the visual primitives lexicon Ω (represented
by U) and the distortion matrix D.

3. Clustering all context groups {Gi}N
i=1 into M̃ classes

based on the Hamming distance, and obtain the visual
phrase lexicon Ψ (represented by Ũ), as well as the
distortion matrix D̃.

E-step:
The task is to label visual primitives vi and context groups
Gi with Ω and Ψ, namely to update R and R̃ given D and
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D̃, where D and D̃ can be directly computed from U and
Ũ respectively. Based on the analysis above, we need to
optimize R (corresponding to J1) and R̃ (corresponding to
J2) simultaneously to minimize J, because J1 and J2 are
correlated.

According to the Hamming distance in Eq. 5, we can
derive the matrix form of context groups distortions:

D̃ = −2 × ŨT T + 1T T + ŨT 1Ũ ,

where 1T is an M̃ × M all 1 matrix and 1Ũ is an M × N
all 1 matrix.

Moreover, transaction database T can be determined by

T = RQ,

because each transaction column can be obtained as

tj =
N∑

i=1

qijri
1,

where qij is a binary indicator of whether primitive vi be-
longs to the context group of vj , and ri denotes the ith col-
umn of R which describe the word label of vi. Based on the
above, we derive Eq. 3 as follows:

J(D, D̃,R, R̃) = tr(RT D) + λ × tr(R̃T D̃) (6)

= tr(RT D) +
λ × tr[R̃T (−2ŨT T + 1T T + ŨT 1Ũ )] (7)

= tr(RT D) +
λ × tr[R̃T (−2ŨT RQ + 1T RQ + ŨT 1Ũ )]

= tr(RT D) +

λ × tr[R̃T (−2(ŨT − 1
2
1T )RQ + ŨT 1Ũ )]

= tr(RT D) − 2λ × tr[R̃T (ŨT − 1
2
1T )RQ] +

λ × tr(R̃T ŨT 1Ũ ) (8)

= tr(RT D) − 2λ × tr[QT RT (ŨT − 1
2
1T )T R̃] +

λ × tr(R̃T ŨT 1Ũ ) (9)

= tr(RT D) − 2λ × tr[RT (ŨT − 1
2
1T )T R̃QT ] +

λ × tr(R̃T ŨT 1Ũ ) (10)

= tr[RT (D − 2λ × (ŨT − 1
2
1T )T R̃QT )] +

λ × tr(R̃T ŨT 1Ũ ), (11)

where we apply three properties of matrix trace: for square
matrix A and B, we have (1) tr(A) = tr(AT ) (Eq. 9), (2)

1Strictly, tj is a binary vector only if it contains distinguishable prim-
itives, i.e. each primitive belongs to a different word in tj . However, our
solution is generic and do not need tj to be binary, as long as we apply the
distortion measure as in Eq. 5.

tr(AB) = tr(BA) (Eq. 10), and (3) tr(A) + tr(B) =
tr(A + B) (Eq. 11).

Based on the above analysis, we propose an E-step to
iteratively update R and R̃ to decrease J. Recall that R
and R̃ are label indicator matrices constrained by Eq. 4.

1. We first fix R and update R̃. Based on Eq. 8, let

H̃
�
= λ × (−2ŨT RQ + 1T RQ + ŨT 1Ũ ),

we have

J = tr(RT D)︸ ︷︷ ︸
J1

+ tr(R̃T H̃)︸ ︷︷ ︸
J2

. (12)

Therefore we only need to minimize J2 = tr(R̃T H̃)
as J1 = tr(RT D) is a constant given R and U. Be-
cause each column of R̃ contains a single 1 (Eq. 4),
we update R̃ to minimize J2 based on the following
criterion, ∀ j = 1, 2, ...N :

r̃ij =
{

1 i = arg mink h̃kj

0 otherwise
, (13)

where h̃kj is the element of H̃ and r̃ij is the element of
R̃. H̃ can be calculated based on Q, Ũ and R which
are all given.

2. Similar to the above step, now we fix R̃ and update R.
Based on Eq. 11, let

H
�
= D − 2λ × (ŨT − 1

2
1T )T R̃QT

We get another representation of J:

J = tr(RT H)︸ ︷︷ ︸
J3

+λ × tr(R̃T ŨT 1Ũ )︸ ︷︷ ︸
J4

, (14)

where J4 = λ × tr(R̃T ŨT 1Ũ ) is a constant given
R̃ and Ũ. Therefore, only J3 can be minimized. We
update R to minimize J3 as follows, ∀ j = 1, ...N :

rij =
{

1 i = arg mink hkj

0 otherwise
, (15)

where hkj is the element of H and rij is the element
of R.

The above E-step itself is an EM-like process because we
need to update R and R̃ iteratively until J converges. The
objective function J decreases monotonically at each step.

M-step:
After knowing the labels of visual primitives and visual
groups (R and R̃), we want to estimate better visual lex-
icons Ω and Ψ. From Eq. 3, D and D̃ are not interlaced
and thus U and Ũ can be optimized separately. We apply
the following two steps to update U and Ũ separately:
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1. Recalculate the cluster centroid for each visual word
class {ui}M

i=1 like traditional k-means algorithm, with
Euclidean distance. Update U and D to decrease J.

2. Recalculate the cluster centroid for each phrase
{ũi}M̃

i=1, with Hamming distance (see the Appendix
for the update details). Update Ũ and D̃ to decrease J.

Both of the above steps guarantee that J is decreasing,
therefore the whole M-step decreases J monotonically. Our
method is called a nested-EM algorithm because there are
two nested EM processes, where the E-step itself is an EM
process. We describe the nested-EM algorithm in Alg. 1.

Algorithm 1: Nested-EM Algorithm.
input : visual primitive database D = {vi},

contextual relations Q,
parameters: M , M̃ , λ

output : visual word and phrase lexicons: Ω and Ψ;
clustering results R and R̃

Init: (1) clustering visual primitives to get Ω and U;1

(2) based on Ω, clustering visual groups to get Ψ and Ũ;2

while J is decreasing do3

E-step: fix U and Ũ, update R and R̃4

nested-E step: fix R, update R̃ (Eq. 13)5

nested-M step: fix R̃, update R (Eq. 15)6

if J is decreasing then7

goto E-setp8

else9

Goto M-step10

M-step: fix R and R̃, update U and Ũ separately.11

return U, Ũ, R, R̃.12

Because the solution spaces of R and R̃ are discrete and
finite, according to the monotonic decreasing of J at each
step of our nested-EM algorithm, we have theorem 1.

Theorem 1 convergence of the nested-EM algorithm
The nested-EM algorithm can converge in finite steps.

3. Experiments
3.1. Simulation results

To illustrate the idea of our context-aware clustering, we
synthesize a spatial dataset for simulation. A concrete ex-
ample of this spatial dataset can be an image. All the sam-
ples have two representations with regarding to (1) feature
domain, f ∈ R

2 and (2) spatial domain (x, y) ∈ N × N as
shown in Fig. 3 (a) and (b). In our case, we have 5 different
types of visual primitives labeled as: ’�’, ’�’, ’O’, ’∇’, or
’×’. In the spatial domain, {×,�} is generated together to
form a co-occurrent contextual pattern, while {O, �,∇} is
the other contextual pattern. In the feature domain, each of
the 5 clusters has different number of samples and are gen-
erated based on Gaussian distributions of different means

and variances. Based on the feature domain only, clustering
is a challenging problem because some of these Gaussian
distributions are heavily overlapped, for example, clusters
’×’, ’O’, and ’�’ are heavily overlapped. Our tasks are (1)
clustering visual primitives into words, and (2) recover the
visual phrases P1 = {×,�} and P2 = {O, �,∇}.

We compare the performances of the context-aware clus-
tering with different choices of λ (λ = 0, 400, 2000) in
Fig. 3 (c),(d) and (e), where λ = 0 gives the same re-
sults as the k-means clustering. The major differences of
the clustering results appear from the cluster ’×’. Although
’×’ heavily overlaps with clusters ’O’ and ’�’, most of its
samples are still correctly labeled based on the help from
its spatial context: cluster ’�’. For example, although it is
difficult to determine a sample v located in the overlapped
regions of ’×’ and ’O’ in the feature space, we can resolve
the ambiguity by observing the spatial contexts of v. If a
’�’ is found in its spatial context, then v should be labeled
as ’×’ because discovered visual phrase {�, ×} supports
such a label.

Figure 3(f) shows the iterations of nested-EM algorithm
with λ = 2000. Each iteration corresponds to an individ-
ual E-step or an M-step until converge. We decompose the
objective function into J = J1 + J2, where J, J1, J2

are the red, black and pink curves respectively. All these
three curves are normalized by Jmax = J0, which is the J
value at the initialization step. Compared to k-means clus-
tering which minimizes distortions J1 in feature space only,
our context-aware clustering sacrifices J1 to gain larger de-
crease of distortion J2 in the context space, which gives a
smaller total distortion J. The error rate curve (blue) de-
scribes the percentage of samples that are wrongly labeled
at each step, and we notice it decreases consistently with
our objective function J.

In terms of clustering errors, the context-aware cluster-
ing (e = 0.12 when λ = 2000) performs significantly bet-
ter than the k-means method (e = 0.25). The parameter
λ balances the two clustering criteria: (1) clustering based
on visual features f (J1) and (2) clustering based on spa-
tial contexts (J2). The smaller the λ, the more faithful the
clustering results follow the feature space, where samples
have similar features are grouped together. An extreme case
is λ = 0 when no regularization is applied in Eq. 3 by
ignoring the feedback from contexts. In such a case, our
context-aware clustering is equal to k-means clustering. On
the other hand, a larger λ favors the clustering results that
support the discovered context patterns (e.g. visual phrases),
thus samples have similar contexts are more likely to be
grouped together.

3.2. Image texton discovery
To validate whether the discovered visual phrases can re-

ally capture common spatial image patterns [13], we test a
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collection of texture images2. and an example is presented
in Fig. 3.2 Given an image, we first detect SIFT points [7]
and treat keypoints of scale ranges between 1 and 2 as vi-
sual primitives: Dv = {vi}. We apply spatial K-NN groups
to build the group databases G, with K = 10. We let
λ = τJ0

1/J
0
2, where J0

1 and J0
2 are the initialization value

of J1 and J2 respectively; τ > 0 is the parameter to bal-
ance the distortions between SIFT features (word level) and
contextual patterns (phrase level).

k-means clustering of visual primitives (k=2).

Context-aware clustering: initialization of visual phrases.

Context-aware clustering: after the 1st full EM iteration.

Context-aware clustering: final results (19 full EM iter).

Figure 2. The 1st row shows 2 visual words (red and purple)
formed through k-means clustering. From the 2nd to 4th row, we
show 2 visual phrases (red and purple) discovered through context-
aware clustering. There exist two types of near-regular textures in
the image. One is the flower pattern located in the clothes (with
deformations) and the other is the regular textures located in the
right bottom. We notice that k-means clustering of visual prim-
itives cannot distinguish from two different textures. Parameters
used are M = 25, M̃ = 2, τ = 0.5.

For an image of size 1024 × 768 and containing 1000-
2000 visual primitives, the nested-EM algorithm can con-
verge within 40 full EM iterations. It is interesting to notice
that the discovered visual phrases are of spatial structures,

2Images are from source: http://vivid.cse.psu.edu/texturedb/gallery/.
Please see supplementary materials for more results

such as flowers in Fig. 3.2. In Fig. 3.2, we also show how
our nested-EM algorithm corrects the imperfect clustering
results iteratively, by using the spatial contextual informa-
tion as the feedback. In comparison, conventional k-means
clustering cannot obtain satisfactory results if clustering vi-
sual primitives individually.

3.3. Multiple-view clustering
Multiple-view clustering is another typical application of

our context-aware clustering algorithm. In multiple-view
clustering [15], each data sample v = {f1, f2, ..., fc} is rep-
resented by different types of features fi. Our task is to
cluster a collection of data samples Dv = {vj}N

j=1. A sim-
ple solution is to concatenate all features into a long feature
vector f = f1∪ f2∪ ...∪ fc. Then we can perform traditional
clustering in the new formed feature space f . However, be-
cause the depedent information among different types of
features are not well utilized, such a simple solution can-
not get satisfied results.

We select the multiple features data set from the UCI
Machine Learning Repository for evaluation. This multi-
class data set consists of handwritten numerals (‘0’–‘9’) ex-
tracted from a collection of Dutch utility maps. Each class
contains 200 data samples and the data set has 2000 digits
in total. Each digit is represented in terms of the 6 features
and we select 3 of them for context-aware clustering: (1)
76 Fourier coefficients of the character shapes (fou); (2) 64
Karhunen-Loeve coefficients (kar) and (3) 240 pixel aver-
ages in 2 x 3 windows (pix). A data sample v thus gen-
erates 3 primitives ffou, fkar and fpix in 3 feature spaces
respectively. As a result, we obtain in total N = 2000 × 3
primitives and cluster them for word lexicon. The original
data sample v now corresponds to a context group G which
characterizes the co-occurrent dependency among different
types of features fi. Each v ∈ Dv generates to a trans-
action t of length 3. We further cluster these n = 2000
transactions into phrases. In the initialization step, we build
the word lexicon Ωi (|Ωi| = 10, i = fou, kar, pix) for
three types of features separately and obtain a final lexicon
Ω = Ωfou ∪ Ωkar ∪ Ωpix (|Ω| = 30). The phrase lexi-
con Ψ is then constructed based on Ω. By considering both
distortions from 3 individual features and their contextual
patterns, the objective function in Eq. 3 now becomes:

J =
3∑

i=1

tr(RT
i Di) + λ × tr(R̃T D̃)

= tr(RT D) + λ × tr(R̃T D̃),

where R and D are matrices containing 3 diagonal blocks
corresponding to fou, kar and pix features respectively.
With a straight forward adjustment of matrices sizes in Ta-
ble 1, we can still apply the nest-EM algorithm in Alg. 1.

Table 2 compares conventional k-means clustering with
our context-aware clustering. Specifically, we try k-means
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clustering in 3 features individually, and also in a concate-
nation of 3 features. In each case, k-means clustering is
repeated 100 times and the best result with minimum to-
tal distortion is selected for comparison. In context-aware
clustering, to balance between the data fidelity in feature
space (J1) and the influence of contextual information J2,
we select τ = 1, which results in λ = τJ0

1/J
0
2 = 1061.7.

From Table 2, we can see that although each individual fea-
ture has limited ability in clustering, the contextual pattern
among them can help to improve the clustering results sig-
nificantly. Also our context-aware clustering performs bet-
ter (with error 13.5%) than simply concatenating all features
for k-means clustering (with error 17.9%).

Table 2. multiple feature clustering: comparison between tradi-
tional k-means clustering and context-aware clustering.

# feature # class error

k-means (fou) 76 k=10 27.5%
k-means (kar) 64 k=10 26.9%
k-means (pix) 240 k=10 26.9%
k-means (all) 76+64+240 k=10 17.9%
context-aware 76+64+240 M̃ = 30; M = 10 13.5%

4. Conclusion
We present in this paper a new formulation of self-

supervised clustering, called context-aware clustering, and
show how contextual information can feed back to improve
the clustering results. Two kinds of contextual information
(1) spatial contexts of visual primitives and (2) contextual
patterns among different types of features are applied to im-
prove the clustering results in (1) image texton discovery
and (2) multiple view clustering of hand written digits, re-
spectively. Compared with traditional k-means clustering,
our context-aware clustering considers the data (or feature)
dependency in a higher level. Thus it not only gets better
clustering results, but also can reveal the hidden structures
among data samples.

The proposed nested-EM algorithm is an efficient itera-
tive solution for the context-aware clustering and is proved
to converge. It provides a general solution to context-aware
clustering. Besides spatial contexts and feature contexts
proposed in our experiments, other types of contextual in-
formation can also be incorporated.

Appendix
We discuss how to update the prototypes of visual

phrases (Ũ) in the M-step. Given a cluster of M × 1 trans-
actions X = {ti}n

i=1, our target is to find their centroid
ũ ∈ {0, 1}M such that the total quantization distortions are
minimized under the Hamming distance criterion in Eq. 5.
The optimization problem is formulated as:

min
ũ∈{0,1}M

n∑
i=1

[
M − (tT

i ũ + (1 − tT
i )(1 − ũ))

]
.

Let ũk denote the kth element of ũ, we minimize the fol-
lowing objective function by using the Lagrangian and let
λt ≥ 0 to obtain the unique maximum solution:

f(ũ, λ) =
n∑

i=1

M∑
t=1

[
2tk

i ũ
k − tk

i − ũk + 1 + λkũk(1 − ũk)
]
.

By applying ∂f(ũ,λ)
∂ũk = 0, ∂f(ũ,λ)

∂λk = 0, λk ≥ 0, ∀k,
we obtain

ũk =
1
2
(
2

∑n
i=1 tk

i − n

λk
+ 1), ∀k,

and

λk = |2
n∑

i=1

tk
i − n| ≥ 0.

Finally, we have

ũk =
sgn(2

∑n
i=1 tk

i − n) + 1
2

,

where sgn(a) = 1 if a ≥ 0, and sgn(a) = −1 if a < 0.
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