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Abstract

Fusing partial estimates is a critical and common prob-
lem in many computer vision tasks such as part-based de-
tection and tracking. It generally becomes complicated and
intractable when there are a large number of multimodal
partial estimates, and thus it is desirable to find an effec-
tive and scalable fusion method to integrate these partial
estimates. This paper presents a novel and effective ap-
proach to fusing multimodal partial estimates in a prin-
cipled way. In this new approach, fusion is related to a
computational geometry problem of finding the minimum-
volume orthotope, and an effective and scalable branch and
bound search algorithm is designed to obtain the global op-
timal solution. Experiments on tracking articulated objects
and occluded objects show the effectiveness of the proposed
approach.

1. Introduction
Many computer vision tasks involve the estimation of

the unknownx ∈ R
d from many independent estimates

Y = {y1,y2, . . . ,yn}, where the individual estimateyi

may be obtained from various sources (e.g., different views,
time and cues), or from partial features. We refer each indi-
vidual estimate as thepartial estimate(PE) orpartial belief,
and the final estimation as thecomplete estimation(CE). A
PEyi gives an individual estimate of the unknownx, and
it may only provide the estimate on several specific dimen-
sions ofx, so it is called a partial estimate. As the PEs can
be quite inaccurate, a critical question is how we can fuse
these partial estimates for a better estimation,i.e., how to
obtainx = fuse(y1,y2, . . . ,yn).

One concrete example is the part-based object detection
and tracking. The target is represented by its parts and each
part is associated with a dedicated detector and tracker, each
of which provides a PE of the location and motion of the
target. Because a part of the target is generally less dis-
criminative than the entire target, the matching to this part
is likely to include many false positives. This is especially
true when the target is in a clutter background. Therefore,

Figure 1. Example of fusing three MPEs, and each MPE has two
modes. The optimal fusion result CE is the most consistentx with
all the three MPEs.

its PEs tend to have multiple modes, where most of them
correspond to false positive matches. We refer one such PE
that has multiple modes as amultimodal partial estimate
(MPE), and our work is focused on the fusion of the MPEs.
We want to emphasis that in our work we refer the word
multimodalto multiple modes inonePE, rather than multi-
ple estimates/sensors (Fig. 1).

If the PEs{y1,y2, . . . ,yn} are all unimodal, it is possi-
ble to obtain a closed-form fusion for the CEx, e.g., through
the best linear unbiased estimation (BLUE) [10]. However,
whenyi is multimodal (e.g., modeled as a Gaussian mix-
ture), the fusion for the CE is likely to exhibit an extremely
complicated form. If each MPE hasm modes, the num-
ber of modes in the CE is in the order ofo(mn). In its
discrete case, suppose each MPE consists of a set ofm dis-
crete estimates, the complexity of searching for the best CE
shall beo(mn). Such an exponential growth of the number
of modes (or the combinatorial complexity in the discrete
case) makes any form of fuse(y1,y2, . . . ,yn) very difficult
to be optimized. As the complicated CE has an enormous
number of local optima, fusion is likely to end up with a
low-quality estimation unless an exhaustive search can be
performed. Even when an exhaustive search is merely vi-
able whenn is small, such a method is not scalable when
there are many MPEs to fuse. Thus, new scalable fusion
methods are desirable.

As the CEx = fuse(y1,y2, . . . ,yn) in general may not
have good analytical properties, it is difficult to manipulate
it directly. In this paper, we convert the error minimization



in the fusion problem into a problem that finds a minimum-
volumed-orthotope inRd subject to some constraints. The
minimum-volume orthotopeproblem can also be viewed as
a multi-class generalization of the closest-pair problem in
computational geometry. We design an effective branch and
bound search algorithm to determine the global optimal so-
lution to this problem with a moderate computational com-
plexity.

The novelty of this work includes the following three as-
pects. (1) The fusion of MPEs is converted to a tractable
minimum-volume orthotope problem, in which the intricate
CE is exactly optimized in a discrete view, or approximately
optimized in a continuous view. This new treatment leads
to a tractable solution to fusion. (2) It reveals an interesting
connection between probabilistic data fusion and computa-
tional geometry. The proposed solution to the minimum-
volume orthotope problem provides a non-trivial general-
ization of the closest-pair problem. (3) The proposed fusion
method is very scalable w.r.t. the number of estimates, or
information sources, as the complexity is almost constant
w.r.t. the number of sources.

The paper is organized as follows: related works are
briefly described in Sec. 2. In Sec. 3, we formulate the
problem and present the solution. We relate our method to
computational geometry in Sec. 4. The experiment results
of articulated body tracking and occluded objects tracking
by fusing multiple local trackers are shown in Sec. 5, and
the conclusion is made in Sec. 6.

2. Related Work
There have been extensive studies on distributed esti-

mates fusion. In [10], the authors summarize two criteria for
optimal fusion of unimodal Gaussian estimates. One is the
weighted least squares (WLS), and the other is the best lin-
ear unbiased estimation (BLUE). These fusion techniques
can be applied to some classic computer vision problems
such as the optical flow estimation [11].

When bad or fault estimates exist, WLS or BLUE cannot
work well. To better handle noisy estimates, which refer to
bad or outlier estimates, one possible solution is to allocate
large variances to the bad estimates, such as in the methods
of Covariance Intersection/Union (CI/CU) [13]. In [17], the
authors address the problem when the measurement errors
are heteroscedastic, and solve the problem in a WLS way.
Another solution to handle noisy estimates is to keep good
estimates while discarding bad ones. Variable-Bandwidth
Density-based Fusion (VBDF) [2] falls into such a category,
which performs globally, and attempts to alleviate the influ-
ence of the outliers by gradually reducing the bandwidth of
the modes. By applying VBDF, a tracking method is pre-
sented in [4]. However, it cannot guarantee the global opti-
mality in fusion. Another method to alleviate the effect of
bad estimates is to measure the goodness of the estimates

locally. For example in [6], the authors present a principle
to estimate the fidelity of each measurement in a localized
calculation.

Unfortunately, all of the above fusion methods are not
designed for multimodal cases, namely multiple modes in
one estimate. To handle the multimodal estimates fusion
problem, there have been two types of solutions: using
distributed algorithms [15, 12], or using randomized algo-
rithms [3]. If the estimates can be represented in a loosely-
connected graph, several techniques can be applied, such as
the variational methods [7], Belief Propagation (BP) [15],
or Nonparametric Belief Propagation (NBP) [12]. However,
if the graph is densely connected, these methods are easily
trapped by local minima, or cannot even converge, due to
the loops in the densely connected graph. To avoid local
minima and to guarantee the convergence, randomized al-
gorithms can be applied. For example, RANSAC [3] has
the ability to obtain a robust estimation from noisy MPEs.
Even if only one mode is correct, and all of the others are
outliers in each MPE, RANSAC may still obtain the global
optimum with some probability.

3. Problem Formulation and Solution
Given a collection of MPEs{y1,y2, ...,yn}, we want to

obtain the CE of the high dimensional unknownx ∈ R
d.

To better explain our idea, we first examine the problem of
fusing discrete MPEs, then present the solution of fusing
continuous MPEs in Sec. 4.2.

For discrete MPEs, each MPEyi contains multiple point
estimations (i.e. modes):

yi = {y1
i , · · · ,yνi

i },

where y
j
i ∈ R

hi is the j-th mode of yi in the hi-
dimensional subspace (hi ≤ d), andνi is the number of
modes inyi. Given two modes belonging to two different
subspaces,α ∈ R

A andβ ∈ R
B , we define their arithmetic

operations (summation, subtraction and maximization) as
below.

Computation Rule 1. Addition and Subtraction
In addition or subtraction, we only perform the calcula-

tion in spaceRA
⋂

R
B, i.e., if γ = α ± β, then

γi =

{

αi ± βi if i ∈ R
A

⋂

R
B

undefined otherwise

Computation Rule 2. Max and Min
In maximization or minimization, we perform the calcu-

lation in spaceRA
⋃

R
B , i.e., if γ = max(α, β), then

γi =















max(αi, βi) if i ∈ R
A

⋂

R
B

αi if i ∈ R
A

⋂

R
B

βi if i ∈ R
A

⋂

R
B

undefined otherwise

An illustrative example is shown in Fig. 2.



Figure 2. An illustration of arithmetic operations over twovectors
belonging to two different subspaces. Suppose there are twovec-
tors α ∈ R

A and β ∈ R
B. We useαi to denote the value at

α’s i-th dimension. For example, hereA = {2, 3}, B = {1, 2},
which meansα is in the 2nd and 3rd dimensions of the whole
space, andβ is in the 1st and 2nd dimensions of the whole space.
As the figure shows,α = [11, 12], β = [13, 14], thenα2 = 11,
α3 = 12, β1 = 13, β2 = 14, while α1 andβ3 are undefined. The
addition is performed at the intersection of the subspaces,while
the maximization is performed at the union of the subspaces.

3.1. The Objective Function
A good fusion result should be consistent with the MPEs.

One natural objective is to minimize the average estimation
error,i.e.,

min
x

1

n

∑

i

Ψ(x,yi), (1)

whereΨ(x,yi) is the measurement of the inconsistency.
For example, we can chooseΨ(x,yi) as:

Ψ(x,yi) = min
j

‖x − y
j
i ‖∞,

where the final estimationx is expected to be consistent
with at least one of the modes ofyi. Here theL∞ norm of
a vectorα is ‖α‖∞ = maxi |αi|. Although other types of
measurements are possible, we will show later that theL∞

norm leads to an elegant global optimal solution.
Considering that it is difficult to minimize the average

estimation error in Eq. 1, we slightly change the original
formulation by replacing the average error with the maxi-
mum error among the MPEs:

x∗ = arg
x

min
x

max
i

Ψ(x,yi), (2)

or the median error among the MPEs:

x∗ = arg
x

min
x

medianiΨ(x,yi). (3)

We call Eq.2 as themaximum fusionwhile Eq. 3 as the
median fusion. The median fusion is less sensitive to noise
while the maximum fusion may be influenced by an outlier
MPE, in which all its modes are outliers. For clarity, we
mainly discuss how to solve the maximum fusion in this
section. The solution to the median fusion follows the same
strategy and will be briefly discussed in Sec. 3.4 as well.

3.2. Equivalence to Orthotope Search
The minimization of Eq. 2 can be converted into a min-

volume orthotope search problem, as explained in Figure 3.

Figure 3. An illustration of orthotope search for partial estimation
fusion. There are three MPEs,y1 = {µ1

1, µ
2

1}, y2 = {µ1

2, µ
2

2},
y3 = {µ1

3, µ
2

3}. The orthotopeV contains a mode if and only if
this mode is contained inV ’s projection to this mode’s subspace,
e.g,µ1

1 ∈ V andµ1

3 /∈ V . Minimizing estimation error (Eq. 2)
is equivalent to minimizing the volume of the orthotopeV , which
must contain at least one mode from each MPE (Eq. 4). In this
figure, the orthotopeV containsµ1

1, µ1

2, µ2

3, soW(V ) = 1.

Our task is to find an orthotope (a high-dimensional bound-
ing box) that can cover at least one mode from every MPE
yi. To minimize the maximum error in Eq. 2, we require
the longest edge of the orthotope has the minimum length.
Based on the above definitions, we propose the following
optimization problem

min ‖V ‖∞

s.t W(V ) = 1.
(4)

Here we denote byV a d-dimensional axis-aligned ortho-
tope. An orthotopeV ’s volume is related to the length of
its longest edge, denoted by‖V ‖∞. W(V ) is the predicate
function of the orthotopeV :

W(V ) =

{

1 ∀ i, ∃ j, such thatyj
i ∈ V

0 otherwise
(5)

When a lower-dimensional modeyj
i is inside the sub-

space projection of thed-dimensional axis-aligned ortho-
tope V , the orthotopeV contains the modeyj

i , and we
denote byyj

i ∈ V (Figure 3).
To justify our formulation as an orthotope search prob-

lem, we prove the equivalence between Eq. 2 and Eq. 4 in
Theorem 1. We further derive the property under the condi-
tion of unique optimal solution in Theorem 2. The proof of
both theorems can be found in [14].

Theorem 1. The equivalence of the optimization in Eq. 2
and Eq. 4

Let
v1 = min

x

max
i

Ψ(x,yi)



and
v2 = min

V
‖V ‖∞, s.t. W(V ) = 1.

Then
v1 = v2/2.

Theorem 2. If Eq. 2 has a unique optimalx∗ andV ∗ is the
optimal solution to Eq. 4, thenx∗ is the center ofV ∗.

3.3. A Branch and Bound Solution
According to Theorem 2, we solve Eq. 2 by optimizing

Eq. 4, which is to find a minimum-volume orthotope satis-
fying the predicate. In order to obtain the global optimal so-
lution in the high-dimensional space, we propose a branch
and bound search algorithm to find the best orthotope effi-
ciently. As an efficient search method, branch and bound
has been applied to object detection [9] and action detec-
tion [16]. Our solution is related to [9, 16], but works in a
high-dimensional discretized space.

Algorithm 1: Maximum Fusion of MPEs
input : Multimodal partial estimates (MPEs)

Y = {y1,y2, . . . ,yn}
output: Complete estimation (CE)x

Initialize V as the collection of all orthotope
candidates in thed-dimensional space.
Initialize an empty priority queueQ, in which the
element with the smallest key value pops first.

repeat
split V into V

′ andV
′′

if W(V′) = 1 then
V

′ → Q by the key value‖V
′‖∞

if W(V′′) = 1 then
V

′′ → Q by the key value‖V
′′‖∞

retrieve the top elementV fromQ
until V contains only one element
retrieve the only elementV ∗ of V

return x as the center point ofV ∗

Our branch and bound search algorithm is presented in
Algorithm 1. LetV = {Vi} be anorthotope-set, where each
Vi is an orthotope in thed-dimensional space. The union of
V, denoted byV, is the minimum orthotope which satisfies
∀V ∈ V, V ⊇ V . The intersection ofV, denoted byV, is
the maximum orthotope which satisfies∀V ∈ V, V ⊆ V .
We provide an illustrative example in Figure 4.

Given the original orthotope-setV, our task is to find a
minimum-volumeV ∗ ∈ V satisfying the predicate, and the
optimal CEx ∈ R

d can be uniquely determined byV ∗. In
each iteration in Algorithm 1, we splitV into two partsV′

andV
′′, and the splitting point is the middle point of the

longest dimension ofV in the orthotope-set space.

Figure 4. An example showing the upper and lower bounds ofV.
The two black rectangles areV1 and V2, andV = {V1, V2}. V

is the red rectangle which containsV1 andV2, andV is the blue
rectangle which is contained byV1 andV2.

We use the bound properties ofV andV: If the union
of V cannot satisfy the predicate, it impossible for anyV ∈
V to satisfy the predicate. As a result, only ifV satisfies
the predicate, it is worth to perform a further check onV.
Otherwise thisV can be safely pruned.

We indexV with a key value‖V‖∞. This key value
provides a lower bound,i.e. ∀V ∈ V, ‖V‖∞ ≤ ‖V ‖∞.
We use a priority queueQ to store the orthotope-sets by
their key values. Each time we retrieve fromQ a candidate
orthotope-setV with the smallest key value. The retrieving
process keeps going until the retrievedV contains only one
orthotopeV ∗, thenV ∗ has to be the optimal solution be-
causeV ∗ satisfies the predicate and has a minimum volume
compared with all other possible orthotopes inQ.

3.4. Median Fusion
As mentioned earlier, the limitation of the maximum fu-

sion is that it is sensitive to noisy MPEs. To address this is-
sue, we can modify our objective function to a robust form
by using the median fusion in Eq.3. The corresponding or-
thotope search problem can still be formulated in Eq. 4, but
with a different predicate function:

W(V ) =

{

1 for at least half ofi, ∃ j, such thatyj
i ∈ V

0 otherwise
(6)

UsingW(V ) in Eq. 6 and the same branch and bound pro-
cedure as in Algorithm 1, we can obtain the optimal solution
to the median fusion.

4. Beyond Basic Formulation
Although we obtain the global optimal solution under the

discrete MPE case, the MPE fusion is more difficult when
each MPE provides a continuous estimation. In this section,
we firstly show the connection between our algorithm and
the bichromatic pair problem in computational geometry,
then we extend our solution to the continuous MPE fusion
and provide a probabilistic interpretation of our approach.

4.1. Link to Computational Geometry
The bichromatic pair problem [8] is formulated as

min
j(1),j(2)

|y
j(1)
1 − y

j(2)
2 |, (7)



where the objective is to find the closest pairy
j(1)
1 ∈ y1 and

y
j(2)
2 ∈ y2 from different classesy1 andy2.

We extend this problem to multiple classes, as well as
multiple subspaces, whereyi and yk are two MPEs and
can belong to different subspaces. Themultichromatic pair
problemis similar to Eq. 7:

min
j(·)

max
for all i, k

‖y
j(i)
i − y

j(k)
k ‖∞, (8)

where the goal is to find a mode from each MPE, such
that the maximum distance among all mode-pairs is mini-
mized. Accroding to the following Theorem, the multichro-
matic pair problem is equivalent to Eq. 4, therefore it can be
solved by our proposed branch and bound method as well.

Theorem 3. The equivalence of Eq. 4 and Eq. 8.
Let

v2 = min ‖V ‖∞, s.t. W(V ) = 1.

and
v3 = min

j(·)
max

for all i, k
‖y

j(i)
i − y

j(k)
k ‖∞.

Then
v2 = v3.

The proof of Theorem 3 can be found in [14].

Corollary 1. Optimizing Eq. 2, Eq. 4 and Eq. 8 are equiv-
alent.

In summary, fusing discrete MPEs can be converted to
finding a minimum orthotope containing at least one mode
from each MPE, and is also equivalent to the multichro-
matic pair problem.

4.2. MPE Fusion in a Probabilistic View
Now we consider the fusion of continuous MPEs. Sup-

pose that each MPEyi generates a multimodal distribution
pi(x|yi):

pi(x|yi) =
∑

j

p(yj
i )k(x − y

j
i ), (9)

wherep(yj
i ) is the prior of modeyj

i . If ki(·) is the Gaus-
sian kernel, thenpi(x|yi) is a Gaussian Mixture (GM). In
our definition ofki(·), we callpi(x|yi) an Infinity Mixture
(IM), aski(·) uses theL∞ norm:

ki(α) = Ci exp(−
‖α‖∞

σ
), (10)

whereσ is the kernel bandwidth, andCi is the normal-
ization term. This IM justifies our previous optimization
method in a probabilistic view.

Denote byY = {y1,y2, . . . ,yn}. Supposep(x|Y) fol-
lows the Products of Experts (PoE) model [5], the distribu-
tion becomes:

p(x|Y) ∝
∏

i

pi(x|yi), (11)

wherepi(x|yi) is the partial estimation, or partial belief of
x from yi, and we assume thatpi(x|yi) are independent.
Our objective is to find an estimatex ∈ R

d with the highest
probability:

x∗ = arg max
x

p(x|Y), Y = {y1,y2, · · · ,yn}.

(12)
Searchingp(x|Y) in the high dimensional space is an

extremely difficult problem. For an arbitraryx ∈ R
d, we

consider the orthotopeV centered at x. If we only count
the modes located inside the orthotope, while ignoring the
modes outside the orthotope, we obtain the following lower
bound ofp(x|Y) by combining Eq. 9, 10 and 11:

p(x|Y) = C1

∏

i

∑

j

p(yj
i )k(x − y

j
i )

≥ C1

∏

i

∑

ĵ

p(yj
i )k(x − y

j
i )

= C1

∏

i

∑

ĵ

p(yj
i )Ci exp(−

‖x− y
j
i ‖∞

σ
)

≥ C1

∏

i

∑

ĵ

p(yj
i )Ci exp(−

‖V ‖∞
2σ

)

whereĵ only counts the modes insideV , andC1 is a con-
stant. The first inequality is obtained by ignoring the contri-
bution from the modes outside the orthotope, and the second
inequality is obtained from‖x − y

j
i ‖∞ ≤ ‖V ‖∞/2 when

y
j
i ∈ V .

By taking the logarithm of the above equation, we obtain

log p(x|Y) ≥ C2 − n
‖V ‖∞

2σ
+

∑

i

log(
∑

ĵ

p(yj
i ))

= L(V ),

(13)

whereC2 is a constant,n is the number of MPEs, thenL(V )
is the lower bound oflog p(x|Y). Searching for the opti-
malx∗ now amounts to findingV ∗ with the largestL(V ∗),
i.e. maximizing the lower bound oflog p(x|Y). Whenσ is
very small (the extreme case isσ → 0, and it is degenerated
to the discrete case), the‖V ‖∞

2σ
term is dominant. Under

this condition, maximizingL(V ) is equivalent to minimiz-
ing ‖V ‖∞, which is equivalent to our discrete solution.

We maximize Eq. 13 by using a similar branch and
bound method as in Algorithm 1. To further speed up the



branch and bound process, we derive the lower and upper
bounds ofL(V ) − C2, respectively:

f+(V ) =
∑

i

log(
∑

ĵ

p(yj
i ))

f−(V ) = −n
‖V ‖∞

2σ
+

∑

i

log(
∑

ĵ

p(yj
i )).

Heref+(V ) is obtained by putting all of the modes insideV
at the center of the orthotopeV , andf−(V ) is obtained by
putting all the modes insideV at the boundary of the ortho-
topeV . Neglecting the constant terms,f+(V ) andf−(V )
provide upper and lower bounds ofL(V ), respectively. The
branch and bound technique can be further accelerated by
using these upper and lower bounds for more efficient prun-
ing.

5. Experiments
We evaluate our new MPE fusion methods in two track-

ing scenarios: one is to track articulated objects (testingthe
max fusion), and the other is to track occluded objects (test-
ing the median fusion).

5.1. Tracking Articulated Objects
To track an articulated object, the object is decomposed

into several parts, and each part is tracked by an individual
part-tracker, as explained in Figure 5. As the part-trackers
are connected and influence each other, the final tracking
result is obtained by fusing the results from the set of part-
trackers.

Figure 5. Example of a two-part articulated body. The CE
is x = [x1,x2,x3, x4,x5,x6]. MPE 1 provides the estima-
tion of [x1,x2,x3,x4], and MPE2 provides the estimation of
[x3,x4,x5,x6].

The flowchart of our tracking is shown in Figure 6. In
our experiments, each part-tracker is manually initialized
by a fixed size rectangle which covers one part of the ob-
ject. During the tracking process, each part-tracker ran-
domly samples image patches in its neighborhood regions.
These image patches are of the same size as the initialized
rectangle. To track these patches, we check if their appear-
ances are similar to their initialized appearance,e.g. using
the sum-of-squared-differences (SSD) measurement. When
the similarity score is higher than a predefined threshold,
we treat the corresponding coordinates of the matched lo-
cation as one mode in the partial estimate of the location of

the part-tracker. The collection of all such modes gives the
MPE of the corresponding tracker. To tolerate appearance
variations, we use a less rigid matching criterion that leads
to many false positive modes (Figure 7). In our approach,
we resample about 1,000 patches and obtain about 20∼200
modes for each part-tracker.

Figure 7. The left figure is the input frame, and the right figure
shows the modes of two part-trackers. Two part-trackers handle
the upper and lower arms, respectively. Each part-tracker gener-
ates 20∼200 modes (shown in green rectangles) in one frame.

After the MPEs are obtained, we apply our new fu-
sion method and compare its performance to RANSAC. In
the RANSAC approach, we iterate 1,000,000∼ 5,000,000
times. In each iteration, we randomly select one mode from
each MPE to obtain the CE by averaging the selections.
Then we choose the closest mode to CE from each MPE and
calculate the SSD. The experiment settings are the same in
our approach as in RANSAC, except for the fusion step. By
increasing the number of iterations in RANSAC, it can give
good results on tracking a two-part arm. However, for an ar-
ticulated object that has more than two parts, the RANSAC
method performs poorly even if we increase the number of
iterations in RANSAC. The execution time of our algorithm
is almost fixed when we increase the number of modes in
each part-tracker. This shows the good scalability of our
algorithm to the number of modes from each MPE.

We test our new fusion method on tracking different ar-
ticulated objects, and some sample results are shown in Fig-
ure 8 and 9. Figure 8 shows the experiment results of track-
ing articulated objects. By optimizing globally, our algo-
rithm can keep tracking the structure of the articulated ob-
ject. From top to bottom, the articulated objects have 3, 4,
5 parts, respectively. Figure 9 shows the comparison be-
tween our algorithm and RANSAC. The 1st and 2nd row
of the figure shows the tracking results of a two-part ar-
ticulated arm, and both our algorithm and RANSAC can
provide good results. The 3rd and 4th row of the figure
shows the tracking results of a three-part articulated finger,
our algorithm is able to track the finger successfully, but
RANSAC fails to give correct results: it begins to drift after
several frames. From further experiments, we observe that
our fusion method is able to successfully find a global op-
timum, and outperforms RANSAC. In general, we observe
that the more parts we have in the fusion, the better our new
fusion method achieves comparing with RANSAC.



Figure 6. The flow chart of our tracking experiments.

5.2. Tracking Occluded Objects
We evaluate the median fusion in tracking an occluded

object. The experiment setting keeps the same as that in
the articulated objects tracking. The only difference is that
each part-tracker follows a certain part of the object, rather
than an articulated part. For example, in the face sequence
shown in Figure 10, the face is modeled by eight overlap-
ping parts. Instead of tracking the whole face, we track the
eight overlapping face patches. Although every individual
part-tracker tracks one of the eight parts and induces many
false estimates, the fusion of all the part-trackers leads to
a strong tracker which is very robust to partial occlusion.
As long as half of the eight patches are visible, the median
fusion is able to successfully handle the severe occlusion.

6. Conclusions
Fusing partial estimates from different sources is chal-

lenging because of the multimodal nature of the partial esti-
mates: a multimodal objective function can make the opti-
mization process easily trapped in local minima. Generally,
it is difficult to obtain the global optimal estimation, espe-
cially in a high-dimensional parameter space. By reveal-
ing the connection between the probabilistic data fusion and
computational geometry, we present a novel approach to the
above challenges. We relate the error minimization prob-
lem of MPE fusion to a computational geometry problem
of finding the minimum-volume orthotope in the parameter
space. A branch and bound search algorithm is designed to
obtain the global optimal solution. Our proposed new fu-
sion method is scalable w.r.t. the number of estimates and
its complexity is almost constant w.r.t. the number of partial
estimates. Our proposed algorithm can be applied to a wide
variety of applications (e.g. articulated objects tracking, oc-
cluded objects tracking), where effective information fusion
from separate sources is needed.
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Figure 8. Tracking articulated objects. From top to bottom,the articulated objects are split into 3, 4, 5 parts, respectively.

Figure 9. Comparison between our algorithm and RANSAC. Odd rows: our results; even rows: RANSAC results.

Figure 10. Tracking occluded face (sequence from [1]).


