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Abstract—Enormous uncertainties in unconstrained environments lead to a fundamental dilemma that many tracking algorithms have

to face in practice: Tracking has to be computationally efficient, but verifying whether or not the tracker is following the true target tends

to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to this

problem, many existing methods tend to be either effective but computationally intensive by using sophisticated image observation

models or efficient but vulnerable to false alarms. This greatly challenges long-duration robust tracking. This paper presents a novel

solution to this dilemma by considering the context of the tracking scene. Specifically, we integrate into the tracking process a set of

auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties, at least

in a short time interval: 1) persistent co-occurrence with the target, 2) consistent motion correlation to the target, and 3) easy to track.

Regarding these auxiliary objects as the context of the target, the collaborative tracking of these auxiliary objects leads to efficient

computation as well as strong verification. Our extensive experiments have exhibited exciting performance in very challenging real-

world testing cases.

Index Terms—Computer vision, visual object tracking, context aware, collaborative tracking, data mining, robust fusion, belief

inconsistency.

Ç

1 INTRODUCTION

ROBUST long-duration visual tracking is demanded by
many contemporary applications such as video-based

surveillance and vision-based interfaces. One fundamental
obstacle in the way is the lack of efficient means for
verification, i.e., to determine whether the object being
followed by the tracker is really the target. At the extreme,
this is in fact a recognition task. Without effective verifica-
tion, the tracker is likely to drift away gradually or fail
when the target is occluded even for a short period of time.
Therefore, although extensive research efforts have been
taken, it is still quite difficult in practice to achieve robust
and efficient long-duration tracking in unconstrained real-
world environments. Most existing methods are in a
dilemma: either be fast but fallible or be robust but slow.

This dilemma originates from the opposite requirements
for the image likelihood models: On one hand, the likelihood
model should be simple for efficient motion estimation and
tracking; on the other hand, it has to be sophisticated for
comprehensive verification of the target. We call them
descriptive likelihood and discriminative likelihood, respec-
tively. In general, descriptive likelihood is based on the
descriptive image features that can be easily accessible and
specified, e.g., contours [1], [2], colors [3], or even image
regions [4], [5], and so forth. The matching of these image
features leads to efficient computation of the descriptive

likelihood and thus fast motion estimation (e.g., differential
methods such as kernel-based tracking [3], [5], [6]).

However, in practice, many real-world complications
such as clutters, illumination and view changes, low image
quality, motion blur, and partial occlusions may invalidate
simple descriptive likelihood models. As a result, good
matches of these descriptive features do not necessarily
have to correspond to the true target, and background false
positive objects may also be good matches. Over the years,
there have been two approaches to address this issue:
online adaptation of the descriptive likelihood models [5],
[7], [8], [9] or using discriminative likelihood models that
distinguish the true target from false positives. Without
strong verification that provides confident supervision,
online adaptation is risky and lacks a mechanism to prevent
drifting. On the other hand, discriminative likelihood is
generally associated with classifiers, e.g., the SVM tracker
[10]. These classifiers can be trained offline or online [11],
[12]. As learning a classifier has to be based on a large
number of training features, it tends to be computationally
demanding.

Is there a way to get out of the dilemma so as to have more
efficient but still effective verification? In all of these existing
methods, the dynamic environment is taken for granted as the
adverse party for the tracker as it generates false positives and
most computation has to be spent in separating the true target
from the environment. However, the environment can also be
advantageous to the tracker if it contains objects that are
correlated to the target. For example, if we need to track a face
in a crowd, it is almost impossible to learn a discriminative
model to distinguish the face of interest from the rest of the
crowd. Why do we have to focus our attention only on the
target? If the person (with that face) is wearing a quite unique
shirt (or a hat), then including the shirt (or the hat) in matching
will surely make the tracking much easier and more robust.
By the same token, if another face always accompanies the
target face, treating them as a geometric structure and
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tracking them as a group will be much easier than tracking
either of them. It is clear that this makes the verification much
easier as the discriminative model is much simpler. We call
this new approach context-aware visual tracking (CAT) as it
takes into consideration the context of the target, as shown in
Fig. 1.

A target is seldom isolated and independent to the entire
scene; therefore, there may exist some objects that have
short-term or long-term motion correlations to the targets
(but are unknown to the tracker beforehand). Thus, taking
the advantage of this context information in an efficient way
can improve the robustness of the tracker as the spatial
context provides additional verification. We represent the
context of a target by a set of auxiliary objects that are
automatically discovered on the fly in an unsupervised
fashion by using data mining techniques. A context-aware
tracker can discover a set of auxiliary objects and track them
simultaneously. Specifically, in this paper, auxiliary objects
are those that exhibit strong motion correlation to the target.
The correlation can be employed to improve tracking and to
provide computationally efficient but powerful verification.
Intuitively, an auxiliary object should satisfy three proper-
ties at least in a short time interval: 1) persistent co-
occurrence with the target, 2) consistent motion correlation
to the target, and 3) easy to track.

In the proposed context-aware tracking, auxiliary objects
can be in various forms, e.g., solid semantic objects that bear
intrinsic relations to the target or certain image regions that
happen to have motion correlation with the target for a
short period of time. They may reliably associate to the
target for a long duration, or only for a short time interval,
or may not exist at all. Thus, it is impossible to determine
auxiliary objects offline in advance, but they have to be
discovered on the fly. We resort to data mining techniques
for discovering auxiliary objects by learning their co-
occurrence associations and estimating affine motion mod-
els to the target. Data mining methods originated from text
information processing and relational databases [13] and
found their uses in extracting video objects [14], [15], [16].
To the best of our knowledge, this paper presents an
original attempt of combining visual tracking and data
mining in a collaborative tracking framework.

This new approach has the following advantages. First, it
is computationally efficient because auxiliary objects are
easy to track (e.g., color regions) and do not incur much
computational cost. Second, it outputs more accurate
tracking results. A context-aware tracker tracks the target
and the set of auxiliary objects as a random field in a
collaborative manner. It is provably correct that the
uncertainty of the motion estimation of the target is

reduced. Third, it also provides effective verification,
because the learned motion and/or geometric correlations
among the target and the auxiliary objectss serve as strong
cues for verification. Last but not the least, it is intelligent
and robust. The context of a target, i.e., the auxiliary objects
and the motion correlation (i.e., the random field), is
automatically discovered on the fly. The robust fusion
embedded can handle partial occlusions and even camou-
flages. Our extensive tests on real-world data give quite
exciting performance in dealing with challenging cases
including large-scale changes, partial occlusions, and
complicated cluttered backgrounds.

The remainder of this paper is organized as follows:
Related work on visual object tracking is reviewed in
Section 2. The overview of the proposed approach is
presented in Section 3. The three components of the
proposed approach, i.e., discovering the auxiliary objects
by data mining, collaboratively fusing the tracking results
of auxiliary objects and the target, and identifying the
outliers, are elaborated in Sections 4, 5, and 6, respectively.
Experiments on real-world sequences are reported in
Section 7. Concluding remarks are given in Section 8.

2 RELATED WORK

Visual tracking has been an active research topic since the
early 1980s and keeps advancing both in theory and
practice as the expectations are soaring significantly in
real-world applications, e.g., video-based security surveil-
lance, medical applications [17], and autonomous vehicle
[18]. The targets in visual tracking evolve from points in
dense optical flow [19], [20], [21], [22], contours [1], and blob
regions [3], [23], to more complicated articulated objects [24]
and multiple objects [25], [26]. Meanwhile, visual tracking is
closely coupled with and greatly benefits from many related
tasks, such as background subtraction [27], image/motion
segmentation [28], and statistical learning [10], [29]. For a
more comprehensive survey about image features and
techniques used in tracking, we refer readers to [30].

Regardless of the diverse features and targets studied in
tracking, essentially as a recursive motion estimation
problem, visual tracking mainly involves two fundamental
issues: matching and searching. They correspond to target
likelihood/observation models that measure the matching
between a hypothesis and the target, and the motion
estimation schemes that search for the optimal hypothesis.
Motion estimation schemes can be differential and based on
gradient descent search [3], [5] and can be sampling based
such as particle filters [1], [31] or sequential Monte Carlo.
The search may incorporate the prior knowledge about
target dynamics, e.g., Kalman filters, multiple hypothesis
tracking (MHT) [32], [33], or probability data association
filter (PDAF) [34], [35].

The target likelihood/observation model is the core in
visual tracking, which primarily determines tracking accu-
racy and efficiency. A target can be described by its visual
features, based on which a descriptive likelihood model can
be constructed. If the features are unique and invariant to the
environment changes, tracking is going to be an easy task.
However, in the real world, the environment is unconstrained
and presents tremendous variabilities; it is doubtful if the
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Fig. 1. Illustration of context-aware tracking. T indicates the target and Ik
means the spatial context of the target. Traditional tracking methods

focus their attention on the target only, while context-aware tracking

considers the target and its spatial context within a network.
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invariant features determined in advance (thus, the
descriptive likelihood model) will still be valid during
the runtime. Thus, a short-term invalidation of the
likelihood model, e.g., the target moves out of the field
of view or occlusion is present, is very likely to fail the
tracker. A more adverse failure situation is that the tracker
is following a false positive that also evaluates a large
descriptive likelihood.

To deal with this challenge, various approaches have
been proposed in the literature. Despite the versatile
formulations, in general, they can be categorized into the
following three cases: integrating multiple cues, online
adaptation of descriptive models, and using discriminative
models. Taking into consideration the multiple visual cues
leads to a rich descriptive model, e.g., geometry and
illumination can be combined [5]. The integration can be
based on simple heuristics [2] or co-inference [36]. Online
adaptation of descriptive models changes the parameters of
the likelihood model according to the changes of the
environment. For example, an appearance model can be
adapted based on EM [23] or based on an incremental
updating of the basis of the appearance subspace [7], [8].

Since descriptive likelihoods only check the matching of
predefined features, a good match is not necessarily the true
target but a false positive. Therefore, another approach is
based on using discriminative likelihood models that
distinguish the target from the environment. Such discri-
minative models can be trained offline in advance, e.g., the
SVM tracker [10] that uses the SVM score as the matching
criterion. Since the offline training is to optimize the global
and generic discrimination performance, it may not be
accurate enough locally. Therefore, online adaptation can
also be used for discriminative models. For example, this
can be done by online selection of discriminative color
spaces from a fixed set of predefined color spaces to
distinguish the target from the background [37] or by
selecting Haar features from a large pool [12] or by learning
a set of weak classifiers [11], [38].

In contrast to these existing methods, we propose a novel
approach to enhancing the observation model by online
discovery of some auxiliary objects [39], which can help
verify the target tracking results. These auxiliary objects
with short-term motion correlation to the target can serve as

the context of the target. Tracking the target as well as the

auxiliary objects in a collaborative way can effectively

reduce the uncertainty of the tracking results and deal with

large uncertainties of the environments.

3 OVERVIEW OF OUR APPROACH

The proposed approach, called context-aware visual tracking

or CAT, has the following three important components:

. Mining auxiliary objects (in Section 4). The methods
of extracting the candidates of auxiliary objects and
mining the associations will be discussed. For
auxiliary object candidates, multibody grouping is
employed to discover the potential multibody
structure from motion and to estimate the affine
motion models through subspace analysis. This step
not only identifies a set of auxiliary objects but also
learns a random field among them.

. Collaborative tracking (in Section 5). Both the target
and the set of auxiliary objects need to be tracked in
CAT. Because they are not independent, the tracking
is formulated based on a random field and is
achieved efficiently by the collaborations among all
the individual trackers in the network where an
individual tracker influences other trackers as well
as receives influence from others.

. Robust fusion (in Section 6). For an individual
tracker, there may exist inconsistency among the
influences it receives and its own image measure-
ments. Handling inconsistency is fundamental and
critical to fuse auxiliary object trackers and the target
tracker.

The entire procedure of the CAT algorithm is summar-

ized in Fig. 2. The details of each component will be

explained in the following sections.

4 MINING AUXILIARY OBJECTS

4.1 Auxiliary Objects

Auxiliary objects (AOs) are the spatial context that can help

the target tracker. We abuse a little bit the term “object.” In

fact, it is not necessary for an AO to be a semantic object. In
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Fig. 2. Block diagram of the CAT algorithm. The submodules of auxiliary object mining, collaborative tracking, and robust fusion are enclosed in dash

rectangles.
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the tracking scenario, it refers to an informative image
region or an image feature that satisfies the following three
properties:

1. frequent co-occurrence with the target;
2. consistent motion correlation to the target;
3. suitable for tracking.

Although this definition may cover a large variety of

image regions or features, not all of them are appropriate
for balancing the complexity and generality. Since the prior
knowledge about the target and the environments are in

general not accessible, it is preferable to choose simple,
generic, and low-level auxiliary objects, such as image
regions or feature points. Feature points are geometrically
significant and provide the most localized information.

There is some outstanding work on invariant feature points,
e.g., [40], [41], [42], [43]. Although feature points may be
salient and therefore suitable for object recognition, they are
in general prone to occlusion, lighting, and local geometry

changes. Thus, they are not always stable and reliable in
video. In addition, extracting invariant features needs a
good amount of computation, which makes it hard to

achieve real-time performance. Therefore, although the
tracking of feature points can be quite efficient, we
generally do not use feature points as auxiliary objects.

Instead, we choose to use significant image regions.
Different from localized image feature points, image

regions reflect the visual property of a neighborhood and
they tolerate more occlusions and local geometry changes.
More importantly, image regions, if selected properly, can

be reliably and efficiently tracked, for example, by the
mean-shift algorithm [3]. Although texture regions may
have invariants and can be very significant, our current
implementation does not use them because it takes more

computation to spot them than color regions. Therefore, our
current treatment for data mining is to discover a set of
color regions that are temporally stable and spatially
correlated to the target in a video sequence in an

unsupervised way.

4.2 Item Candidate Generation

To follow data mining’s conventions and make our

discussion clear, we define the following terms for our
video data mining task.

Definition 1. We denote an item candidate by s, which is a

particular image feature obtained by low-level image proces-

sing; an item by I, which is a quantized item candidate in a

vocabulary V ¼ fI1; . . . ; INg, which is learned by clustering

all item candidates; an item set by I � V, set of items; and a

transaction by � , the item set within a neighborhood R.

In our implementation, an item candidate is a rough
color segment with its motion parameters, and an item is

defined by I ¼ fHðIÞ;xIg, where HðIÞ is the average color
histogram of the item and xI is the motion parameters and
respective covariances. The set of candidate AOs, denoted
by F , is a subset of V, which are frequently co-occurrent

with the target. The candidate AOs that have strong motion
correlations to the target are identified as auxiliary objects.

The item candidates s, i.e., the color segments in our
case, are the inputs for mining. In the tracking scenario,
efficient segmentation is more preferred than a delicate but
expensive one since exact boundaries of the segments are
not necessary for mining and tracking. In our current
implementation, we employ the classical split-merge quad-
tree color segmentation [44]. The image is recursively split
into the smallest possible homogenous color regions and
then the adjacent regions with similar appearances are
merged gradually. The most prominent advantage of this
method is computational efficiency. Some segments are not
appropriate for tracking, so we employ some heuristics to
prune them, e.g., segments that are too large (the area over
1/2 of the entire image) or too small (the area less than
64 pixels), and concave segments (the area less than 1/2 of
the bounding box) are excluded. These kinds of item
candidates are suitable for tracking. Fig. 3 shows some
typical segmentation results.

4.3 Frequent Item Mining

Candidate auxiliary objects are the items that are frequently
co-occurrent with the target. To build the vocabulary V so as
to construct the transactions for mining, we need to quantize
the item candidates. In conventional mining applications,
usually item candidates can be collected and quantized
offline by k-means or kNN clustering methods. However, in
this tracking scenario, we have to do this in an incremental
way. The procedure is given as follows: The color segments in
each incoming frame are matched to the items in the current
vocabulary by the Bhattacharyya coefficient [3] of the
histograms of the segments as the similarity measurement.
Then, each color segment (i.e., item candidate) can be
quantized and given a label, e.g., IA to IG are items, as shown
in Fig. 4. Afterward, for each item, we form a transaction that
consists of the item itself and the items within its neighbor-
hood. There are different choices of the neighborhood. For
example, we can use the item itself (i.e., use a zero neighbor).
The items inside the region of interest in each frame construct
a transaction � and a transaction database is built based onM
consecutive frames.

Given the transaction database, the items that have a
high co-occurrent frequency will be chosen as candidate
auxiliary objects. Since the mining is performed online, we
need to take into account the importance of the historical
images. We maintain an M-frame sliding window and count
the item frequency fðInÞ ¼

Pt
i¼t�Mþ1 �

t�iBiðInÞ with the
forgetting factor � ¼ 0:9, where BiðInÞ is a binary function
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Fig. 3. Illustration of the quad-tree color segmentation. (Left) Input

frame. (Middle) Oversegmentation. (Right) Pruned segmentation.
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and 1 indicates that In appears in frame i. If image
segmentation does not end up with too many small
segments, the frequent items are good enough for identify-
ing candidate auxiliary object. If the segmentation tends to
oversegment and produces too many small segments, we
cannot use zero neighbor for constructing transactions but
use the nearby items to form transactions to identify co-
occurrent patterns that merge the adjacent small segments.
This is another reason that it is fine for the image
segmentation step to be imperfect. As illustrated in Fig. 4,
though there are quite a few color segments in each frame,
by counting their co-occurrent frequencies, only F ¼
fIA; IBg are identified as frequent items, i.e., candidates of
auxiliary objectss. The rest of the problem is to determine
whether a candidate really bears a motion correlation to the
target. The issue will be discussed next.

4.4 Mining by Subspace Analysis

Finding the frequent items only spots the candidate
auxiliary objects that are frequently co-occurrent with the
target, but they do not necessarily exhibit strong motion
correlations to the target. For example, in Fig. 4, IB is less
correlated to the target T than IA does. We need to check if
these candidates satisfy the motion correlation requirement
of an auxiliary object. For each candidate, we can initialize a
mean-shift tracker to find its correspondences in the
successive image frames. If this tracker loses track for four
frames in a row, we assert that this candidate is not suitable
for tracking and remove it. Otherwise, we can obtain the
motion trajectories over the frames for a set of candidate
auxiliary objects. Then, we employ a noise subspace
analysis method to discover the potential multibody
structure from motion and estimate the affine motion
models between the object pairs.

The motion correlation between two moving objects can
be very complicated and nonlinear, but, generally, linear
motion models can be used as a good approximation. We

extend the simple translational model in [39] to a more
general affine motion model. When the points on two
objects have affine motion relation, they must reside in a
linear subspace. Thus, identifying this subspace will lead to
the estimation of the affine motion model.

At time t, one candidate auxiliary object IO 2 F is
represented as xt ¼ fuxt ; vxt g

> and fsut ; svtg, where ðuxt ; vxt Þ are
the coordinates of the center of IO and sut and svt are the scales,
respectively. Similarly, the targetT can be represented as yt ¼
fuyt ; v

y
tg
> and fsut ; svtg. If IO and T co-occur and have stable

motion correlation, then IO can be claimed as an auxiliary
object. So, the goal is to evaluate whether IO andT have strong
motion correlation in time window ½t�M þ 1; t� given the
trajectories of yt and xt within this time window.

Assume an affine motion model between candidate
auxiliary object IO and the target T for the period of frame
t�M þ 1 to frame t, which is specified by a 2 � 2 matrix At

and a translation vector bt ¼ fubt ; vbtg
>, i.e.,

yt ¼ Atxt þ bt: ð1Þ

Subtracting the mean �yt of yt and �xt of xt in the time
window ½t�M þ 1; t� and taking the noise into considera-
tion, the relation between IO and T can be expressed with
~yt ¼ yt � �yt and ~xt ¼ xt � �xt, as

~yt ¼ At~xt þ n; ð2Þ

where n is a zero mean white noise with E½nn>� ¼ �2I.
If we stack ~yt and ~xt, the covariance matrix C can be

expressed as

C ¼ E ~yt
~xt

� �
~y>t ; ~x

>
t

� �� �
: ð3Þ

It is clear that rankðCÞ � 2 if there is no noise (i.e., n ¼ 0).
This rank deficiency property is important in detecting the
subspace due to motion correlation. In reality, because
n 6¼ 0, C is likely to have a full rank. Since the noise is
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Fig. 4. Illustration of mining auxiliary objects. The target is denoted as T , and IA to IG represent the items (i.e., the color segments). IA and IB are

selected as candidate auxiliary objects as they are frequently co-occurrent with the target. IA is identified as one auxiliary object by multibody

grouping since it has strong motion correlation to T .
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additive, it is easy to prove that the 4D space spanned by
ð~y>t ; ~x>t Þ is a direct sum of a signal subspace and a noise
subspace. The signal subspace is up to rank 2 and
corresponds to the large eigenvalues of C and the noise
subspace corresponds to the smallest eigenvalues (i.e., �).
Therefore, we can check and threshold the eigenvalues to
identify those subspaces.

Denoting the estimated covariance matrix by Ĉ and the
covariance matrix of ~x by Ĉx, we have

Ĉ ¼
XM�1

i¼0

~yt�i
~xt�i

� �
~y>t�i; ~x

>
t�i

� �
¼ AtĈ

xA>t þ �2 AtĈ
x

ĈxA>t Ĉx

� �
:

ð4Þ

Performing eigenvalue decomposition on Ĉ,

Ĉ ¼ Q�Q; ð5Þ

we obtain the sorted eigenvalues f�1; . . . ; �4g and ortho-
normal basis Q. If there are more than two eigenvalues
�2
j � �2, this candidate is not an auxiliary object since its

motion and that of the target are not in one subspace:

# of �2
j � �2

n o
> 2; the candidate is not an AO;
<¼ 2; otherwise:

�
ð6Þ

If the candidate is an AO, we can estimate its affine matrix At

with the property that the noise subspace is orthogonal to
the signal subspace. The last two eigenvectors correspond-
ing to the noise subspace of C are denoted as

q31 q41

q32 q42

q33 q43

q34 q44

0
BB@

1
CCA;

which are orthogonal to arbitrary vector ð~x>t A>t ; ~x
>
t Þ in the

signal subspace. Substituting them back to C, the 2 � 2
matrix At can be solved by

A>t
q31 q41

q32 q42

� �
þ q33 q43

q34 q44

� �
¼ 0: ð7Þ

Then, the translation vector bt is obtained with �yt, �xt, and At.
This method gives an effective detection of auxiliary objects
and efficient estimation of their affine motion models.

Such a mining process is meaningful because it has
learned a random field. We denote the motion of the target
T by y and those of the auxiliary objects by xk, k ¼ 1; . . . ; K,
where K is the number of auxiliary objects. They constitute
a random field. The pairwise potentials  k0ðxk;yÞ are
actually learned as a by-product of this mining process,
which are given as

 k0ðxk;yÞ / e�
ðy�Akxk�bkÞ>ðy�Akxk�bkÞ

2�2 ; ð8Þ

where �2 is derived from the small eigenvalues of C in
(3). In many cases, auxiliary objects share almost the same
motion as the target, e.g., the torso and the target head.
Therefore, we can use a Gaussian distribution to
characterize those potentials. The mean of the Gaussian
is given by Ak and bk, which is the affine motion model
estimated for the kth auxiliary object. Note from now on,

the subscript indicates the index of an auxiliary object

instead of the time step.

5 COLLABORATIVE TRACKING

It is clear that CAT is not tracking a single target but a

random field. This random field among auxiliary objects

and the target is hidden and they need to be inferred from

image evidence. We formulate this problem under a

Markov network with a special topology, as shown in

Fig. 5, where we only assume pairwise connections between

the target y and the auxiliary object xk and there are no

connections among auxiliary objects. Each of them is

associated with its image evidence zk. We denote

Z ¼ fzk; k ¼ 0; . . . ; Kg, where K is the number of auxiliary

objects, and z0 is the observation of y (i.e., the target). The

core of tracking is to estimate the posteriors pðyjZÞ of the

target and pðxkjZÞ; k ¼ 1; . . . ; K, for the auxiliary objects.
For such a graph with a star topology, a belief propagation

algorithm with two-step message passing gives the exact

estimates of the posteriors. Denote by pðzijxiÞ the local

likelihood and by �kðxkÞ the local prior such as the dynamics

prediction prior for xk. Each pair of the target and an auxiliary

object xk bears a pairwise potential  k0ðxk;yÞ learned in the

subspace-based mining process, as described in Section 4.4.

mk0ðyÞ represents the message passed from the kth auxiliaty

object to the target andm0kðxkÞ is the message from the target

to the kth auxiliary object.
At the first iteration step, the target y receives all the

messages mk0 from every auxiliaty object xk, then propa-

gates the message back to them at the second iteration. This

message passing mechanism implies a collaborative way of

tracking. Notice that if the target and the auxiliaty objects

are independent, their independent motion estimates are

p̂kðxkjZÞ / �kðxkÞpðzkjxkÞ; k ¼ 1; . . . ; K. The relation be-

tween the true estimates and independent estimates is

simply captured by a fixed-point equation of the messages:

pðyjZÞ / p̂0ðyjZÞ
Y
k

mk0ðyÞ; ð9Þ

mk0ðyÞ ¼
Z
xk

p̂kðxkjZÞ k0ðxk;yÞdxk; ð10Þ

pðxkjZÞ / p̂kðxkjZÞm0kðxkÞ k ¼ 1; . . . ; K; ð11Þ
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Fig. 5. The star topology of a random field. The hidden motion parameter

of the target is denoted as y with the image observation z0. The motion

parameters of the auxiliary objects are denoted as xk with their

respective observations zk.
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m0kðxkÞ ¼
Z
y

p̂0ðyjZÞ
Y

xinxk
mi0ðyÞdy: ð12Þ

This suggests that we can use individual trackers for the
target and auxiliary objects. However, these sets of
individual trackers are not independent, as they need to
combine their local estimates and the messages from others,
and iterate. Such a collaborative mechanism leads to a very
efficient solution to tracking the random field. Thus, even if
our new approach involves the tracking of a set of auxiliary
objects (e.g., by mean shift), the computation is manageable
because of the efficiency of the collaborative way.

Compared with a single tracker for the target, the
involvement of auxiliary objects can reduce the uncertainty
of the motion estimation of the target and thus make the
tracking more confident. We can prove this in a special case
when setting both the potential  k0ðxk;yÞ to be a Gaussian
Nð�k0;�k0Þ and the local likelihood pðzkjxkÞ to be a
Gaussian Nð�̂k; �̂kÞ (we ignore the local prior without
losing generality). Under this setting, the closed-form belief
propagation gives

��1
0 ¼ �̂�1

0 þ
XK
k¼1

ð�̂k þ�k0Þ�1; ð13Þ

�0 ¼ �0 �̂�1
0 �̂0 þ

XK
k¼1

ð�̂k þ�k0Þ�1ð�̂k þ �k0Þ
 !

; ð14Þ

where ð�0;�0Þ is the target’s posterior when tracking the
random field. If we assume the local priors to be Gaussian,
this result still holds but now ð�̂k; �̂kÞ refers to the local
posterior.

Equation (13) makes it clear that �0 is always less than
�̂0 since these covariance matrices are positive definite and
different motion parameters are uncorrelated. Therefore,
the confidence of the collaborative estimate of the target is
higher than that produced by a single target tracker.

6 INCONSISTENCY AND ROBUST FUSION

The closed form analysis for the collaborative tracking can
be explained in the view of information fusion. When the
connection potentials between the target and the auxiliary
objects are set to be extremely tight, i.e., the covariance of
�k0 is a zero matrix 0, this belief propagation is equivalent
to the best linear unbiased estimator (BLUE) for y; if they
are extremely loose, i.e., �k0 approaches infinity, it becomes
an independent estimation; otherwise, it is similar to
covariance intersection [45].

However, there is a hidden assumption for this conclu-
sion, i.e., the estimates from all the sources must be
consistent. In simple terms, they must more or less agree
with each other. However, in reality, this may not be valid,
when the estimates from the individual trackers may be
completely different or inconsistent for many reasons. If the
above-mentioned method to fuse these inconsistent esti-
mates is used, we may end up with an estimate that is
completely wrong but of a very high confidence. Such an
adverse estimation makes no sense and should be avoided.

It is desirable to have a mechanism to detect the incon-
sistency and identify outliers for a robust fusion.

In this paper, we define that two Gaussian sources are
consistent if the variance in the compatible function of these
two Gaussian sources approaches zero using EM estima-
tion (more rigorous and detailed definition is given in
Appendix A.1). In this sense, we proposed a new theorem
to measure the consistency for pairwise Gaussian sources
in Markov network [46]. We employ the following two
criteria that are very useful for detecting the pairwise
inconsistency. The proofs are presented in Appendix A.2.

Theorem 1. Considering two Gaussian sources Nð�1;�1Þ and
Nð�2;�2Þ, where �1; �2 2 IRn, the two sources are incon-
sistent if

1

n
ð�1 � �2Þ>ð�1 þ�2Þ�1ð�1 � �2Þ � 2þ

ffiffiffiffiffiffi
Cp

p
þ 1ffiffiffiffiffiffi

Cp
p ;

ð15Þ

where Cp is the two-norm condition number of �1 þ�2, and
they are consistent if

1

n
ð�1 � �2Þ>ð�1 þ�2Þ�1ð�1 � �2Þ < 4: ð16Þ

Although these are sufficient conditions in general cases,
they are actually also necessary conditions when n ¼ 1.
These criteria enable simple and quick detection of pairwise
inconsistency. Then, the estimation that is inconsistent with
all of the others will be regarded as an outlier. The outlier
can be the target or the AOs. If the target is an outlier, we
assert that the target is experiencing occlusion or drift and
suspend the mining process temporarily. In this case, we
can give an estimation of the target purely based on the
predictions from the auxiliary objects and search for the
image evidence. If the outlier is an auxiliary object, we
simply exclude this auxiliary object from fusion. After
excluding the outliers, we perform belief propagation again
on the rest of the network and employ the target tracker to
locate the target precisely. When the majority are not
consistent, which means the target estimate cannot be
verified, a tracking failure is asserted.

7 EXPERIMENTS

7.1 Experiment Settings

We substantialized and implemented the proposed CAT
algorithm in a head tracking system, where the head tracker is
a contour-based elliptical tracker similar to [2] and the
auxiliary trackers are mean-shift trackers. Since a fixed
number of edge points along the ellipse are matched, the
single head tracker is quite computationally efficient and
runs at over 50 fps. Although the single head tracker is
relatively robust to illumination and view changes, it is
vulnerable to cluttered backgrounds, motion blur, and
occlusions. In our experiments, we compare the proposed
CAT algorithm to the single head tracker in a large number of
real-world sequences captured in unconstrained environ-
ments including both indoor and outdoor scenes. These
extensive experiments and exciting results have demon-
strated the advantages of the CAT algorithm. Furthermore,
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we apply the same CAT algorithm to people tracking based

on an appearance-based torso tracker to exhibit the applic-

ability of the proposed idea to different types of targets.
The motion parameter y ¼ fu; v; su; svg to be recovered

includes the location ðu; vÞ and the scales su and sv. The

color segmentation and the mean-shift tracker work in the

normalized R-G color space with 32 � 32 bins. Without code

optimization, our C++ implementation of CAT comfortably

runs at around 10 fps on average on a Pentium 3 GHz

desktop for 320 � 240 images depending on the number of

auxiliary objects discovered.

7.2 Quantitative Experiments

For a quantitative evaluation, we manually labeled the

ground truth of the sequences kid in yellow, dancing

girl, and birthday kid for 1,200, 1,600, and 1,460 frames,

respectively. The evaluation criteria of tracking error are

based on the relative position errors between the center of

the tracking result and that of the ground truth, and the

relative scale normalized by the ground truth scale. Ideally,

the position differences should be around 0 and the relative

scales should be 1.
As shown in Figs. 6, 7, and 8, the position differences of

the results in the CAT are much smaller than that of the

single head tracker and the relative scales have much less
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Fig. 6. Quantitative comparison: (left) position errors and (right) scale errors [kid in yellow, 1,200 frames].

Fig. 7. Quantitative comparison: (left) position errors and (right) scale errors [dancing girl, 1,600 frames].

Fig. 8. Quantitative comparison: (left) position errors and (right) scale errors [birthday kid, 1,460 frames].
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fluctuations around 1. It demonstrates the advantages of the
CAT, i.e., reducing the false alarm rate and the estimation
covariance. Note that, at the end of the sequence kid in

yellow, the single tracker happens to track the head by
chance after the drift. Although the CAT tracker loses track
at around frame 1,100 for several frames, it is able to recover
promptly because of the auxiliary objects.

Some key frames are shown in Fig. 9.1 The first row
shows the results of the single head tracker where the
highlighted solid-yellow box indicates the location of the
head. The second row is the segmentation and mining
results, where each green rectangle indicates an item in the
current frame. The numbers in blue at the corner show the
item labels of the candidate auxiliary objects. The third row
illustrates the fusion results. Each blue box is the estimate of
the target from different sources (i.e., the target or the
auxiliary objects trackers). The white box indicates that
estimate is regarded as an outlier. The dark red box is the
final result of the fusion. The corresponding labels of the
auxiliary objects are shown at the bottom-right corner. The
final tracking results of CAT are shown in the fourth row as
highlighted solid-yellow boxes and the dash-red boxes are
the auxiliary object trackers.

7.3 Occlusion and Drift

Fig. 9 samples the results on the sequence kid in yellow,
which is very challenging due to serious occlusion, target
out of range, and the clutters. When the head moves outside
the upper boundary at frame 113, the single head tracker
drifts to a false positive in the cluttered background and is
unable to recover. In contrast, the CAT tracker asserts the

occlusion and keeps tracking correctly. It freezes the head
tracker temporarily and reinitializes it based on the
predictions provided by the auxiliary objects. When the
kid is walking in front of the bush, the background is so
cluttered that it causes big troubles to the edge-based
tracker. On the other hand, CAT discovers several auxiliary
objects, i.e., the shirt and short pants, which are quite stable
and provide roughly correct estimates of the head location
and rescue the head tracker from the drift at frame 736.

7.4 Quick Movement and Camouflage

As shown in Fig. 10, the sequence dancing girl presents
quick movements and camouflage. All of the girls are
similar in terms of their appearances. This is extremely
difficult for a single head tracker to work, but CAT
comfortably handles such a challenge. During the dancing,
CAT gradually discovers the spatial relations between the
target (the girl of interest) and the adjacent context, e.g.,
other girls’ shirts, although such relations are only valid in a
short time interval. At frame 757, the single head tracker is
trapped by the shoulder of the girl and unable to recover. At
frame 758, the CAT tracker identifies this false alarm and
pulls back the head tracker with the help of the predictions
of the AOs that are close to the true target. At frame 1234,
the girl of interest suddenly bows down, CAT detects the
tracking failure, and resumes tracking quickly. CAT can
comfortably track over 1,600 frames for this highly dynamic
sequence until the target moves outside the left boundary
for several seconds.

7.5 Scale and View Changes

We show the tracking performance when the target under-
goes large scale and view changes and demonstrate the
transition of the auxiliary objects in the sequence kid&dad
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1. All of the faces shown in this paper were mosaicked for privacy
protection.

Fig. 9. Frames 50, 113, 124, 736, and 866 of kid in yellow, 1,200 frames. (First row) The head tracker. (Second row) The mining results. (Third

row) The fusion results. (Fourth row) The CAT tracker.
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(Fig. 11). For the single head tracker, when the scale of the

head becomes very small, it drifts to the torso of the kid from

frame 69 and fails the tracker. During the first 300 frames, the

dad walks with the kid with quite stable motion correlation.

This is discovered by CAT and the region of dad’s shirt is

mined as the auxiliary object to help track the kid’s head.

When they move close to the camera, the scale and the view

change dramatically so that the learned relation between

dad’s shirt and the kid’s head no longer holds. Fortunately,

CAT spots that the hat is a good auxiliary object at large

scale and guides the tracking. At the end of the video, the

head is completely occluded by the hat for several seconds.

Although this is impossible to recover, CAT detects and

reports the tracking failure, while the single head tracker

tends to drift to a false positive without notice.

7.6 Cluttered Background

In sequence birthday kid, the target head experiences
large out-of-plane rotation and the appearances change
greatly, as shown in Fig. 12. For the contour tracker, when
the rear head is in the dark background, no good
observation is available around the head so the contour
tracker drifts to the torso and other elliptical regions and is
unable to recover. For the CAT tracker, with the help of the
auxiliary objects, the tracker either keeps tracking in the
tough situations or recovers from drifting in several frames.
Note that the auxiliary objects discovered can be some
objects with inherent relations with the target, such as the
hat and short pants, or just something that happens to have
temporary relations, such as the refrigerator or the gift box.
This real-world sequence demonstrates the advantages of
the auxiliary objects for long-duration tracking.

As shown in Fig. 13 (swimming boy), the background is
quite cluttered due to the texture of water and other people,
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Fig. 10. Frames 67, 757, 758, 764, and 1234 of dancing girl, 1,600 frames. (Top) The head tracker. (Bottom) The CAT tracker.

Fig. 11. Frames 69, 180, 313, 540, and 616 of kid&dad, 617 frames. (Top) The head tracker. (Bottom) The CAT tracker.

Fig. 12. Frames 0, 72, 93, 170, and 1455 of birthday kid, 1,460 frames. (Top) The head tracker. (Bottom) The CAT tracker.
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which makes the single head tracker hopeless. The single
head tracker is easily distracted by the edges in the
background and drifts away. On the other hand, CAT
discovers the two blue life buoys and the swimming hat
and uses them as the auxiliary objects. When the boy jumps
toward his mother’s arms, CAT uses the life buoys as well
as the orange box on the bank to help locate his head
accurately, which is difficult for the single head tracker.
Note that at the end of this sequence, the kid’s head is
occluded by his mom’s head and CAT switches to the mom.
This is reasonable because the auxiliary objects cannot
differentiate the two heads at the same location.

7.7 More People Tracking Results

To demonstrate the generalization ability of the proposed
method, we apply the CAT algorithm to people tracking
based on an appearance-based torso tracker. As shown in
Fig. 14 [47], when the person to track is occluded by his
friends around frame 56, the single torso tracker loses the
target and drifts away. In contrast, since the other
pedestrians serve as the temporary contexts, they can help

the CAT tracker keep following the target. In addition, after
frame 135, the context information helps to prevent the
tracker drift to the person next to the target though both
persons have very similar appearances. Another example
sequence is shown in Fig. 15, where an athlete in a
marathon match is tracked with natural lighting changes
and view changes present.

7.8 Discussions

As demonstrated in a large number of challenging
sequences, there are two primary scenarios when the
auxiliary objects greatly help the tracking: 1) Some auxiliary
objects have persistent relations to the target and present
fairly accurate estimates although these relations may not
be foreseen; 2) a number of auxiliary objects have transi-
tional relations to the target and the majority of them can
give rough correct estimates in a short time interval. In the
cases of occlusion or drift, it is not likely that all of the
auxiliary objects are occluded or all auxiliary trackers lose
track at the same time since the auxiliary objects may not be
located in a close vicinity of the target. The mechanism of
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Fig. 13. Frames 87, 334, 526, 578, and 848 of swimming boy, 900 frames. (Top) The head tracker. (Bottom) The CAT tracker.

Fig. 14. Frames 40, 56, 68, 135, and 425 of three past shop, 425 frames. (Top) The torso tracker. (Bottom) The CAT tracker.

Fig. 15. Frames 72, 468, 504, 582, and 625 of marathon, 625 frames. (Top) The torso tracker. (Bottom) The CAT tracker.
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robust fusion can identify the inconsistency induced by
occlusions or drifts. There are some extremely difficult
cases, e.g., the target is occluded for a long time and CAT
fails reasonably because online data mining may not be
invoked at all. Or only a couple of auxiliary objects are
discovered and they do not agree with each other about the
target motion, which implies insufficient context informa-
tion to verify the tracking results. At these cases, the
advantage of CAT is the ability to detect and report the
failure, and leave the system to other means of reinitializa-
tion, while the single tracker has no reliable mechanism to
report the failure but keeps tracking aimlessly and regard-
lessly. In view of this, the benefit of CAT is pronounced.

8 CONCLUSIONS

We have proposed a novel solution to robust long-duration
tracking by considering the context of the target. By
integrating an unsupervised data mining procedure, a set
of auxiliary objects is discovered on-the-fly, which provide
extra measurements to the target and reduce the uncer-
tainty of the estimation. In addition, the learned motion
correlations among the auxiliary objects and the target serve
as a strong cue to verify the tracking results to handle short-
term occlusion or tracking lost. The auxiliary objects are
automatically discovered without supervision and do not
incur much extra computation, which makes the approach
generally applicable to a wide spectrum of tracking
scenarios.

For future work, we will study the relation between the
number of auxiliary objects discovered and the confidence
level of the verification. Another important issue to
investigate is how to compromise the need for a quicker
initial mining procedure within a shorter time window,
which may find more auxiliary objects, and a longer time
window, which may find fewer auxiliary objects but with a
high reliability.

APPENDIX A

PROOF OF THEOREM 1

A.1 Definition of Inconsistency in Two-Node
Gaussian Markov Network

We consider defining the inconsistency in a two-node
Gaussian Markov network, as shown in Fig. 16, where the
two observation nodes are Gaussian random vectors z1 	
Nð�1;�1Þ and z2 	 Nð�2;�2Þ with �1; �2 2 IRn. Therefore,
the compatible functions between observation nodes and
the hidden nodes are Gaussian, i.e.,

�ðxi; ziÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þnj�ij
p e�

1
2ðzi�xiÞ>��1

i ðzi�xiÞ: ð17Þ

Assuming x1 can be predicted by a function f of x2, the
compatible or the potential function of x1 and x2 can be
expressed as a Gaussian

 ðx1;x2Þ ¼
exp � x1�fðx2Þð Þ> x1�fðx2Þð Þ

2�2
12

n o
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þn

p
�n12

ð18Þ

¼:
exp � ðx1�A12x2��12Þ>ðx1�A12x2��12Þ

2�2
12

n o
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þn

p
�n12

; ð19Þ

which indicates if x1 and fðx2Þ can be regarded as being
generated from one common model and �2

12 is the scalar
variance. When f is nonlinear, we linearize it by Taylor
expansion, i.e., �12 ¼ fð0Þ and A12 ¼ @f12ðx2Þ

@x2
jx2¼0 is the n� n

Jacobian. So, we only consider the linearized relation of x1

and x2 in (19).
�2

12 indeed models the uncertainties between the
estimate x1 and the neighborhood estimate A12x2 þ �12.
Assume A12 and �12 are known, given all of the fz1; z2g, the
estimate of �2

12 is a natural indicator of whether x1 and
A12x2 þ �12 should be consensus, i.e., if �2

12 is very small
toward zero, then they should be consensus since  ðx1;x2Þ
is approaching an impulse delta function and vice versa.

The Bayesian MAP inference of x1 and the ML estimate
of �12 can be obtained by the following Bayesian EM
algorithm [48], i.e.,

x1 ¼ ��1
1 þ

1

�2
12

I

� ��1

� ��1
1 z1 þ

1

�2
12

ðA12x2 þ �12Þ
� �

; ð20Þ

�2
12 ¼

1

n
ðx1 �A12x2 � �12Þ>ðx1 �A12x2 � �12Þ: ð21Þ

Fixing �12, the E-Step in (20) obtains the MAP estimate of
x1 by fixed-point iteration. Fixing x1 and x2, the M-Step in
(21) maximizes pðx1;x2j�12; z1; z2Þ with respect to �12.
Combining the two steps together also constitutes a fixed-
point iteration for �2

12.
We measure the consistency of two observation sources

z1 and z2 by examining if their estimates x1 and x2 are
consensus, i.e., if x1 is predictable from x2 through a linear
relation A12x2 þ �12 with small variance �2

12. Therefore,
when z1 and z2 are consistent, the estimate of x1 and
A12x2 þ �12 will be consensus, i.e., they will be almost the
same. In this case, from (21), the estimate of �2

12 will always
approach zero, i.e., zero is the only fixed point. On the
contrary, if they are inconsistent, the estimate of x1 and
A12x2 þ �12 may deviate from each other, i.e., the con-
vergent results of �2

12 may be nonzero. This indicates that
there exist nonzero fixed points for �2

12. These motivate us to
define the inconsistency of two Gaussian sources as follows:

Definition 2. If zero is the only fixed point for �2
12 in the

Bayesian EM, i.e., in (20) and (21), fz1;�1g and fz2;�2g are
consistent; if there exist nonzero fixed points for �2

12, they are
inconsistent.

A.2 Proof of the Inconsistency Criterion

Given the aforementioned definition of inconsistency for
two Gaussian sources in two-node Markov network, we
propose a sufficient condition to check the convergent value
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Fig. 16. A two-node Markov network.
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of �2
12 as stated in Theorem 1. The basic idea of the proof is

to check if (21) has nonzero solutions. With some
manipulations, we express (21) as a function F ð�2

12Þ in
(27). Then, we show that if the condition number Cp of
�1 þ�2 satisfies (15) in Theorem 1, there exist two positive
numbers 0 < k2 < k1 such that F ðk1Þ < 0 and F ðk2Þ > 0,

which indicate that there is a nonzero solution. If Cp
satisfies (16), F ð�2

12Þ < 0 for all �2
12 > 0, thus there is no

nonzero solution for (21).

Proof. Fixing �2
12, the fixed-point iteration in (20) is

guaranteed to obtain the exact MAP estimate on the

joint posterior Gaussian. For simplification of notation,
we denote x̂2 ¼ A12x2 þ �12 and ẑ2 ¼ A12z2 þ �12. Define
P ¼ �1 þ�2 and S ¼ Pþ �2

12I. The convergent result in
the E-Step in (20) is the same as

x1

x̂2

� �
¼ �2

12Iþ �̂2

� �
S�1z1 þ�1S

�1ẑ2

�̂2S
�1z1 þ �2

12Iþ�1

� �
S�1ẑ2

" #
: ð22Þ

Embedding it to the M-Step in (21), we have

�2
12 ¼

1

n
�2

12�
2
12ðz1 � ẑ2Þ>S�1S�1ðz1 � ẑ2Þ: ð23Þ

To prove Theorem 1, since zero is a solution of �2
12 for

(23), we only need to analyze the existence of nonzero

solutions of �2
12 for

1

n
�2

12ðz1 � ẑ2Þ>S�1S�1ðz1 � ẑ2Þ � 1 ¼ 0: ð24Þ

P is the sum of two covariance matrices so it is real positive

definite, thus there exists an orthonormal matrix Q such
that P ¼ QDpQ

>, where

Dp ¼ diag �2
1; �

2
2; . . . ; �2

n


 �
is the eigenmatrix with �2

1 � �2
2 � . . . � �2

n > 0 and

Cp ¼ �2
1

�2
n

. Then, we have S ¼ QDsQ
>, where

Ds ¼ diag �2
1 þ �2

12; �
2
2 þ �2

12; . . . ; �2
n þ �2

12


 �
:

Furthermore, S�1 ¼ Q>D�1
s Q, where

D�1
s ¼ diag

1

�2
1 þ �2

12

;
1

�2
2 þ �2

12

; . . . ;
1

�2
n þ �2

12

� �
:

We also denote ~z ¼ Qðz1 � ẑ2Þ ¼ ½~z1; ~z2; . . . ; ~zn�>. Then,
we can simplify the expressions in (24) and (15) in
Theorem 1 (Section 6) as

1

n
�2

12ðz1 � ẑ2Þ>S�2ðz1 � ẑ2Þ ¼
1

n

Xn
i¼1

�2
12~z2

i

�2
i þ �2

12

� �2
; ð25Þ

1

n
ðz1 � ẑ2Þ>P�1ðz1 � ẑ2Þ ¼

1

n

Xn
i¼1

~z2
i

�2
i

: ð26Þ

From (25), we express (24) as a function F ð
Þ of �2
12 and

only need to analyze the solution of �2
12 for

F �2
12

� �
¼ 1

n

Xn
i¼1

~z2
i

�2
i


 1

2þ �2
i

�2
12

þ �2
12

�2
i

� 1 ¼ 0: ð27Þ

Now, we proceed to prove the conclusions in Theorem 1.
Denote the left-hand side of (15) in Theorem 1 as d

and plug (26) in, thus (15) means

d ¼ 1

n

Xn
i¼1

~z2
i

�2
i

> 2þ

ffiffiffiffiffi
�2

1

�2
n

s
þ

ffiffiffiffiffi
�2
n

�2
1

s
� 4:

When �2
12 ¼ k1 ¼ ðd� 2Þ�2

1, for any i, we have

1

2þ �2
i

�2
12

þ �2
12

�2
i

<
1

2þ 0þ d� 2
¼ 1

d
:

Thus,

F ðk1Þ <
1

n

Xn
i¼1

~z2
i

�2
i


 1
d
� 1 ¼ 0:

When �2
12 ¼ k2 ¼

ffiffiffiffiffiffiffiffiffiffi
�2

1�
2
n

p
, for any i,

1

2þ �2
i

�2
12

þ �2
12

�2
i

� 1

2þ �2
n

k2
þ k2

�2
1

¼ 1

2þ
ffiffiffiffi
�2

1

�2
n

q
þ

ffiffiffiffi
�2
n

�2
1

q � 1

d
;

thus

F ðk2Þ �
1

n

Xn
i¼1

~z2
i

�2
i


 1
d
� 1 ¼ 0:

Since 0 < k2 < k1 and F ð
Þ is continuous, there must exist
a k3 such that k2 � k3 < k1 and F ðk3Þ ¼ 0. This proves
that if the inequality (15) in Theorem 1 holds, then it can
indicate a nonzero solution for (24), namely there exists
at least one nonzero fixed point for �2

12 in the Bayesian
EM, which means the two Gaussian sources are not
consensus according to our definition of inconsistency.
Thus, the first claim in Theorem 1 is proven.

Equation (16) means d ¼ 1
n

Pn
i¼1

~z2
i

�2
i

< 4, then we have

F �2
12

� �
� 1

n

Xn
i¼1

~z2
i

�2
i


 1
4
� 1 ¼ d

4
� 1 < 0;

for all �2
12 > 0. Therefore, there does not exist a nonzero

solution for (27). Equation (16) in Theorem 1 is proven.tu

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under Grant IIS-0347877 and Grant IIS-0308222
and in part by OMRON.

REFERENCES

[1] M. Isard and A. Blake, “Contour Tracking by Stochastic Propaga-
tion of Conditional Density,” Proc. Fourth European Conf. Computer
Vision, pp. 343-356, Apr. 1996.

[2] S. Birchfield, “Elliptical Head Tracking Using Intensity Gradients
and Color Histograms,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 232- 237, June 1998.

[3] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object
Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, no. 5, pp. 564-577, May 2003.

[4] M.J. Black and A.D. Jepson, “Eigentracking: Robust Matching and
Tracking of Articulated Objects Using a View-Based Representa-
tion,” Proc. Fourth European Conf. Computer Vision, pp. 329-342,
Apr. 1996.

YANG ET AL.: CONTEXT-AWARE VISUAL TRACKING 1207

Authorized licensed use limited to: NEC Labs. Downloaded on May 19, 2009 at 15:42 from IEEE Xplore.  Restrictions apply.



[5] G. Hager and P. Belhumeur, “Real-Time Tracking of Image
Regions with Changes in Geometry and Illumination,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 403-410, June
1996.

[6] G. Hager, M. Dewan, and C. Stewart, “Multiple Kernel Tracking
with SSD,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 790-797, June/July 2004.

[7] K.-C. Lee and D. Kriegman, “Online Learning of Probabilistic
Appearance Manifolds for Video-Based Recognition and Track-
ing,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 1, pp. 852-859, June 2005.

[8] J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang, “Incremental Learning
for Visual Tracking,” Proc. Advances in Neural Information Proces-
sing Systems, vol. 17, pp. 801-808, Dec. 2004.

[9] M. Yang and Y. Wu, “Tracking Non-Stationary Appearances and
Dynamic Feature Selection,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 2, pp. 1059-1066, June 2005.

[10] S. Avidan, “Support Vector Tracking,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 26, no. 8, pp. 1064-1072, Aug. 2004.

[11] S. Avidan, “Ensemble Tracking,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 494-501, June 2005.

[12] J. Wang, X. Chen, and W. Gao, “Online Selecting Discriminative
Tracking Features Using Particle Filter,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, vol. 2, pp. 1037-1042, June 2005.

[13] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Data Bases,
pp. 487-499, 1994.

[14] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval
Approach to Object Matching in Videos,” Proc. Ninth IEEE Int’l
Conf. Computer Vision, vol. 2, pp. 1470-1477, Oct. 2003.

[15] J. Sivic and A. Zisserman, “Video Data Mining Using Configura-
tions of Viewpoint Invariant Regions,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, vol. 1, pp. 488-495, June/July 2004.

[16] M. Leordeanu and R. Collins, “Unsupervised Learning of Object
Features from Video Sequences,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 1, pp. 1142-1149, June 2005.

[17] X.S. Zhou, D. Comaniciu, and A. Gupta, “An Information Fusion
Framework for Robust Shape Tracking,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 1, pp. 115-129, Jan.
2005.

[18] D.G.C. Race, http://www.darpa.mil/grandchallenge, 2008.
[19] B.K. Horn and B.G. Schunck, “Determining Optical Flow,”

Artificial Intelligence, vol. 17, pp. 185-203, 1981.
[20] B.D. Lucas and T. Kanade, “An Iterative Image Registration

Technique with an Application to Stereo Vision,” Proc. DARPA
Image Understanding Workshop, pp. 121-130, Apr. 1981.

[21] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High Accuracy
Optical Flow Estimation Based on a Theory for Warping,” Proc.
Eighth European Conf. Computer Vision, vol. 4, pp. 25-36, May 2004.

[22] S. Roth and M.J. Black, “On the Spatial Statistics of Optical Flow,”
Proc. 10th IEEE Int’l Conf. Computer Vision, vol. 1, pp. 42-49, Oct.
2005.

[23] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust Online Appear-
ance Models for Visual Tracking,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 25, no. 10, pp. 1296-1311, Oct. 2003.

[24] D. Ramanan, D.A. Forsyth, and A. Zisserman, “Tracking People
by Learning Their Appearance,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 1, pp. 65-81, Jan. 2007.

[25] K. Okuma, A. Taleghani, N.D. Freitas, J.J. Little, and D.G. Lowe,
“A Boosted Particle Filter: Multitarget Detection and Tracking,”
Proc. Eighth European Conf. Computer Vision, vol. 1, pp. 28-39, May
2004.

[26] T. Zhao and R. Nevatia, “Tracking Multiple Humans in Complex
Situations,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1208-1221, Sept. 2004.

[27] C. Stauffer and W. Grimson, “Adaptive Background Mixture
Models for Real-Time Tracking,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 246-252, June 1999.

[28] J. Shi and J. Malik, “Motion Segmentation and Tracking Using
Normalized Cuts,” Proc. Sixth IEEE Int’l Conf. Computer Vision,
pp. 1154-1160, Jan. 1998.

[29] O. Williams, A. Blake, and R. Cipolla, “Sparse Bayesian Learning
for Efficient Visual Tracking,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 27, no. 8, pp. 1292-1304, Aug. 2005.

[30] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,”
ACM Computing Surveys, vol. 38, no. 4, p. 13, Dec. 2006.

[31] M. Isard and A. Blake, “CONDENSATION—Conditional Density
Propagation for Visual Tracking,” Int’l J. Computer Vision, vol. 29,
pp. 5-28, May 1998.

[32] D.B. Reid, “An Algorithm for Tracking Multiple Targets,” IEEE
Trans. Automatic Control, vol. 24, no. 6, pp. 843-854, Dec. 1979.

[33] I.J. Cox and S.L. Hingorani, “An Efficient Implementation of
Reid’s Multiple Hypothesis Tracking Algorithm and Its Evalua-
tion for the Purpose of Visual Tracking,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 2, pp. 138-150, Feb.
1996.

[34] Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association.
Academic Press, 1988.

[35] C. Rasmussen and G.D. Hager, “Probabilistic Data Association
Methods for Tracking Complex Visual Objects,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 560-576,
June 2001.

[36] Y. Wu and T.S. Huang, “Robust Visual Tracking by Integrating
Multiple Cues Based on Co-Inference Learning,” Int’l J. Computer
Vision, vol. 58, no. 1, pp. 55-71, June 2004.

[37] R.T. Collins, Y. Liu, and M. Leordeanu, “Robust Online
Appearance Models for Visual Tracking,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1631-1643, Oct.
2005.

[38] H. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via
On-Line Boosting,” Proc. British Machine Vision Conf., vol. 1, 4-7,
pp. 47-56, 2006.

[39] M. Yang, Y. Wu, and S. Lao, “Intelligent Collaborative Tracking by
Mining Auxiliary Objects,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 697-704, June 2006.

[40] J. Shi and C. Tomasi, “Good Features to Track,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 593-600, June 1994.

[41] D.G. Lowe, “Object Recognition from Local Scale-Invariant
Features,” Proc. Seventh IEEE Int’l Conf. Computer Vision, vol. 2,
pp. 1150-1157, Sept. 1999.

[42] K. Mikolajczyk and C. Schmid, “Indexing Based on Scale Invariant
Interest Points,” Proc. Eighth IEEE Int’l Conf. Computer Vision,
vol. 1, pp. 525-531, July 2001.

[43] A. Fitzgibbon and A. Zisserman, “On Affine Invariant Clustering
and Automatic Cast Listing in Movies,” Proc. Seventh European
Conf. Computer Vision, vol. 3, pp. 304-320, May/June 2002.

[44] R. Jain, R. Kasturi, and B.G. Schunck, Machine Vision. McGraw-
Hill, 1995.

[45] S.J. Julier and J.K. Uhlmann, “A Non-Divergent Estimation
Algorithm in the Presence of Unknown Correlations,” Proc. Am.
Control Conf., pp. 2369-2373, June 1997.

[46] G. Hua and Y. Wu, “Measurement Integration under Inconsis-
tency for Robust Tracking,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 650-657, June 2006.

[47] EC Funded CAVIAR Project/IST 2001 37540, http://homepage-
s.inf.ed.ac.uk/rbf/caviar/, 2008.

[48] V.I. Pavlovic, “Dynamic Bayesian Networks for Information
Fusion with Application to Human-Computer Interfaces,” PhD
dissertation, Dept. of Electrical and Computer Eng., Univ. of
Illinois at Urbana-Champaign, 1999.

Ming Yang received the BE and ME degrees in
electronic engineering from Tsinghua University,
Beijing, in 2001 and 2004, respectively, and the
PhD degree in electrical and computer engineer-
ing from Northwestern University, Evanston,
Illinois, in 2008. From 2004 to 2008, he was a
research assistant of Professor Ying Wu in the
Computer Vision Group at Northwestern Uni-
versity. After his graduation, he joined NEC
Laboratories America, Cupertino, California,

where he is currently a research staff member. His research interests
include computer vision, machine learning, video communication,
medical image analysis, and intelligent multimedia content analysis.
He was an excellent bachelor graduate of Tsinghua University in 2001.
He was also awarded the excellent student fellowship from 1998 to 2003
at Tsinghua University. He is a member of the IEEE.

1208 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 7, JULY 2009

Authorized licensed use limited to: NEC Labs. Downloaded on May 19, 2009 at 15:42 from IEEE Xplore.  Restrictions apply.



Ying Wu received the BS degree from Huaz-
hong University of Science and Technology,
Wuhan, China, in 1994, the MS degree from
Tsinghua University, Beijing, in 1997, and the
PhD degree in electrical and computer engineer-
ing from the University of Illinois, Urbana-
Champaign (UIUC), in 2001. From 1997 to
2001, he was a research assistant at the
Beckman Institute for Advanced Science and
Technology, UIUC. During summer 1999 and

2000, he was a research intern with Microsoft Research, Redmond,
Washington. In 2001, he joined the Department of Electrical and
Computer Engineering at Northwestern University, Evanston, Illinois, as
an assistant professor. He is currently an associate professor of
electrical engineering and computer science at Northwestern University.
His current research interests include computer vision, image and video
analysis, pattern recognition, machine learning, multimedia data mining,
and human-computer interaction. He serves as an associate editor for
the IEEE Transactions on Image Processing, SPIE Journal of Electronic
Imaging, and IAPR Journal of Machine Vision and Applications. He
received the Robert T. Chien Award at UIUC in 2001 and the US
National Science Foundation CAREER award in 2003. He is a senior
member of the IEEE.

Gang Hua received the BS degree in automatic
control engineering and the MS degree in
pattern recognition and intelligence system from
Xian Jiaotong University (XJTU), Xian, China, in
1999 and 2002, respectively, and the PhD
degree in electrical and computer engineering
from Northwestern University in 2006. He was
enrolled in the Special Class for the Gifted
Young of XJTU in 1994. He is currently a
scientist at Microsoft Live Labs Research. He

was a research assistant of Professor Ying Wu in the Computer Vision
Group at Northwestern University from 2002 to 2006. During summer
2004 and summer 2005, he was a research intern with the Honda
Research Institute, Mountain View, California, and a research intern
with the Speech Technology Group, Microsoft Research, Redmond,
Washington, respectively. Before coming to Northwestern University, he
was a research assistant at the Institute of Artificial Intelligence and
Robotics, XJTU. His current research interests include computer vision,
machine learning, visual recognition, intelligent image/video/multimedia
processing, visual motion and content analysis, and their applications to
multimedia search. As of April 2009, he holds one US patent and has 18
more patents pending. He received the Walter P. Murphy Fellowship
and the Richter Fellowship at Northwestern University in 2002 and
2005, respectively. When he was with XJTU, he was awarded the
Jiangyue Fellowship in 1995, the Sea-Star Fellowship and the Most
Outstanding Student Exemplar Fellowship in 1997, the Eastcom
Fellowship in 2000, and the Guanghua Fellowship in 2001. He was
also a recipient of the University Fellowship from 1994 to 2001 at XJTU.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YANG ET AL.: CONTEXT-AWARE VISUAL TRACKING 1209

Authorized licensed use limited to: NEC Labs. Downloaded on May 19, 2009 at 15:42 from IEEE Xplore.  Restrictions apply.


