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V. CONCLUSION

A novel subspace analysis method is reported in this correspondence
for feature extraction and dimensionality reduction based on FL dis-
tance. The algorithm brings better generalization ability. Moreover, it
iteratively updates the basis of the subspace—which makes it suitable
for dealing with sequentially coming data and online learning. We as-
sume that: there are at least three training points per class. Two training
points determine a feature line onto which the third points can be pro-
jected.
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Abstract—The proposed unusual video event detection method is based
on unsupervised clustering of object trajectories, which are modeled by
hidden Markov models (HMM). The novelty of the method includes a dy-
namic hierarchical process incorporated in the trajectory clustering algo-
rithm to prevent model overfitting and a 2-depth greedy search strategy for
efficient clustering.

Index Terms—Event detection, unsupervised clustering, video surveil-
lance.

I. INTRODUCTION AND RELATED WORK

Many surveillance applications require analysis of the events taking
place in video streams recorded in specific situations, in order to find
suspicious or abnormal actions, which might present a threat and
should be signaled to a human operator. Typically, the video camera is
fixed and the site being monitored is mainly static. Object trajectories
are extracted from the video and the video events can be represented
by time sequence of the various features of the objects. In many
cases, no a priori knowledge is given for patterns of unusual video
events. Thus, we aim to analyze all the trajectories extracted from
existing videos, and differentiate unusual trajectories from normal
ones automatically. Based on this analysis, we also need to detect
unusual events in additional videos.
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To address this problem, a clustering-based approach has been in-
vestigated in the literature [1]–[5]. This approach is based on the fact
that a normal event is associated with the commonality of the behavior
and an unusual event indicates its distinctness. For instance, people
running represents an unusual event if most people in the crowd are
walking, and a car moving against traffic also represents an unusual
event. Clearly, what characterizes normality is the high recurrence of
some similar events. Typically, there are only a few such normal pat-
terns in a specific surveillance scenario. Therefore, unsupervised clus-
tering can be performed on all video events, so that those events clus-
tered into dominant (e.g., large) groups can be identified as normal,
while those that cannot be explained by the dominant groups (e.g., dis-
tant from all cluster centers) are defined as unusual.

Specifically, in order to perform clustering on video events, we need
to measure the similarity of two events. Usually, a trajectory can be
modeled as a dynamic process with different outputs at different times.
We can measure the distance between trajectories based on the sim-
ilarity between their corresponding models. Commonly used models
are HMM and DBN [2], [3], [5]–[10]. Similarity between HMMs can
be measured using the cross likelihood ratio (CLR) [11]. As in [2], [3],
and [5], let � and � be two feature sequences, modeled by two HMMs
�� and �� , respectively. The dissimilarity between � and � is defined as

���� �� � ���
��

�
�
�

� ���
��

���

� ����� � ����� � ������ � ������ (1)

where �� and �� denote the likelihoods of � and � being generated by
their own models, i.e., � �� � ��� and � �� � ���, respectively, while ���
and ��� denote the cross likelihoods, � �� � ��� and � �� � ���, respec-
tively. Note that the superscript of� denotes the trajectory that the like-
lihood is referring to, and the subscript of � denotes the HMM training
trajectory. When these two are the same (for self-likelihood), the super-
script is omitted. This rule is always followed in the correspondence.

Alternatively, a dissimilarity measure between time series based on
the Bayesian information criterion (BIC) was used in the area of speech
recognition [12]. BIC is a statistical criterion for model selection, which
is defined as

�	
 � � �����
�

�
� ���	 (2)

where � is the likelihood for the estimated model, 	 is the number
of observations, and � is the number of model parameters. Given any
two estimated models, the model with the smaller value of BIC is the
one to be chosen. If every trajectory in the database is modeled by an
HMM with the same structure, thus with equal number of parameters
��, and 	 HMMs are trained for 	 trajectories, for this modeling we
have

�	
��� �� 
 
 
� � �

�

���

����� �
�

�
	�� ���	 (3)

where ��� �� 
 
 
� denotes any two trajectories �� � and all the other tra-
jectories. Then, if trajectories � and � are merged and modeled together
by one HMM, the BIC for the new modeling becomes

�	
���� 
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�
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�

�
�	 � ���� ���	 (4)

where ���� 
 
 
� denotes the trajectory group (containing the merged tra-
jectories � and �) and all the other trajectories. The difference of BIC
values for the two models is equal to
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���� 
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� ����� � ����� � ������ �
�

�
�� ���	
 (5)

If ���� �� � �, this merge is favored because it results in a better model.
The smaller ���� �� is, the greater the tendency for � and � to merge.
Thus, ���� �� measures the dissimilarity of two trajectories. This mea-
sure can be easily extended to groups of trajectories, because � and �

can indicate two groups of trajectories, with � referring to the likeli-
hood of all trajectories in one group.

This type of model-based measurement automatically takes into con-
sideration both the spatial and temporal nature of the trajectories. How-
ever, it is not robust because models tend to overfit with few training
samples. For the BIC-based dissimilarity measure, if � and � denote
two single trajectories, their trained HMMs can be quite inaccurate, re-
sulting in an unreliable ���� ��.

Based on any defined event similarity, many unsupervised clustering
algorithms can be applied, including different versions of the spec-
tral clustering algorithm [1]–[4], [13], [14], hierarchical clustering [5],
[12], [15], [16], and sequential grouping method [6], [17]. After that,
the dominant (normal) groups can be identified by intercluster simi-
larity [1], [2], group size [18], or the associated eigenvalues in spectral
clustering [3], [13], [14].

In this correspondence, we propose a novel dynamic hierarchical
clustering (DHC) method for unusual event detection from surveil-
lance video. The proposed approach follows the common steps of
the clustering-based approach as described above. First, HMMs are
used to characterize object trajectories. The overfitting problem is
suppressed by a dynamic process of reclassifying and retraining the
trajectory groups at different clustering levels, referred to as dynamic
hierarchical clustering (DHC) algorithm. Second, the BIC-based
dissimilarity measure is used for event clustering. We have designed
a 2-depth search strategy that works better than the typical 1-depth
greedy search in minimizing BIC. To handle the computational com-
plexity of the 2-depth search, we have derived exclusion conditions
for a large number of searching paths, i.e., early pruning of branches.
Finally, a probabilistic framework is used to identify dominant
groups from the clustering results. Instead of checking for large size
groups, normal clusters can be determined as those with high prior
probabilities.

The correspondence is organized as follows. Section II describes in
detail the trajectory clustering algorithm. Section III explains how to
identify normal clusters from all clusters and use normal models to de-
tect unusual events in additional videos. Experimental results are pre-
sented in Section IV, and we conclude the paper in Section V.

II. TRAJECTORY CLUSTERING

A. Dynamic Hierarchical Clustering (DHC)

In our system, each trajectory is represented by a feature sequence
����� 
��� ���� 
��� 
 
 
 � ��� � 
� ��, where ��� 
� denotes the 2-D co-
ordinates of the object center at every frame and � is the length of
the trajectory. Following [12], HMMs with Gaussian emission prob-
ability are used to characterize the trajectories, and agglomerative hi-
erarchical clustering can be performed using BIC-based dissimilarity
measure. In other words, the two trajectories or trajectory groups �� �
with smallest ���� �� as defined in (5) are continuously merged until
there is no ���� �� � �.
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Fig. 2. Fifteen categories of any three trajectory groups according to different nearest neighbors.

Fig. 1. Dynamic hierarchical clustering (DHC).

However, a model-based similarity measure as mentioned above has
the overfitting problem given few training samples. This is true for the
first several steps of hierarchical clustering: when clusters contain only
a few trajectories (starting from only one trajectory), the trained HMMs
tend to be overfitted and the dissimilarity measures based on them are
quite unreliable, thus resulting in clustering errors. These errors will
propagate to future clustering steps. To address this problem, we can
update the clustering results at each merging step. In other words, once
a new HMM is trained after trajectory merging, all the trajectories in the
database are reclassified. Possibly, some incorrectly clustered trajecto-
ries at previous steps are associated to the new HMM. All the HMMs
are then retrained based on the updated trajectory clusters. This is a typ-
ical data reclassification and model retraining process, which is used in
many iterative algorithms such as the expectation-maximization algo-
rithm. This updating also enables error correction at later clustering
steps, as clusters have gathered more samples and the trained HMMs
are more reliable. We refer to this process as dynamic hierarchical
clustering (DHC), which is illustrated in Fig. 1. It differs from typical
agglomerative hierarchical clustering in that it incorporates into each
clustering step the data reclassification process (step 3) and the model
retraining process (step 4).

B. 2-Depth Search Strategy and Branch Pruning

Clustering using a BIC-based similarity measure can be regarded as
a searching problem, i.e., searching all the clustering possibilities for
the minimum BIC. However, the algorithm listed in Fig. 1 is an 1-depth

greedy search, as it always merges at every step only two trajectory
groups that decrease the BIC the most. A possible improvement of the
algorithm is considering a 2-depth search, i.e., each time we take two
merging steps that cause BIC to decrease the most. A 2-depth merge
may either merge two different group pairs or merge three groups, de-
pending on which has the smallest BIC. However, the problem is that
an exhaustive 2-depth search requires training HMMs for all pairs and
triplets of trajectory groups. This can be unaffordable if the size of the
trajectory dataset is large. In the following, we will establish certain
exclusion rules for the fast rejection of merging certain group triplets.

Basically, any triplet �� �� � can be classified into one of the 15 cate-
gories based on their “nearest neighbors”, as illustrated in Fig. 2. The
nearest neighbor of one trajectory (group) is defined as the one (group)
with smallest negative dissimilarity to it, which is shown by the arrow
in Fig. 2. For example, the arrow in Fig. 2(b) means that the trajectory
group � has the smallest dissimilarity to group �, and the double arrow
in Fig. 2(e) denotes that trajectory groups � and � have their smallest
dissimilarities to each other. If the smallest dissimilarity is positive, no
arrow is shown, e.g., �� �� � in Fig. 2(a). For the first 13 categories, there
exist simple exclusions of merging �� �� � as one group, according to the
BIC minimization criterion, as shown in Table I. It is straightforward
to check these sufficient conditions, as they are only based on pairwise
dissimilarities.

We take category (f) as an example. Merging �� �� � together can be
rejected if

�������� �� � � �� � ������� ��� � � ��� (6)

Substituting the definition of BIC into (6) results in

� ��	���� � ��	�� 
 ��	��� 
 ��	��� � �� (7)

Multiplied by 2, it becomes

� ��	������
� 
 � ��	��� 
 � ��	��� � � ��	�� � �� (8)

Our HMM training assumes that each trajectory is probabilistically in-
dependent from others, thus

������
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��� � �
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TABLE I
EXCLUSION CONDITIONS FOR MERGING �� �� � IN CATEGORIES (A)–(M)

Then (8) can be expanded as

� ������

��� � ������

��� � ������
���

�� ������ � � ������ � � ����� � �� (10)

It is reasonable to assume that the trajectories are better represented
(with a larger likelihood) by the model trained on themselves, than by
the model trained on other samples. Thus, we have

��� � �
��

���� ��� � �
��

���� ��� � �
��
���� (11)

Therefore, a sufficient condition for (10) to be satisfied is that

� ������ � ������ � ������ � � ������

�� ������ � � ����� � �� (12)

By simple substitution, this can be rewritten as

���� ��� ���� �� � ���� ��� ���� 	� �
	

�

� ����� (13)

Therefore, if (13) is satisfied, merging of �� �� � as one group can be re-
jected according to (6). Similar exclusion conditions have been derived
for categories (a)–(m) and are shown in Table I. We do not consider ex-
clusions for categories (n) and (o), because for these categories merging
of �� �� � can not be easily rejected as they are all neighbors.

As these exclusion conditions are just based on pairwise dissimi-
larities, ���� ��� ���� ��� ���� ��, etc., they can be checked quickly be-
fore performing HMM training for trajectory triplets. If the hierar-
chical clustering is regarded as a tree searching process, these exclu-
sion conditions enable an early pruning of branches. Our 2-depth search
(with pruning) algorithm is summarized in Fig. 3. Note that the 2-depth

search is still a greedy approach. The reason that we do not consider a
�-depth �� � �� search is that the computational load becomes very
large as � increases.

III. NORMAL CLUSTER IDENTIFICATION AND

ABNORMALITY DETECTION

Suppose that all trajectories in the training dataset are clustered
into 
 groups with 
 corresponding HMMs. Out of these groups,
normal (dominant) trajectory groups need to be identified and their
corresponding HMMs are kept as normal models, which is used to
detect unusual trajectories from new video. As described in Section I,
some researchers determine the dominant groups as groups with
large number of samples or groups with high intercluster similarities.
However, we believe that dominant groups can be better determined
in a probabilistic framework as explained next.

Normally, each trajectory is associated with one of the 
 HMMs.
However, in fact at the reclassfication step in our clustering algorithm
(step 3) in Fig. 1 and step 4) in Fig. 3), the likelihood of each trajectory
being generated from every HMM, i.e., ��

� 
 � �� � ���, is calculated,
where � 
 	� �� � � � � � denotes any trajectory in the dataset and ��
�� 
 	� �� � � � � 
� the trained HMMs. In other words, each trajectory
� has probability ��

� of being generated by model ��. Hence, we may
consider each trajectory as being generated by a mixture model, with
each component being one of the 
 HMMs, i.e.,

� ��� 


�

���

���� � ��
� (14)

where ���� is the prior probability of the HMM component �, which
can be estimated by the EM iteration. Initially, we assume equal prior
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Fig. 3. 2-depth greedy search algorithm.

probabilities, i.e., ���� � ��� . In the E-step, the posterior probability
of component � given trajectory � is estimated by Bayes’ rule

� �� � �� �
���� � ��

�

�

���
����� � ��

��
	 (15)

In the M-step, the prior probability of each component can be computed
by averaging � �� � �� for all trajectories, i.e.,

���� �
�




�

���

� �� � ��	 (16)

These updated ���� are substituted into (15) for another round of iter-
ations. The iteration continues until ���� converges.

Based on this mixture model calculated above, HMMs of normal
events can be determined as those with high ���� (e.g., above average).
We denote the normal models by

�� � � ���� �
�

�
	 (17)

In addition, all the normal trajectories, i.e., the training trajectories as-
sociated with normal models are denoted by

�� � � � � � � ��� �	�	� �
�
�

� 	
�
�

��
�� � � �� �� 
 
 
 � � 	 (18)

Given any query trajectory 
, its corresponding probability defined
by (14) can be divided into two parts, the probability of 
 being gener-
ated by normal models � �
 � ��� and the probability of 
 being gener-
ated by other models � �
 � ���, that is

� �
� �
���

����� � ��
� � �

���

����� � ��
��

� � �
 � ��� � � �
 � ���	 (19)

Trajectory 
 is classified as unusual if � �
 � ��� is less than a
threshold �. We define the threshold as the minimum probability of a
normal trajectory (from ��) being generated by normal models ����,
i.e.,

� � 	��
�

� �� � ���� � � �� (20)

where

� �� � ��� �
���

���� � ��
� 	 (21)

IV. EXPERIMENTAL RESULTS

A. Experiments With Traffic Surveillance Trajectories

The proposed method was first tested with a real traffic surveillance
scene. This video scene showed a road crossing on a school campus,
where many pedestrians were moving along different paths in different
directions. Most people were walking along the road (i.e., normal
events), while some people did not follow the normal paths (i.e.,
unusual events). The motion trajectories were extracted from video
by background subtraction and object tracking. We simply use 2-D
coordinates of the object center at every frame as trajectory features.
With a video frame rate of 15 fps, the temporal trajectory length varies
from 80 to 200. Our database includes 1000 trajectories in total, with
898 normal ones and 102 unusual ones. Experiments were performed
on a leave-one-out basis, i.e., each time 900 trajectories are randomly
chosen from the database for training, and the other 100 were used for
testing. The average performance of several training and testing cycles
was recorded.

Since an HMM is used to characterize trajectories, the parameters of
the HMM need to be determined properly. According to the BIC-based
dissimilarity measure (5), an HMM with the same number of param-
eters is used for each trajectory group. In our experiments, we used
an HMM with a single Gaussian emission probability and a constant
number of states. A mixture of Gaussians was not used, considering that
most trajectories in our database had simple shape and not much vari-
ation locally. The number of states is determined using a data-driving
method similar to the one in [8]. We randomly selected some trajecto-
ries from the database, and segmented each one of them into sub-tra-
jectories by searching for local maxima of the spatial curvature of the
2-D trajectory. The number of states was then determined as the typical
number of sub-trajectories for these trajectories, because a state can be
viewed as a basic pattern of the trajectory. In this experiment, we used
five states as determined by the data.

In order to evaluate the proposed dynamic hierarchical clustering
(DHC) method in detail, we performed unusual event detection tests at
different levels of clustering. To be specific, based on different number
of clusters in the hierarchical process �� � ���� ���� 
 
 
 � ���� ���,
normal cluster identification and unusual event detection was per-
formed as described in Section III. Abnormal detection results for
all these levels were collected, with the false alarm rate (FAR) and
false rejection rate (FRR) shown in Fig. 4(a)–(b), respectively. The
lines denoted by “DHC1” and “DHC2” correspond to the dynamic
hierarchical clustering algorithm using 1-depth and 2-depth search
strategies, respectively. The clustering was terminated when the
number of clusters reached 22 since no additional clustering could
reduce the BIC value.

In addition, we implemented two baseline methods for comparison:
the classical hierarchical clustering algorithm (1-depth search, with no
dynamics) and the spectral clustering method using CLR-based dis-
similarity measure [2], [3] (described in Section I). Results of these two
baseline methods are also shown in Fig. 4, denoted by “HC1” and “SC”,
respectively. Spectral clustering (SC) is not a hierarchical process, thus
it only has one result, shown as horizontal lines in the two graphs.

There is a clear improvement in the performance of the proposed
DHC algorithms. At the termination point, the 1-depth search strategy
achieves an average FAR of 18% and an average FRR of 12%, and
the 2-depth search strategy achieves an average FAR of 10% and an
average FRR of 7%. Out of the final 22 trajectory clusters, ten clusters
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Fig. 4. Comparison results at different level of clustering.

Fig. 5. Examples of normal (a)–(d) and unusual (e)–(h) trajectories.

were identified as normal ones, with 4 examples shown in Fig. 5(a)–(d)
(solid lines). The other 12 clusters correspond to various unusual tra-
jectories, with examples shown in Fig. 5(e)–(h) (dashed lines). This is
because we add procedures to address the overfitting problem in the
clustering process, while classical hierarchical clustering (HC1) does
not. Spectral clustering (SC) is a very good clustering algorithm; how-
ever, if used with a model-based dissimilarity measure, its nonhierar-
chical nature does not help in dealing with overfitted models.

B. Experiments With Other Time Series

Objects trajectories extracted from surveillance video represent a
time series of features. Therefore, the proposed unusual event detec-
tion method should also be applicable on other kind of multivariate
time series. We have performed experiments with the Australian Sign
Language (ASL) dataset, which is obtained from UCI’s KDD archive
[19]. Time series in this dataset are obtained by collecting the positions
of the language signer’s hand at each sampling instant when five pro-
fessional signers sign around 95 words in multiple sessions. There are
no unusual signs collected. However, our definition of unusualness is
based on its distinctness. If some specific words are signed for many
times, while some other words are signed for only a few times, we can
regard the latter case as unusual. Therefore, to construct our database,
we select from the original dataset 1072 samples of 15 sign words (72
samples for each word on average) as normalities, and 106 samples of
another ten words (11 samples for each word on average) as unusual

TABLE II
DATABASE OF SIGN LANGUAGE TRAJECTORIES USED

TABLE III
COMPARISON RESULTS FOR EXPERIMENTS ON OTHER TIME SERIES

(see Table II). Each sample is a time series of � and � hand locations,
and its time length varies from 60 to 150.

Experiments of unusual trajectory detection were performed with the
dynamic hierarchical clustering (1-depth/2-depth search) and the two
baseline algorithms, similarly to the ones in Section IV-A. We only
show the final error rates (FAR and FRR) at the clustering termination
point in Table III. All four clustering algorithms use a model-based dis-
similarity measure which suffers from the overfitting problem. The pro-
posed dynamic hierarchical clustering (DHC) method that addresses
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this problem has been shown to perform better. In addition, the 2-depth
search strategy has achieved better results than the 1-depth search, be-
cause it decreases BIC more efficiently.

V. CONCLUSION

We aim to solve the following video mining problem: given some
video event data (i.e., object trajectories) without labels, including
mostly normal events and a few outliers (unusual events), we need to
identify the unusual events from other events and detect more unusual
events in other unseen video. Clustering-based approaches try to iden-
tify unusualness of events by clustering all events into groups. Models
of normal events can be trained based on the dominant clusters. These
normal models are used for unusual event detection.

In this correspondence, we have proposed a dynamic hierarchical
clustering (DHC) method to address three problems with the current
clustering-based approaches. First, the model overfitting problem is
suppressed by incorporating into the standard agglomerative hierar-
chical clustering an iterative cycle of trajectory reclassification and
model retraining. Second, a 2-depth search strategy for clustering has
been designed that works better than the typical 1-depth greedy search.
Its computational complexity is properly handled by early pruning of
certain search paths. Finally, the normal and unusual cluster identifica-
tion is based on a probabilistic framework instead of intuition. These
advantages have also been demonstrated experimentally over two base-
line methods.
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