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Abstract—This paper proposes a novel probabilistic variational method with deterministic annealing for the maximum a posteriori

(MAP) estimation of complex stochastic systems. Since the MAP estimation involves global optimization, in general, it is very difficult to

achieve. Therefore, most probabilistic inference algorithms are only able to achieve either the exact or the approximate posterior

distributions. Our method constrains the mean field variational distribution to be multivariate Gaussian. Then, a deterministic annealing

scheme is nicely incorporated into the mean field fix-point iterations to obtain the optimal MAP estimate. This is based on the

observation that when the covariance of the variational Gaussian distribution approaches to zero, the infimum point of the Kullback-

Leibler (KL) divergence between the variational Gaussian and the real posterior will be the same as the supreme point of the real

posterior. Although global optimality may not be guaranteed, our extensive synthetic and real experiments demonstrate the

effectiveness and efficiency of the proposed method.

Index Terms—Mean field variational analysis, deterministic annealing, maximum a posteriori estimation, graphical model,

Markov network.
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1 INTRODUCTION

BAYESIAN inference methods recover the posterior dis-
tribution P ðXjZÞ, or find the maximum a posteriori

(MAP) estimation X̂X ¼ argmaxXfP ðXjZÞg, where Z is the
set of observations of the stochastic system and X is the
underlying stochastic processes generating Z. Many real
problems can be effectively modeled and solved under the
Bayesian inference framework. In the literature of signal
processing and computer vision, Bayesian methods are
widely used in signal estimation [1], image segmentation
[2], [3], image super-resolution [4], [5], and visual tracking
[6], [7], [8], etc. Many of these Bayesian inference problems
are formulated and represented by probabilistic graphical
models [4], [5], [6], [7], [8].

Most traditional methods of Bayesian inference such as
the belief propagation (BP) algorithm [4], [5], [9] and the
variational inference methods [7], [10], [11], [12] focus on
recovering either the exact or the approximate posterior
distributions. The problem is that even if we could obtain
the exact posterior distribution, in general, it is still very
difficult to find the MAP estimate since it involves global
optimization. The Markov chain Monte Carlo (MCMC)
technique with simulated annealing (SA) [13], [14], [15]
provides a principled way to search for the global optimum
of the posterior and the convergence in probability to the
global optimum has been proven [15]. However, the
SA schemes are usually computationally intensive, which
hinders their applicability in many real applications.

In this paper, we propose an efficient approach to finding
the MAP estimate by an annealed mean field variational

analysis. We show that when the covariance of the
variational Gaussian distribution approaches to zero, the
infimum point of the KL divergence between the varia-
tional Gaussian and the real posterior will be the same as the
supreme point of the real posterior. Thus, in the limit,
minimizing the KL divergence between the variational
Gaussian and the real posterior is equivalent to maximizing
the real posterior. The advantage of minimizing the former
is that we can nicely incorporate a deterministic annealing
(DA) scheme [16], [17], [18], [19] into the mean field fix-point
iterations, which will eventually converge into the optimal
or a near-optimal maximum point of the real posterior. This
new method, namely, variational MAP, is an efficient and
effective method for obtaining the MAP estimate of a
complex stochastic system.

The remainder of this paper is organized as follows: In
Section 2, related work are categorized and discussed. Then,
in Section 3, we construct the theoretic foundation of the
variationalMAP algorithm by revealing a general theorem of
theKLdivergence betweenaGaussian andanarbitraryp.d.f.
In Section 4, without loss of generality, we deduce the mean
field fix-point iterations under a Markov network, where the
mean field approximation is constrained to be a multivariate
Gaussian.We then propose the variationalMAP algorithm in
Section 5. Furthermore, a Monte Carlo implementation of
such a variational MAP algorithm is proposed in Section 6.
Extensive experimental results are demonstrated and dis-
cussed in Section 7. Finally, we conclude our work and
propose the possible future work in Section 8.

2 RELATED WORK

Wepropose the variationalMAPalgorithmunder the context
of graphical model since it is a powerful means of represent-
ing real stochastic systems. Moreover, the MAP estimate
involves global optimization. Related work can thus be
categorized into three. The first category is related to
graphical model representation of stochastic systems. The
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second category involves the Bayesian inference algorithms
on graphicalmodels, while the third category is related to the
global optimization methods.

Bayesiannetwork (BN),dynamicBayesiannetwork (DBN)
[20], [21], Markov network [4], [5], and dynamic Markov
network [7], [10], [22] are all typical graphical models [23].
They are widely used for modeling and solving computer
visionproblems.Tomentionsome,aBNisproposedin[24] for
spatial-temporal segmentation of video sequences. Various
DBNs are proposed to address different problems in visual
tracking, such as multiple cue coinference [6], switching
observation models for contour tracking in clutter [25], and
tracking theappearancesofmultiple targets against occlusion
[26]. TheMarkov network is adopted to achieve image super-
resolution [4], [5], while various dynamic Markov networks
are adopted to perform articulated human body tracking [7],
to analyze structured deformable shapes [10], and to for-
mulate a rigorous bidirectional multiscale visual tracking
algorithm to address the abrupt motion [22]. Although there
are many types of graphical models, they all can be
transformed into one another [23].

For Bayesian inference in graphical models, when there
is no loop, the sum-product algorithm or belief propagation
(BP) [23], [4] can obtain the exact inference efficiently
through a local message passing process. When there are
loops, the loopy BP [27] and generalized BP [9] can obtain
good approximate results [4], [28]. As an approximation,
Monte Carlo techniques such as Markov chain Monte Carlo
(MCMC) [23], [2], [3] and sequential Monte Carlo [29], [30],
[31] can be used for implementing the Bayesian inference by
sampling. In addition, probabilistic variational approach
provides a principled way for approximate inference such
as the mean field variational analysis [12], [11], [32], [7],
[10], which seeks the best approximate results by minimiz-
ing the KL divergence between the mean field approxima-
tion and the real posterior distribution.

Thenonparametric BP [33] and thePAMPASalgorithm [34]
are proposed to implement the Bayesian inference on
complex real valued graphical models by combining the
BP algorithmwith theMCMC sampler. A different approach
is the sequentialmean fieldMonteCarlo algorithm (SMFMC)
[7], [10], which combines the mean field variational analysis
with the sequentialMonteCarlo technique. It is alsoproposed
to implement efficient Bayesian inference on complex real
valued graphical models.

Finding the MAP estimate is a global optimization
problem. In terms of complexity, it is a NP-hard problem in
the combinatory context. However, the stochastic simulated
annealing(SA) [13], [15], [14]canachievegoodresults inmany
applications since the convergence inprobability to theglobal
optimum is proven [15]. But, SA algorithms are often
inherently slowdue to their randomized local searchstrategy.
Deterministic annealing (DA) [16], [17] methods intend to
overcome the inefficiency of the SAmethods. They are based
on deterministic optimization scheme, but they incorporate
stochastic smoothing by optimizing over a probabilistic state
space [17].Althoughglobaloptimalitymaynotbeguaranteed
for DA, many empirical studies have shown that the
DAmethodsarevery likely toachieveoptimalornearoptimal
solutions [17]. The annealingmethods are enlightened by the
annealing process of a thermodynamic system, which drives
the system to stay in the lowest energy and, thus, most
probable state. Annealingmethods have beenwidely used in

image processing, computer vision, and pattern recognition
for robustM-Estimation [19], for designing piecewise regres-
sion models [35], for image texture segmentation and group-
ing [18], and for object recognition [36], to list a few.

In [37], an annealed particle filtering algorithm, which
integrates a SA scheme with the sequential Monte Carlo
algorithm, isproposed to find themaximumof the articulated
humanmotion posteriors. Instead of usingMCMC,weighted
resampling is preformed during the SA process. Notwith-
standing the empirically demonstrated effectiveness, this
algorithm is largely based on heuristics and there is no strict
theoretic proof about the convergence of such a process.

The variational MAP algorithm proposed in this paper
integrates the mean field variational inference method [23],
[7], [10], [12], [11] with a DA scheme [16], [17], [18]. By
constraining the mean field variational distribution to be a
multivariate Gaussian, the covariance of theGaussianwill be
used as the “temperature” for annealing. And, in each step of
the annealing, we iterate the Gaussian mean field fix-point
equations to converge. As the covariance of the variational
Gaussian approaches to zero, themeanof itwill be very likely
to converge into the global maximum point or a near global
maximum point of the real posterior. Although the original
mean field variational method [23], [7] can only obtain an
approximation of the real posterior, the proposed variational
MAP algorithm can find the exact optimal or near-optimal
MAP estimate. It is an efficient and direct MAP inference
algorithm for complex stochastic systems.

3 KULLBACK-LEIBLER DIVERGENCE BETWEEN A

GAUSSIAN AND AN ARBITRARY P.D.F.

The KL divergence or relative entropy between two
probabilistic distribution gðxÞ and pðxÞ is defined as

KL gðxÞkpðxÞð Þ ¼
Z
x

gðxÞ log gðxÞ
pðxÞdx: ð1Þ

It is a measurement of the dissimilarity between two
distributions. And, it has the property that it is zero if gðxÞ
and pðxÞ are equal almost everywhere (a.e.) and positive
otherwise. But, it is not a real distance since it is not
symmetric, i.e., KLðgðxÞkpðxÞÞ 6¼ KLðpðxÞkgðxÞÞ. Generally,
minimizing KLðgðxÞkpðxÞÞ with regard to gðxÞ will favor
those gðxÞ distributions whose probability densities all lie in
the regions with high probability under pðxÞ, but without the
requirement that all those areas are covered. While minimiz-
ingKLðpðxÞkgðxÞÞwith regard to gðxÞwill favor the settings
of gðxÞwhich can cover all the high probability areas in pðxÞ,
even if thiswill result in assigning the high probability area of
gðxÞ to the very low probability area of pðxÞ [12].

It is also worth noting that the KL divergence in (1) is
finite only when gðxÞ and pðxÞ have the same support (we
set 0 log 0

0 ¼ 0, which is motivated by continuity) [38]. Thus,
if gðxÞ is a Gaussian and pðxÞ is compactly supported, the
KLðgðxÞkpðxÞÞ will be þ1.

Based on the above observations, if we constrain the
gðxÞ distribution to be a Gaussian distribution, we have the
following theorem relating the supreme of pðxÞ and the
infimum ofKLðgðxÞkpðxÞÞ. We must emphasize beforehand
that the integrability assumption in (2) is essential; otherwise,
theKLðgðxÞkpðxÞÞ could beþ1 nomatter how the Gaussian
distribution gðxÞ is translated and scaled.
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Theorem 1. Let pðxÞ, x is a random vector in Rn, be a bounded,
continuous, and everywhere positive p.d.f. with the properties:

. There exists a unique x� 2 Rn such that pðx�Þ ¼
supx2Rn pðxÞ.

. pðxÞ is proper, i.e., pðxÞ ! 0 as x ! 1.

. The following integrability condition in (2) holdsZ
x

exp �xTx

2

� �
log pðxÞdx

����
���� < þ1: ð2Þ

Suppose qðxÞ � N ðxj0; InÞ is a Gaussian distribution with

zero mean and identity covariance matrix In, then denote

q~������ðxÞ � N ðxj~����; ����2InÞ;x 2 Rn as the Gaussian distribution

with mean ~���� and diagonal covariance ����2In. Assume ~�������� is

such that KLðq~������������ ðxÞkpðxÞÞ ¼ inf~���� KLðq~��������ðxÞkpðxÞÞ, then

lim
����!0

~������������ ¼ x�: ð3Þ

Proof. The proof could be found in Appendix 2 based on
several Lemmas in Appendix 1. tu
Equation (3) in Theorem 1 nicely reveals to us a DA

scheme to find the maximum point of pðxÞ, i.e., we can
minimize with regard to ~���� a series of KLðq~��������ðxÞkpðxÞÞ. This
can be achieved by initially setting the ����2 to be very large
value and decreasing it asymptotically to zero. When the ����2

is very large, the optimization of KLðq~��������ðxÞkpðxÞÞ is just a
convex optimization problem [17]. With the decreasing of
the ����2, theKLðq~��������ðxÞkpðxÞÞwill have more local minima and
the optimization is more complex. For a fixed ����2, we can run
an optimization algorithm to find the minimum of
KLð q~��������ðxÞkpðxÞÞ, then the result will be used as the initial
point of the optimization in the next step of annealing. As ����2

decreases asymptotically to zero, the whole annealed
optimization process will be very likely to converge into
the global minimum of the KLðq~��������ðxÞkpðxÞÞ and, thus, the
global maximum of pðxÞ.

Moreover, in many cases, the pðxÞ is not directly in hand,
so we may not be able to maximize it directly. For example,
in the Bayesian inference problem presented in Section 4,
where pðxÞ is corresponding to the posterior distribution
which must be inferred from the observations. In Section 5,
we show that by using a novel variational inference
framework, the problem of optimal MAP estimation can
be efficiently solved by minimizing the KL divergence
between a variational Gaussian and the real posterior
distribution without explicitly recovering the latter.

4 MULTIVARIATE GAUSSIAN CONSTRAINED MEAN

FIELD VARIATIONAL ANALYSIS

In this section, we present the Gaussian constrained mean
fieldvariational analysis,which functions as theoptimization
method in one annealing step in the variational MAP
algorithm. To better illustrate it, we adopt a specific type of
graphical model, i.e., theMarkov network as shown in Fig. 1.
Since different types of graphical models can be transformed
to one another [23], adopt a specific type of graphical model
will not lose the generality of the proposed algorithm.

In aMarkov network, each zi represents an observation of
the latent random variable xi. Each undirected link is
associatedwith a potential function ijðxi;xjÞ, whichmodels

the probability of two adjacent nodes being in a certain state
pair. And, each directed link represents an observation
function �iðzijxiÞ which models the probability of the
observation zi given xi. Denotes X ¼ fxi; i ¼ 1 . . .Lg as the
set of latent random variables and Z ¼ fzi; i ¼ 1 . . .Lg as the
set of all observations. Then, the joint probability of the
Markov network is

P ðX;ZÞ ¼ 1

Z

Y
fi;jg2E

 ijðxi;xjÞ
Y
i2V

�iðzijxiÞ; ð4Þ

where E is the set of undirected links, V is the set of directed
links, and Z is a normalization constant. Then, the Bayesian
MAP inference in the Markov network is to find

X̂X ¼ argmax
X

P ðXjZÞ: ð5Þ

We show that by combining the mean field variational
method [12], [11], [32], [7], [10] with the DA [16], [17], we can
efficiently find theoptimal ornearoptimalMAPestimationof
the joint posterior P ðXjZÞ.

To achieve that, first, we adopt themean field approxima-
tion, i.e.,

P ðXjZÞ � QðXÞ ¼
YL
i¼1

QiðxiÞ: ð6Þ

Suppose all the random variables share one common
dimension N , we further constrain each of the QiðxiÞ as a
multivariate Gaussian, i.e.,

QiðxiÞ � N ðxij~����i;����iÞ; ð7Þ

where ~����i is the N-dimensional mean vector and ����i ¼ ����2IN
is the N �N diagonal covariance matrix. Then, QðXÞ is a
N � L dimensional multivariate Gaussian distribution with
N � L �N � L diagonal covariance matrix as follows:

QðXÞ�N ðXj~����;����Þ

¼ N Xj

~����1

~����2

�
�
~����L

2
6666664

3
7777775
;

����2IN 0 0 0 0

0 ����2IN 0 0 0

0 0 � 0 0

0 0 0 � 0

0 0 0 0 ����2IN

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA
:

ð8Þ
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Fig. 1. An example of the Markov network.



We can thus construct a cost function, i.e.,

JðQÞ ¼ logP ðZÞ �KL QðXÞkP ðXjZÞð Þ ð9Þ

¼ logP ðZÞ �
I
X

Y
j

QjðxjÞ log
Q

j QjðxjÞ
P ðXjZÞ

� �
dX ð10Þ

¼
X
j

HjðQjðxjÞÞ þ
Z
xi

QiðxiÞEQ logP ðX;ZÞjxif gdxi; ð11Þ

where

HjðQjðxjÞÞ ¼ �
Z
xj

QjðxjÞ logQjðxjÞdxj ð12Þ

is the entropy of the distribution QjðxjÞ and

EQ logP ðX;ZÞjxif g¼
I
fxjgnxi

Y
fjgni

QjðxjÞ logP ðX;ZÞdX: ð13Þ

Note that (11) holds for any i ¼ 1 . . .L. It is easy to figure
out that maximizing JðQÞ is equivalent to minimizing
KLðQðXÞjjP ðXjZÞÞ since P ðZÞ is in fact a constant. We
incorporate logP ðZÞ in the cost function because we can thus
apply the Byesian rule to transform the posterior in (9) to the
joint probability in (11). Therefore, as we will demonstrate
later, we can obtain more convenience in computation by
using the factorized form of the joint probability in (4).

We solve this constrained optimization problem by
taking a strategy similar to the gradient projection method
[39], [40]. First, we relax the constraint by letting QiðxiÞ be
any valid probabilistic distributions. Then, we can use the
Lagrangian multipliers to reinforce the constraint thatR
xi
QiðxiÞdxi ¼ 1, i.e.,

J�ðQÞ ¼ JðQÞ þ
X
i

�i

Z
xi

QiðxiÞdxi � 1

� �
: ð14Þ

Therefore, now we need to minimize the functional J�ðQÞ.
Differentiating it with respect to QiðxiÞ and �i and setting
them to zero, we would obtain the following set of Euler
equations, i.e.,

� logQiðxiÞ � 1þ EQflogP ðX;ZÞjxig þ �i ¼ 0R
xi
QiðxiÞdxi � 1 ¼ 0:

�
ð15Þ

To solve this equation set, we easily obtain

QiðxiÞ ¼ exp �i � 1ð Þ exp EQflogP ðX;ZÞjxig
� �

�i ¼ 1� log
R
xi
eEQflogP ðX;ZÞjxig

� 	
:

(
ð16Þ

Thus, we can easily obtain the set of mean field fix-point
equations [32], [7], [10] for the updating of QiðxiÞ for each
i ¼ 1 . . .L, i.e.,

QiðxiÞ ¼
1

Zi
eEQflogP ðX;ZÞjxig; ð17Þ

where

Zi ¼
Z
xi

eEQflogP ðX;ZÞjxig ð18Þ

is the normalization constant to assure that QiðxiÞ be a valid
probability density function. We can iterate this set of fix-
point equations in order to find a minimum point of

KLðQðXÞkP ðXjZÞÞ when QðXÞ is a product of L Gaussian
distributions with fixed covariance ����2In, i.e.,

~����i ¼
Z
xi

xiQiðxiÞdxi ð19Þ

¼ 1

Zi

Z
xi

xie
EQflogP ðX;ZÞjxigdxi: ð20Þ

In fact, it is easy to figure out that (20) will minimize the
KLðQiðxiÞjjN ðxij~����; ����2InÞÞ with regard to Nðxij~����; ����2InÞ,
where QiðxiÞ is the unconstrained variational p.d.f. from
(17) and Nðxij~����; ����2InÞ is a Gaussian distribution with fixed
covariance ����2In. In this sense, (20) represents a projection of
any p.d.f. QiðxiÞ to the functional space spanned by all the
Gaussian distributions with the fixed covariance ����2In. Then,
the projected Gaussian distribution will be used for the next
mean field iteration. Thisprocesswill continueuntil themean
field iterations reach the fix-point. It exactly follows the same
strategy of the gradient projection method [39], [40].

Embedding (4) and (7) into (20), we obtain the set of
factorized fix-point equations, i.e.,

~����i ¼
1

Z0
i

Z
xi

xi�iðzijxiÞe
P

j2NðiÞ

R
xj

Nðxjj~����j;����2IN Þ log ijðxi;xjÞdxj
dxi;

ð21Þ

where

Z0
i ¼

Z
xi

�iðzijxiÞe
P

j2NðiÞ

R
xj

Nðxjj~����j;����2IN Þ log ijðxi ;xjÞdxj
dxi ð22Þ

is again a normalization constant and NðiÞ indicates the set
of neighboring nodes of xi. Then, we iteratively assign
QiðxiÞ ¼ N ðxij~����i; ����2INÞ, where~����i is calculated according to
(21). Please note that the covariance of the variational
Gaussian distribution is kept fixed during the fix-point
iteration and projection process.

For a constant ���� ¼ ����2INL, (21) is the mean field fix-point
equation to update ~����i. We can iterate this set of fix-point
equations and ~����i will converge to a minimum point of
KLðQðXÞjjP ðXjZÞÞ. This set of fix-point equations is efficient
since the updating of each ~����i only involves the local
computation in theneighborhoodofxi in thegraphicalmodel.

However, another issue of interest is that to solve the
constrained maximization of JðQÞ, we may directly take the
derivative of JðQÞ with regard to the mean ~����i of each of the
Gaussian QiðxiÞ and set them to zero. By interchanging the
derivative and integral in (11), we can then obtain the
following equations

~����i ¼
R
xi
xiQiðxiÞEQflogP ðX;ZÞjxigdxiR

xi
QiðxiÞEQflogP ðX;ZÞjxigdxi

: ð23Þ

Again, by embedding (4) into (23), we obtain the factorized
version of (23), i.e.,

~����i ¼
1

Z0
i
0

Z
X

xi
Y
j2V

QjðxjÞ

X
ðk;lÞ2E

log klðxk;xlÞ þ
X
m2V

log�mðxmÞ

0
@

1
AdX;

ð24Þ
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where

Z0
i
0 ¼
Z
X

Y
j2V

QjðxjÞ
X

ðk;lÞ2E
log klðxk;xlÞ þ

X
m2V

log�mðxmÞ

0
@

1
AdX
ð25Þ

is a normalization constant.

While it seems that (24) be a more direct solution, our

experiments show that even in a relative simple synthetic

problem as that in Section 7.2, the iteration of (24) failed to

converge.Tworeasonsmightexplainwhythishappens:1) the

deduction of (23) involves an interchange between derivative

and integral,whichmaynotbe justifiedand2)The iterationof

(24) isnotnumericallystable, i.e., itmightbeeasilygot trapped

in some saddle points. Another reason that we adopt (19) is

that the updating of ~����i only involves the local computation

in the neighborhood of the node xi, while (24) does not have

such kind of nice local property. Therefore, (19) is more

justified as well as more computational efficient than (24).

5 VARIATIONAL MAP BY DETERMINISTIC

ANNEALING

Based on Theorem 1 in Section 3 and the multivariate
Gaussian constrained mean field variational analysis in
Section 4, we show that we can nicely adopt a DA scheme to
efficiently find the optimal MAP estimate without explicitly
recovering the P ðXjZÞ.

We first relax the problem of estimating the global
maximum of P ðXjZÞ, i.e., we can instead minimize
KLðQðXÞkP ðXjZÞÞ, where QðXÞ is constrained to be a
multivariate Gaussian with a fixed diagonal covariance ���� ¼
����2INL as in (8).Wecan thenapply theDAscheme revealedby
Theorem 1. This is achieved by regarding the ����2 as the
temperature T for annealing. We can set it to be very large at
the start. The minimization of theKLðQðXÞkP ðXjZÞÞ in this
start setting is usually a trivial convex optimization problem
[17]. Then, the multivariate Gaussian constrained mean field
iteration in (21) can usually find the only minimum point
under this setting. Using this result as an initialization, we
decrease ����2 to be smaller toward zero and run themean field
iteration in (21) again. We can repeat the process until the ����2

decreasing to near zero. Then, upon convergence, the whole
annealing process will be very likely to obtain the global
minimum of the lim����!0KLðQðXÞkP ðXjZÞÞ and, thus, the
global maximum of P ðXjZÞ. Therefore, we only need to
control one parameter T ¼ ����2 for the annealing process.
Generally, we propose the variational MAP algorithm as
shown in Fig. 2.

Nevertheless, the annealing scheme, i.e., the decreasing
rate of T , needs to be carefully designed to have a good
optimization result. Unfortunately, it seems that a theoretic
analysis of the annealing rate is verydifficult. In the proposed
algorithm,we let the annealing control parameter T decrease
hyperbolically with the annealing number K. In our experi-
ments, such an annealing scheme always obtains satisfactory
results. Please note that although the mean field variational
analysis can only obtain an approximate posterior, the
proposed algorithm is very likely to obtain the exact optimal
MAP estimate.

6 MONTE CARLO SIMULATION OF THE

VARIATIONAL MAP

In a real valued graphicalmodel such as that in Fig. 1, if all the
observation functions �iðzijxiÞ and all the potential functions
 ijðxi;xjÞ are Gaussian, then we may obtain a closed form
analytical solution of the fix-point equations in (21). How-
ever, either the �iðzijxiÞ or the  ijðxi;xjÞ could be complex
non-Gaussian distributions, e.g., the image observation
function in the CONDENSATION contour tracker [29], [30],
[31] is the interference of a Gaussian random process and a
Poisson random process due to the background clutter. This
makes it verydifficult to obtainanalytical solutions for the fix-
point equations in (21), e.g., it would be very difficult to
evaluate thenormalization constantZ0

i in (22) since it involves
multiple integrals of complex distributions.

Nevertheless, under the non-Gaussian case, we can seek
thehelpofMonteCarlo simulation to approximately evaluate
(21). According to the strong law of large numbers, as the
number of i.i.d. samples from a distribution approaches to
infinity, any order of the sample quadrature will converge to
the same order of distribution statistics with probability one.
Thus, to evaluate (21), first, we can generateL sets of samples
to approximate each of the QiðxiÞ, i.e.,
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Fig. 2. Variational MAP algorithm.



QiðxiÞ ¼ N ðxij~��������i; ����2INÞ � fsi;kgKk¼1; i ¼ 1 . . .L; ð26Þ

where K is the number of samples used for simulation.

Then, these L sets of samples can be used for evaluating (21)

approximately, i.e.,

~��������i ¼
1

Z0
i
00

XK
k¼1

si;k�iðzijsi;kÞ exp
X
j2NðiÞ

1

K

XK
l¼1

log ijðsi;k; sj;lÞ

0
@

1
A;
ð27Þ

where

Z0
i
00 ¼

XK
k¼1

�iðzijsi;kÞ exp
X
j2NðiÞ

1

K

XK
l¼1

log ijðsi;k; sj;lÞ

0
@

1
A ð28Þ

is the normalization constant. Therefore, we propose the
Monte Carlo implementation of the variational MAP
algorithm in Fig. 3.

In fact, the use ofMonteCarlo simulation in the variational

MAP algorithm has other advantages in some computer

vision applications. For example, in visual tracking, since the

detection of the target is, in general, very difficult, it would be

hard to obtain the image observation zi and, thus, it is hard to

evaluate the observation likelihood �iðzijxiÞ. Whereas in a

sample-based Monte Carlo algorithm, the observation like-

lihood �ðzijxiÞ can be evaluated in a top-down approach, i.e.,

for each sample si;k, we can easily match the model

represented by the sample with the image data or image

features corresponding to the sample, just as in the CON-

DENSATION contour tracker [29], [30], [31].

7 EXPERIMENTS

In this section, we present extensive experimental results of

both synthetic problems and real applications, which

demonstrate the effectiveness and efficiency of the pro-

posed variational MAP algorithm.

7.1 Evolution of the Topology of the KL Divergence
during Annealing

In this experiment, we use an illustrative example to present

the topology of the KL divergence between a Gaussian

distribution and a multimodal Gaussian mixture during the

process of annealing. As shown in Fig. 4, it does evolve as

we expected from Theorem 1.

The real distribution pðxÞ ¼ 0:4 � N ðxj � 5; 0:2Þ þ 0:1 �
N ðxj � 2; 0:2Þ þ 0:25 � N ðxj3; 0:2Þ þ 0:25 � N ðxj5; 0:2Þ i s a

Gaussian mixture of four kernels. The qðxÞ ¼ N ðxj����; ����2Þ is
a Gaussian distribution. The annealing parameter is T ¼ ����2.

We can observe in Fig. 4a that when T is large, i.e., T ¼ 16:0,

theKLðqðxÞkpðxÞÞ is really a convex functionwith regards to

����. Then, with the decreasing of T , the KLðqðxÞkpðxÞÞ will

have more local minima, i.e., when T ¼ 6:0 or T ¼ 2:0, the

KLðqðxÞkpðxÞÞhas two localminima as shown in Figs. 4b and

4c. As the T decreases asymptotically to near zero, i.e.,

T ¼ 0:2, the KLðqðxÞkpðxÞÞ has four local minima at

���� ¼ �5:0;�2:0; 3:0; 5:0, respectively. Each of them corre-

sponds to one of the four local maxima of pðxÞ at

���� ¼ �5:0;�2:0; 3:0; 5:0. Also, the global minimum of the

KLðqðxÞkpðxÞÞ is at ���� ¼ �5:0, which exactly corresponds to

the global maximum of pðxÞ at x ¼ �5:0, as shown in Fig. 4d.

For comparison, we also present the plot of pð����Þ in Fig. 4e

and � log pð����Þ, in Fig. 4f. Compare Fig. 4d with Fig. 4f, we

empirically demonstrate that as a function of ����, the topology

ofKLðqðxÞkpðxÞÞdoes converge to the topology� log pð����Þ, as
����2 approaches to zero. This result is what we expect from the

Lemma 2 of Theorem 1 in the appendix.

7.2 Variational MAP inference in an Illustrative
Synthetic Problem

To investigate the convergence of the proposed variational

MAP algorithm, we perform it on an illustrative synthetic

problem, which is modeled as a two-nodes Markov

network in Fig. 5. In this synthetic problem, both x1 and

x2 are one-dimensional random variables. The potential

function between these two random variables is modeled as

a Gaussian distribution, i.e.,

 12ðx1;x2Þ ¼ N ðx2 � x1j6:0; 0:3Þ: ð29Þ

The observation function �iðzijxiÞ, i ¼ 1; 2 are modeled as
two Gaussian mixtures, respectively, i.e.,
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Fig. 3. Monte Carlo implementation of the variational MAP algorithm.



�1ðz1jx1Þ ¼ 0:5Nðz1 � x1j � 3:0; 0:3Þ þ 0:4Nðz1 � x1j0; 0:2Þ
þ 0:1Nðz1 � x1j4; 0:4Þ ð30Þ

�2ðz2jx2Þ ¼ 0:3Nðz2 � x2j � 5:0; 0:2Þ
þ 0:1Nðz2 � x2j � 2:0; 0:3Þ
þ 0:4Nðz2 � x2j3:0; 0:2Þ
þ 0:2Nðz2 � x2j5:0; 0:1Þ: ð31Þ

Then, we randomly choose the observations z1 and z2 and

perform the proposed variational MAP algorithm on it, we

show the Bayesian MAP inference results in Fig. 6.
From Fig. 6a, we can observe the convergence of the

proposed variational MAP algorithm in this illustrative

syntheticproblemwhenfz1; z2g ¼ f10:0; 16:0g.Werandomly

choose the initialization of ����1 and ����2 and run the algorithm

many times, every time we obtain the same convergence
curve, i.e., the converged result after the first stepof annealing
will always be the “�” shown in Fig. 6a at f����1; ����2g ¼
f9:6011; 17:6728g. This is what we expected since when T is
very large, the KLð�Þ is a convex function and, thus, the
optimization in this case will surely converge into the only
minimumpoint, e.g.,f����1; ����2g ¼ f9:6011; 17:6728g in this case.

We can also observe that the proposed algorithm does
converge to the global maximum of the posterior
distribution, i.e., our algorithm converges at f����1; ����2g ¼
f12:6824; 18:3793g which is shown as the “4” in Fig. 6a and
the numerically calculated MAP estimate is at around
fx1;x2g ¼ f12:70; 18:40g. Considering the possible error of
the numerically calculated MAP estimate, we conclude that
our algorithm does recover the global maximum of the
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Fig. 4. (a) T ¼ ����2 ¼ 16:0. (b) T ¼ ����2 ¼ 6:0. (c) T ¼ ����2 ¼ 2:0. (d) T ¼ ����2 ¼ 0:2. (e) pð����Þ. (f)�logðpð����ÞÞ. Evolution of theKLðqðxÞkpðxÞÞ with regard to ����

during annealing, where pðxÞ ¼ 0:4 � N ðxj � 5; 0:2Þ þ 0:1 �N ðxj � 2; 0:2Þ þ 0:25 �N ðxj3; 0:2Þ þ 0:25 � N ðxj5; 0:2Þ, qðxÞ ¼ N ðxj����; ����2Þ andT ¼ ����2: (a) The

KL topology when T ¼ 16:0, (b) theKL topology when T ¼ 6:0, (c) theKL topology when T ¼ 2:0, (d) theKL topology when T ¼ 0:2, (e) the plot of

the Gaussian mixture pð����Þ, and (f) the plot of the � log pð����Þ.



posterior distributionP ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0Þ. For com-
parison and visualization,we also present the topology of the
posterior distributionP ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0Þ in Fig. 6b.

Although in theory, we cannot guarantee the algorithm to
obtain the global optimalMAP estimation, extensive running
of the experiments on the synthetic problem shows that the
proposed variational MAP algorithm does always converge
to the global maximum of the posteriori distribution. We
present two other experimental results from Fig. 6c to Fig. 6f.
Again, both the convergence curve and the topology of the
posterior distribution are presented.

Some of the details of the experiments are described as
follows: First, the Tmax is set to 200 and Tmin is set to 0:01,
where the annealing starts and ends respectively. Second, in
each step of the annealing, we iterate (21) until convergence,
i.e., we stop the updating of ����1 and ����2 if the difference
between the updated value and the previous value is below
the prespecified threshold of 0:01.

Another concern would be about the convergence rate of
the proposed variational MAP algorithm. Although a
theoretical analysis of the convergence rate is very difficult,
on the synthetic two-node problem, we generally observe
that the first step of annealing takes the most number of
iterations which ranges from 10 to 15 to converge, then in
the following steps of annealing, it only takes one to two
steps for the mean field iteration to converge. Therefore,
empirically we achieve fast convergence of the proposed
variational MAP algorithm. By the way, how to design the
annealing scheme to achieve better result is also of interest
just as we have mentioned in Section 5. However, a
theoretic study of this problem seems to be a tremendous
work. In all the experiments, we use the hyperbolical
decreasing annealing scheme, i.e., T ¼ Tmax

K , it does achieve
satisfactory results.

In fact, instead of manually setting a Tmin for stopping the
annealing, we can develop more rigorous criterion for the
convergence of the annealing from the change of the KLð�Þ.
To make it clear, we plot the change of the KLð�Þ during the
annealing of the experiment reported in Figs. 6a and 6b, as
shown in Fig. 7. From Fig. 7, we observe dramatic decrease of
the KLð�Þ value in the approximately first 2,000 round of
annealing. Then, theKLð�Þwill increase very slowlywith the
decreasing of T . The hexagons in the plot represents the
KLð�Þ value after each 1; 000 round of annealing. Thus, there
is one and only one global minimum KLð�Þ value during
annealing in all the annealing steps. By checking the

simulation results, we find that after the annealing which
achieves the global minimum KLð�Þ value, the proposed
variational MAP algorithm has already converged to the
globalmaximumof the real posterior, e.g., in the experiments
shown in Fig. 7, when the algorithm achieves the global
minimumKLð�Þvalueduring the annealing, it has converged
to the global MAP of the real posteriori distribution
at f����1; ����2g ¼ f12:6824; 18:3793g, which corresponds to the
1,303 round of annealing with T ¼ Tmax

1;303 ¼ 200
1;303 ¼ 0:1535 and

the total number of themean field iteration is 1,420. Actually,
in the experiment, the runningof themean field iterationwith
annealing temperature after T ¼ 0:1535 will not change ����1
and����2 anymore, itwill just increase theKLð�Þvalue a little bit
since the Gaussian variational distribution tends to be more
peaky.

Although we only show one plot of the change of the
KLð�Þ value during annealing, all the experiments we have
run showed the same pattern of the changes. Therefore, we
conclude that we can stop the annealing when we find that
after one step of annealing, the resulted KLð�Þ value is not
less than the KLð�Þ value after the previous step of
annealing. This also finds the optimal Tmin which will
result in the most efficient running of the algorithm.
However, evaluating the KLð�Þ value may involve tremen-
dous computation by itself. Therefore, we still tend to
manually set the Tmax and Tmin to avoid the overhead
introduced by the evaluation of the KLð�Þ value.

Under the same experimental setting, we also run the
iteration of (24) on the same problem. Our observation is that
the annealed iteration process does not converge at all. We
show the experimental results when z1 ¼ 10:0; z2 ¼ 16:0 in
Fig. 8. Fig. 8a shows the curve of the annealed iteration of (24),
it failed to converge.Checking thevalueof theKLdivergence
during the iteration process, we find that it is increasing
instead of decreasingwith the iteration.We show the curve of
theKL divergence in Fig. 8c, while Fig. 8d presents the same
curve in the first 100 iteration.

7.3 Variational MAP for Tracking Articulated Human
Body

In this experiment, we implement the Monte Carlo
simulation of the variational MAP algorithm for tracking
an articulated human body. We adopt the same Markov
network to represent the articulated human body just as
that in [7], where each body part is represented as a quad
shape and the motion of each of them is represented as a
probabilistic random variable in the six-dimensional affine
space. We refer the interested readers to [7] for the detailed
description of the potential function  ijðxi;xjÞ and the
observation function �iðzijxiÞ of the Markov network.

Then, the Monte Carlo version of the variational
MAP algorithm is performed sequentially to recover the
motion of the articulated human body from the video. Some
of the sample result images are shown in Fig. 9. The
proposed variational MAP algorithm recovers the articu-
lated full-body motion very well across the video se-
quence,1 which has 767 frames. This is actually the annealed
version of the MFMC algorithm proposed in [7], [10].
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Fig. 5. Two nodes Markov network for the illustrative synthetic problem,
where  12ðx1;x2Þ ¼ N ðx2 � x1j6:0; 0:3Þ, �1ðz1jx1Þ ¼ 0:5Nðz1jx1 � 3:0;
0:3Þ þ 0:4Nðz1jx1; 0:2Þ þ 0:1Nðz1jx1 þ 4; 0:4Þ and �2ðz2jx2Þ ¼ 0:3Nðz2
jx2 � 5:0; 0:2Þ þ 0:1Nðz2jx2 � 2:0; 0:3Þ þ 0:4Nðz2jx2 þ 3:0; 0:2Þ þ 0:2N
ðz2jx2 þ 5:0; 0:1Þ.

1. Online demo at http://www.ece.northwestern.edu/~ganghua/
PAMI/VMapArticulate.avi.



For comparison, we also have implemented the MFMC
algorithm[7] and themultiple independent trackerwhichhas
beenused as a comparison of theMFMCalgorithm in [7].Our
experimental results reveal that the MFMC algorithm can
track the articulated motion well until the 368th frame and it
loses track after that. Sample result images are shown in
Fig. 10. For clear visualization, the mean estimate of each of
the quadrangle body shapes is overlayed on the images as the
tracking results. The reason for the tracking failure of the
MFMC algorithm is that the heavy multimodality of the
motion posterior causes themean estimate to be significantly
deviated from theMAP estimate of themotion. Thus, it could

hardly indicate the true motion, e.g., as we can observe in
frame #370. Also, just as reported in [7], the multiple
independent tracker loses track from the start.

When comparing the variational MAP algorithmwith the

MFMC algorithm, we set all the parameters of the potential

functions ijðxi;xjÞ and the observation functions�iðzijxiÞ to
be the same for both algorithms. Because of the annealing

process, theproposedvariationalMAPalgorithmneedsmore

mean field iterations than the MFMC algorithm. Our experi-

ments show that only the first step of annealing needs more

iterations, in the following steps of annealing, it generally
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Fig. 6. Convergence of the variational MAP algorithm in the 2D illustrative synthesized problem. The curve in each graph represents the process of
convergence. The “�” represents the converged result after the first step of annealing, no matter what is the initialization. The “4” represents the
converged result after the last step of annealing: (a) z1 ¼ 10:0; z2 ¼ 16:0, � ¼ f����1; ����2g ¼ f9:6011; 17:6728g, 4 ¼ f����1; ����2g ¼ f12:6824; 18:3793g. The
numerically global maximum is around fx1;x2g ¼ f12:70; 18:40g, (b) P ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0Þ, (c) z1 ¼ 6:944; z2 ¼ 14:218, � ¼ f����1; ����2g ¼
f8:2939; 16:4515g;4 ¼ f����1; ����2g ¼ f10:0353; 16:1268g. The numerically global maximum is around fx1;x2g ¼ f10:00; 16:10g, (d) P ðx1;x2j����1
¼ 6:944; z2 ¼ 14:218Þ. (e) z1 ¼ 7:3762; z2 ¼ 18:6813, � ¼ f����1; ����2g ¼ f7:7587; 15:8893g, 4 ¼ f����1; ����2g ¼ f10:1100; 15:8521g. The numerically global
maximum is around fx1;x2g ¼ f10:10; 15:80g, (f) P ðx1;x2jz1 ¼ 7:3762; z2 ¼ 18:6813Þ.



needs less than half of the mean field iterations of the MFMC

algorithm. So, the variational MAP algorithm only increases

the computation linearly in comparison with the MFMC

algorithm. Therefore, based on the analysis of the complexity

of the MFMC algorithm [7], [10], the variational MAP

algorithm also achieves linear complexity with respect to the

numberofbodyparts in tracking the articulatedhumanbody.

All the algorithms are implemented using C++, no code

optimization is performed. They are running in a 2.5 GHz PC

under Windows XP. We design six annealing steps and in

the first step of the annealing, we iterate the mean field fix-

point equations for six times and in the following annealing

steps, we run the mean field fix-point equations for three

times. The algorithm can thus run at the speed of 0.2 frames
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Fig. 7. The change of the KLðQ1ðx1ÞQ2ðx2kP ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0ÞÞÞ during annealing. It is dramatically decreased in the first 1,303 round of
annealing and then increase very slowly in the following annealing process. The proposed variational MAP algorithm actually has converged to the
global maximum of the real posterior distribution P ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0ÞÞ at f����1; ����2g ¼ f12:6824; 18:3793g after the 1,303 round of annealing at
T ¼ 0:1535. The total number of the Gaussian constrained mean field iteration is 1,420 up to the end of the 1,303 annealing. (a) All the iterations.
(b) First 100 iterations.

Fig. 8. Annealed iteration of (24) in the 2D illustrative synthesized problem. The “�” represents the result after the first step of annealing. And the “4”

represents the result after the last step of annealing. The iteration failed to converge: (a) z1 ¼ 10:0; z2 ¼ 16:0. � ¼ f����1; ����2g ¼ f14:330; 10:148g.
4 ¼ f����1; ����2g ¼ f18:391; 6:5445g. The numerically global optimal is around fx1;x2g ¼ f12:70; 18:40g, (b) P ðx1;x2jz1 ¼ 10:0; z2 ¼ 16:0Þ, and (c) the

KL value change in all the iterations. (d) The KL value change in the first 100 iterations.



per second. While in the MFMC algorithm, we iterate the

mean field fix-point equation six times and the mean values

of the recovered mean field distribution are adopted as the

the tracking result. It can roughly run at the speed of

0.6 frames per second, just similar to what has been reported

in [7]. We also use 200 particles for each of the body parts.

Another issue of interest would be that if using one

control parameter T for all the different component of the

state random variable xi is a good setting. In theory, it will

have no problem, but in real experiments, it may encounter

problems since different components of xi may have

different ranges. For example, in the six-dimensional affine

motion space, the translation component and the scaling
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Fig. 9. Variational MAP for tracking articulated human body, the video sequence has 767 frames and it can robustly recover the full human body

motion across the whole sequence. We overlay the middle line of each quad shape representing each body parts in the result images. While the

MFMC algorithm loses track after 368 frames and the multiple independent tracker loses track from the start. (a) #38, (b) #66, (c) #103, (d) #114,

(e) #138, (f) #168, (g) #228, (h) #280, (i) #288, (j) #299, (k) #333, (l) #349, (m) #378, (n) #388, (o) #424, (p) #456, (q) #504, (r) #548, (s) #568,

(t) #618, (u) #678, (v) #718, (w) #748, and (x) #766.



component have different ranges. Thus, we design different

annealing schemes for different component of the affine

state vector, i.e., the annealing of the translation compo-

nents of xi starts at Tmax1 ¼ 8 and the annealing of the

scaling components of xi starts at Tmax2 ¼ 0:6.

8 CONCLUSION AND FUTURE WORK

This paper proposed a novel variational MAP algorithm for
the optimal MAP estimation of complex stochastic systems.
By constraining the mean field variational distribution to be
multivariate Gaussian, a DA scheme is naturally incorpo-
rated into the mean field variational analysis to pursue the
optimal MAP estimation. Our main contributions are:

1. We show that the limit of the topology of the KL

divergence between amultivariateGaussian distribu-

tion gðXÞ ¼ N ðXj~����; ����2IÞ and an arbitrary p.d.f. pðXÞ,
when the ����2 approaches to zero, will converge to the

topology of �logð~����Þ (see Lemma 2 in Appendix 1).

Thus, there is an one-to-one correspondence of the

minima between the lim����2!0KLðgðXÞjjpðXÞÞ and the
maximaof thep.d.f. pðXÞ, and the limit of the infimum

point of the KL divergence will converge to the

supreme point of the pðXÞ, as shown in Theorem 1.
2. Based on Theorem 1, we nicely incorporate a DA

scheme into the Gaussian constrained mean field

variational analysis to pursue the optimal MAP

estimation of complex stochastic systems. Although

DA may not guarantee global optimality, our exten-

sive synthetic and real experiments showthat it is very

likely to achieve a global or near global optimal result.

Therefore, we achieve an efficient and effective way

for optimal MAP estimation.

There are also several questions need to be further

investigated:

1. Although we have empirically shown that the mean

field fix-point iteration in (19) and (20) is superior to

the iteration in (23) and (24), i.e., the latter two failed to

converge even in a relative simple synthetic problem,

we are still interested in investigating theoretically

why the former twoequations canobtainbetter results

under the context of optimization.
2. Is there an optimal annealing scheme which can

guarantee to achieve the optimal results more effi-

ciently?Theanswerof thisquestionwill also reveal the
convergence rate of the annealing scheme.

3. When will the proposed variational MAP algorithm
achieve the global optimality? Although generally in

our experiments, the variational MAP algorithm

with the hyperbolic decreasing DA scheme achieves

good results, practically there is no guarantee that
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Fig. 10. Tracking articulated body motion by MFMC, the algorithm failed after frame #368 due to the heavy multimodality in the motion posteriors

where the mean estimate deviated a lot from the true motion. (a) #8, (b) #128, (c) #152, (d) #208, (e) #143, (f) #308, and (g) #370.



the algorithm will achieve global optimality. Should
there be a sufficient condition, or a necessary

condition, or both for the global optimality?
4. With regards to applying the proposed variational

MAP algorithm to computer vision problems,

should there be an efficient way of incorporating

some bottom-up processing to facilitate more effi-

cient convergence of the algorithm? The answer of

this question will achieve a data driven variational

MAP algorithm for many computer vision problems.

We will further study the above questions in our future

work.

APPENDIX 1

LEMMA OF THEOREM 1

Define, for ���� > 0, the quantity

’����ð~����Þ ¼ Eqflog pð~����þ ����xÞg ¼
Z
x

qðxÞ log pð~����þ ����xÞdx: ð32Þ

Note that (2) ensures that ’����ð~����Þ is finite provided that � is

small enough, as we will show in the proof of Lemma 2. We

propose the following lemmas to facilitate the proof of

Theorem 1.

Lemma 1. Under the same conditions of Theorem 1, we have

KLðq~��������ðxÞkpðxÞÞ ¼ C���� � ’����ð~����Þ; ð33Þ

where C���� is a constant relied only on ����.

Proof.

KLðq~��������ðxÞkpðxÞÞ¼
Z
x

q~��������ðxÞ log
q~��������ðxÞ
pðxÞ dx ð34Þ

¼
Z
x

q~��������ðxÞ log q~��������ðxÞdx�
Z
x

q~��������ðxÞ log pðxÞdxð35Þ

¼� logfð2�eÞn����ng�
Z
x

q~��������ðxÞ log pðxÞdx ð36Þ

¼ C���� �
Z
x

q~��������ðxÞ log pðxÞdx ð37Þ

¼ C���� �
Z
x

����nq~�������� ~����þ ����xð Þ log pð~����þ ����xÞdx ð38Þ

¼ C���� �
Z
x

qðxÞ log pð~����þ ����xÞdx ð39Þ

¼ C���� � Eqflogðpð~����þ ����xÞÞg ð40Þ
¼ C���� � ’����ð~����Þ: ð41Þ

ut

Lemma 2. Under the same conditions of Theorem 1, we have that

for any ���� 2 Rn,

lim
����!0

’����ð~����Þ ¼ log pð~����Þ; ð42Þ

Proof. First, (2) guarantees that, for���� sufficiently small,’����ð~����Þ
is finite for all~���� 2 Rn, i.e., if ���� <

ffiffi
2

p

2 , note by parallelogram

law �ðx�~����ÞT ðx�~����Þ � ~����T~����� xTx
2 , we have

’����ð~����Þj j ¼
Z
x

qðxÞ log pð~����þ ����xÞdx
����

���� ð43Þ

¼
Z
x

1

ð2�Þ
n
2
exp �xTx

2

� �
log pð~����þ ����xÞdx

�����
����� ð44Þ
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2����2

 !
log pðxÞj jdxð46Þ

�
Z
x

1

ð2�Þ
n
2����n

exp �ðx�~����ÞT ðx�~����Þ
� 	

log pðxÞj jdx ð47Þ

�
Z
x

1

ð2�Þ
n
2����n

exp ~����T~����� xTx

2

� �
log pðxÞj jdx ð48Þ

¼ 1

ð2�Þ
n
2����n

exp ~����T~����
� � Z

x

exp �xTx

2

� �
log pðxÞj jdx ð49Þ

< þ1: ð50Þ

By the continuity of pðxÞ, for any � > 0, there exists � ¼
�ð~����Þ > 0 such that jx�~����j < � implies j log pðxÞ � log
pð~����Þj < �, we have

’����ð~����Þ � log pð~����Þj j

¼
�����
Z
x

qðxÞ log pð~����þ ����xÞdx� log pð~����Þ
����� ð51Þ

¼
�����
Z
x

qðxÞðlog pð~����þ ����xÞ � log pð~����ÞÞdx
����� ð52Þ

¼
�����
Z
jxj<�

����

qðxÞðlog pð~����þ ����xÞ � log pð~����ÞÞdx ð53Þ

þ
Z
jxj>�

����

qðxÞðlog pð~����þ ����xÞ � log pð~����ÞÞdx
����� ð53Þ

�
�����
Z
jxj<�

����

qðxÞdx
����þ
����
Z
jxj>�

����

qðxÞðlog pð~����þ����xÞ�log pð~����ÞÞdx
����ð54Þ

¼ �P
�
jxqj<

�

����

	
þ
�����
Z
jxj>�

����

qðxÞðlog pð~����þ����xÞ�log pð~����ÞÞdx
����� ð55Þ

< �þ
Z
jxj>�

�����nq
�x
����

	
log pð~����þ xÞ � log pð~����Þj jdx: ð56Þ

For the second term in (56), we have shown from (43) to
(50) that it is integrable. Moreover, for ���� small enough
and for any fixed jxj > �, it is easy to show that

lim
����!0

�����nq
x

�

� 	
¼ 0: ð57Þ

Therefore, for any fixed jxj > � and for ���� small enough,
we have

�����nq
x

�

� 	
< exp �xTx

2

� �
; ð58Þ

thus, it follows that

�����nq
x

�

� 	
log pð~����þ xÞ � log pð~����Þj j

< exp �xTx

2

� �
log pð~����þ xÞ � log pð~����Þj j:

ð59Þ

HUA AND WU: VARIATIONAL MAXIMUM A POSTERIORI BY ANNEALED MEAN FIELD ANALYSIS 1759



From the integrability condition in (2) and the properness

of pðxÞ, it is easy to figure out that the right handsideof (59)

is also integrable. With (57), applying Lebesgue’s domi-

nated convergence theorem,we have that the second term

in (56) goes to zero as ����! 0, i.e., for the given � > 0, there

exists a ����1 ¼ ����ð�Þ > 0 such that when ���� < ����1,

’����ð~����Þ � log pð~����Þj j < �þ � ¼ 2�: ð60Þ

Then, we have

lim
����!0

’����ð~����Þ � log pð~����Þj j ¼ 0: ð61Þ

Therefore, (42) holds. tu

Lemma 3. Under the same condition of Theorem 1, if a sequence

f~��������g is such that

lim
����!0

’����ð~��������Þ ¼ sup
x

log pðxÞ; ð62Þ

then

lim
����!0

~�������� ¼ x�: ð63Þ

Proof. We need to prove that, if ’����ð~��������Þ ! log pðx�Þ as ����! 0,

it is impossible that there exists � > 0 such that infinitely

often ~�������� � x�j j � 2�. Let us first assume that such a � exists,

then according to the continuity of log pðxÞ, there exists a

� > 0 such that log pðxÞ < log pðx�Þ � � for x� x�j j � �. For

���� small enough, e.g., ���� < 1
3 �, we then have

’����ð~��������Þ ¼
Z
x

qðxÞ log pð~�������� þ ����xÞdx ð64Þ

¼
Z
jxj<�

����

qðxÞ log pð~�������� þ ����xÞdx

þ
Z
jxj>�

����

qðxÞ log pð~�������� þ ����xÞdx ð65Þ

� log pðx�Þ � �ð ÞP jxqj < �

����

� �

þ log pðx�ÞP jxqj �
�

����

� �
ð66Þ

¼ log pðx�Þ � �P jxqj <
�

����

� �
ð67Þ

� log pðx�Þ � 1

2
� ð68Þ

¼)

’����ð~��������Þ � log pðx�Þj j � 1

2
�; ð69Þ

where (66) holds because for jxj < �
���� , we have

~�������� þ ����x� x�j j � � which implies that log pð~�������� þ ����xÞ <
log pðx�Þ � �.
Equation (69) immediately contradicts with (62).

Therefore, (63) holds given that (62) holds. tu

APPENDIX 2

PROOF OF THEOREM 1

Proof. We first proceed to prove

lim
����!0

sup
~����
’����ð~����Þ ¼ sup

x
log pðxÞ: ð70Þ

Note that from Lemma 1, the series f~��������g in Theorem 1 is

also such that

’����ð~��������Þ ¼ sup
~����
’����ð~����Þ: ð71Þ

First of all, we have log pðxÞ < log pðx�Þ þ � for any � > 0.

Thus, for any ���� > 0, we have

’����ð~��������Þ ¼
Z
x

qðxÞ log pð~�������� þ ����xÞdx ð72Þ

< log pðx�Þ þ �ð Þ
Z
x

qðxÞdx ð73Þ

¼ log pðx�Þ þ �: ð74Þ

Moreover, from Lemma 2, we have, for any � > 0,
there exists a ����1 > 0, for ���� < ����1, we have

’����ðx�Þ � log pðx�Þj j < �: ð75Þ

Then, from (74)} and (75), we easily obtain that for

���� < ����1,

log pðx�Þ � � < ’����ðx�Þ < ’����ð~��������Þ < log pðx�Þ þ �: ð76Þ

Thus, for any � > 0, there exists a ����1 > 0, for ���� < ����1, we

have

’����ð~��������Þ � log pðx�Þj j ¼ sup
~����
’����ð~����Þ � sup

x
log pðxÞ

�����
����� < �: ð77Þ

This immediately proves (70). Then, we can directly

conclude that (3) holds by applying Lemma 3. tu

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation Grants IIS-0347877, IIS-0308222, and North-

western faculty startup funds for Ying Wu and Walter P.

Murphy Fellowship for Gang Hua.

REFERENCES

[1] C. Andrieu and A. Doucet, “Joint Bayesian Model Selection and
Esitimation of Noisy Sinusoids via Reversible Jump MCMC,”
IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2667-2676, 1999.

[2] Z. Tu and S.-C. Zhu, “Image Segmentation by Data-Driven
Markov Chain Monte Carlo,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 657-673, May 2002.

[3] A. Barbu and S.-C. Zhu, “Graph Partition by Swendsen-Wang
Cut,” Proc. IEEE Int’l Conf. Computer Vision, 2003.

[4] W.T. Freeman and E.C. Pasztor, “Learning Low-Level Vision,”
Proc. IEEE Int’l Conf. Computer Vision, pp. 1182-1189, 1999.

[5] W.T. Freeman and E.C. Pasztor, “Markov Network for Low-Level
Vision,” technical report, MERL, Mitsubish Electric Research
Laboratory, 1999.

[6] Y. Wu and T.S. Huang, “Robust Visual Tracking by Co-Inference
Learning,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2, pp. 26-33,
2001.

1760 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 11, NOVEMBER 2005



[7] Y. Wu, G. Hua, and T. Yu, “Tracking Articulated Body by
Dynamic Markov Network,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 1094-1101, 2003.

[8] L. Sigal, M. Isard, B. Sigelman, and M. Black, “Attractive People:
Assembling Loose-Limbed Models Using Non-Parametric Belief
Propagation,” Advances in Neural Information Processing System 16,
MIT Press, 2004.

[9] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding Belief
Propagation and Its Generalization,” Exploring Artificial Intelligence
in the New Millenium, chapter 8, pp. 239-286, Elsevier Science and
Technology Books, 2003.

[10] G. Hua, Y. Wu, and T. Yu, “Analyzing Structured Deformable
Shapes via Mean Field Monte Carlo,” Proc. IEEE Asia Conf.
Computer Vision, 2004.

[11] M.J. Beal, “Variational Algorithms for Approximate Bayesian
Inference,” PhD Thesis, Gatsby Computational Neuroscience
Unit, Univ. College, London, 2003.

[12] J.M. Winn, “Variational Message Passing and Its Application,”
PhD thesis, Dept. of Physics, Univ. of Cambridge, 2003.

[13] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller, “Equations of State Calculations by Fast Computing
Machine,” J. Chemical Physics, vol. 21, pp. 1087-1091, 1953.

[14] J.M.P.V.S. Kirkpatrick and C.D. Gelatt, “Optimization by Simu-
lated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[15] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, June 1984.

[16] A.L. Yuille and J.J. Kosowsky, “Statistical Physics Algorithms that
Converge,” Neural Computation, vol. 6, no. 3, pp. 341-356, June
1994.

[17] J. Puzicha, T. Hofmann, and J.M. Buhmann, “Deterministic
Annealing: Fast Physical Heuristics for Real-Time Optimization
of Large Systems,” Proc. 15th IMACS World Conf. Scientific
Computation, Modelling and Applied Math., 1997.

[18] J. Puzicha and J.M. Buhmann, “Multiscale Annealing for Group-
ing and Unsupervised Texture Segmentation,” Computer Vision
and Image Understanding (CVIU), vol. 76, no. 3, pp. 213-230, 1999.

[19] S.Z. Li, “Robustizing Robust M-Estimation Using Deterministic
Annealing,” Pattern Recognition, vol. 29, no. 1, pp. 159-166, 1996.

[20] K.P. Murphy, “Dynamic Bayesian Networks: Representation,
Inference and Learning,” PhD thesis, Computer Science Division,
Univ. of California, Berkeley, 2002.

[21] V.I. Pavlovic, “Dynamic Bayesian Networks for Information
Fusion with Application to Human-Computer Interfaces,” PhD
thesis, Dept. of Electrical and Computer Eng., Univ. of Illinois at
Urbana-Champaign, 1999.

[22] G. Hua and Y. Wu, “Multi-Scale Visual Tracking by Sequential
Belief Propagation,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 826-833, 2004.

[23] M. Jordan and Y. Weiss, “Graphical Models: Probabilistic
Inference,” The Handbook of Brain Theory and Neural Network,
second ed. MIT Press, pp. 243-266, 2002.

[24] Y. Wang, T. Tan, and K.-F. Loe, “Video Segmentation Based on
Graphical Models,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 335-342, 2003.

[25] Y. Wu, G. Hua, and T. Yu, “Switching Observation Models for
Contour Tracking in Clutter,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, vol. 1, pp. 295-302, 2003.

[26] Y. Wu, T. Yu, and G. Hua, “Tracking Appearances with
Occlusions,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 789-795, 2003.

[27] K. Murphy, Y. Weiss, and M. Jordan, “Loopy-Belief Propagation
for Approximate Inference: An Empirical Study,” Proc. 15th Conf.
Uncertainty in Artificial Intelligence, 1999.

[28] W.T. Freeman and H. Zhang, “Shape-Time Photography,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2003.

[29] A. Blake and M. Isard, Active Contours. Springer-Verlag, 1998.
[30] M. Isard and A. Blake, “Contour Tracking by Stochastic Propaga-

tion of Conditional Density,” Proc. European Conf. Computer Vision,
vol. 1, pp. 343-356, 1996.

[31] M. Isard and A. Blake, “Condensation-Conditional Density
Propagation for Visual Tracking,” Int’l J. Computer Vision, vol. 29,
no. 1, pp. 5-28, 1998.

[32] T.S. Jaakkola, “Tutorial on Variational Approximation Method,”
Advanced Mean Field Methods: Theory and Practice, MIT Press, 2000.

[33] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky, “Nonpara-
metric Belief Propagation,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 605-612, 2003.

[34] M. Isard, “Pampas: Real-Valued Graphical Models for Computer
Vision,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 613-620, 2003.

[35] A.V. Rao, D.J. Miller, K. Rose, and A. Gersho, “A Deterministic
Annealing Approach for Parsimonious Design of Piecewise
Regression Models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 21, no. 2, pp. 159-173, Feb. 1999.

[36] D. Doll and W. von Seelen, “Object Recognition by Deterministic
Annealing,” Image and Vision Computing, vol. 15, pp. 855-860, 1997.

[37] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion
Capture by Annealed Particle Filtering,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2000.

[38] T.M. Cover and J.A. Thomas, Elements of Information Theory,
D.L. Schilling, ed., second ed. New York: John Wiley and Sons,
1991.

[39] J.B. Rosen, “The Gradient Projection Method for Nonlinear
Programming. Part I. Linear Constraints,” J. Soc. Industrial and
Applied Math., vol. 8, no. 1, pp. 181-217, Mar. 1960.

[40] J.B. Rosen, “The Gradient Projection Method for Nonlinear
Programming. Part II. Nonlinear Constraints,” J. Soc. Industrial
and Applied Math., vol. 9, no. 4, pp. 514-532, Dec. 1961.

Gang Hua received the MS degree in control
science and engineering at XJTU in 2002. he is
a PhD candidate in the Department of Electrical
and Computer Engineering, Northwestern Uni-
versity. He has been working with Professor
Ying Wu since September 2002. His main
research interests include computer vision,
computer graphics, and machine learning. Be-
fore attending Northwestern, he was a master
student in the AI&R Institute at Xi’an Jiaotong

University (XJTU), Xi’an, People’s Republic of China, under the
supervision of Professor Nanning Zheng. He was enrolled in the Special
Class for the Gifted Young of XJTU in 1994 and received the BS degree
in automatic control engineering at XJTU in 1999. He received the
Walter P. Murphy Fellowship at Northwestern University in 2002. When
he was at XJTU, he was awarded the Guanghua Fellowship, the
EastCom Research Scholarship, the Most Outstanding Student Ex-
emplar Fellowship, the Sea-star Fellowship, and the Jiangyue Fellow-
ship in 2001, 2000, 1997, 1997, and 1995, respectively. He was also a
recipient of the University Fellowship for Outstanding Student at XJTU
from 1994 to 2002. He is a student member of the IEEE.

Ying Wu received the BS degree from the
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 1994, the MS degree
from Tsinghua University, Beijing, China, in
1997, and the PhD degree in electrical and
computer engineering from the University of
Illinois at Urbana-Champaign (UIUC), Urbana,
Illinois, in 2001. From 1997 to 2001, he was a
graduate research assistant at the Image For-
mation and Processing Group of the Beckman

Institute for Advanced Science and Technology at UIUC. During the
summers of 1999 and 2000, he was a research intern with the Vision
Technology Group, Microsoft Research, Redmond, Washington. Since
2001, he has been on the faculty of the Department of Electrical and
Computer Engineering at the Northwestern University, Evanston,
Illinois. His current research interests include computer vision, computer
graphics, machine learning, human-computer intelligent interaction,
image/video processing, multimedia, and virtual environments. He
received the Robert T. Chien Award at the University of Illinois at
Urbana-Champaign in 2001, and is a recipient of the US National
Science Foundation CAREER award. He is a member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUA AND WU: VARIATIONAL MAXIMUM A POSTERIORI BY ANNEALED MEAN FIELD ANALYSIS 1761


