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Summary 

It is often tedious and expensive to label large training datasets for learning-based 

image classification. This problem can be alleviated by self-supervised learning 

techniques, which take a hybrid of labeled and unlabeled data to train classifiers. 

However, the feature dimension is usually very high (typically from tens to several 

hundreds). The learning is afflicted by the curse of dimensionality as the search space 

grows exponentially with the dimension. Discriminant-EM (DEM) proposed a framework 

for such tasks by applying self-supervised learning in an optimal discriminating subspace 

of the original feature space. However, the algorithm is limited by its linear 

transformation structure which cannot capture the non-linearity in the class distribution. 

This paper extends the linear DEM to a nonlinear kernel algorithm, Kernel DEM 

(KDEM) based on kernel multiple discriminant analysis (KMDA). KMDA provides better 

ability to simplify the probabilistic structures of data distribution in a discriminating 

subspace. KMDA and KDEM are evaluated on both benchmark databases and synthetic 

data. Experimental results show that classifier using KMDA is comparable with support 

vector machine (SVM) on standard benchmark test, and KDEM outperforms a variety of 

supervised and semi-supervised learning algorithms for several tasks of image 

classification.  Extensive results show the effectiveness of our approach.  
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       Abstract 
 

For learning-based tasks such as image classification, the feature dimension is usually very high. 

The learning is afflicted by the curse of dimensionality as the search space grows exponentially 

with the dimension. Discriminant-EM (DEM) proposed a framework by applying self-supervised 

learning in a discriminating subspace. This paper extends the linear DEM to a nonlinear kernel 

algorithm, Kernel DEM (KDEM), and evaluates KDEM extensively on benchmark image 

databases and synthetic data. Various comparisons with other state-of-the-art learning techniques 

are investigated for several tasks of image classification.   Extensive results show the effectiveness 

of our approach.  
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1. INTRODUCTION 

Content-based image retrieval (CBIR) is a technique which uses visual content to search images from 

large-scale image database according to userís interests and has been an active and fast advancing research 

area since the 1990s [1]. A challenge in content-based image retrieval is the semantic gap between the 

high-level semantics in human mind and the low-level features computed by the machine. Users seek 

semantic similarity, but the machine can only provide similarity by data processing.  The mapping between 

them would be nonlinear such that it is impractical to represent it explicitly. A promising approach to this 

problem is machine learning, by which the mapping could be learned through a set of examples. The task 

of image retrieval is to find as many as possible ìsimilarî images to the query images in a given database. 

The retrieval system acts as a classifier to divide the images in the database into two classes, either 

relevant or irrelevant. Many supervised or semi-supervised learning approaches have been employed to 

approach this classification problem. Successful examples of learning approaches in content-based image 

retrieval can be found in the literature [2-9]. 

However, representing image in the image space is formidable, since the dimensionality of the image 

space is intractable.  Dimension reduction could be achieved by identifying invariant image features. In 

some cases, domain knowledge could be exploited to extract image features from visual inputs. On the 

other hand, the generalization abilities of many current methods largely depend on training datasets. In 

general, good generalization requires large and representative labeled training datasets.  

In content-based image retrieval [1-9], there are a limited number of labeled training images given by 

user query and relevance feedback [10]. Pure supervised learning from such a small training dataset will 

have poor generalization performance. If the learning classifier is over-trained on the small training 

dataset, over-fitting will probably occur.  However, there are a large number of unlabeled images or 

unlabeled data in general in the given database. Unlabeled data contain information about the joint 

distribution over features which can be used to help supervised learning. These algorithms normally 
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assume that only a fraction of the data is labeled with ground truth, but still take advantage of the entire 

data set to generate good classifiers; they make the assumption that nearby data are likely to be generated 

by the same class. This learning paradigm could be looked as an integration of pure supervised and 

unsupervised learning. 

Discriminant-EM (DEM) [11] is a self-supervised learning algorithm for such purposes by taking a 

small set of labeled data with a large set of unlabeled data. The basic idea is to learn discriminating 

features and the classifier simultaneously by inserting a multi-class linear discriminant step in the standard 

expectation-maximization (EM) [12] iteration loop. DEM makes assumption that the probabilistic structure 

of data distribution in the lower dimensional discriminating space is simplified and could be captured by 

lower order Gaussian mixture. 

Fisher discriminant analysis (FDA) and multiple discriminant analysis (MDA) [12] are traditional two-

class and multi-class discriminant analysis which treats every class equally when finding the optimal 

projection subspaces. Contrary to FDA and MDA, Zhou and Huang [13] proposed a biased discriminant 

analysis (BDA) which treats all positive, i.e., relevant examples as one class, and negative, i.e., irrelevant, 

examples as different classes for content-based image retrieval. The intuition behind BDA is that ìall 

positive examples are alike, each negative example is negative in its own wayî. Compared with the state-

of-the-art methods such as support vector machines (SVM) [14], BDA [13] outperforms SVM when the 

size of negative examples is small (<20). 

However, one drawback of BDA is its ignorance of unlabeled data in the learning process. Unlabeled 

data could improve the classification under the assumption that nearby data is to be generated by the same 

class [15]. In the past years there has been a growing interest in the use of unlabeled data for enhancing 

classification accuracy in supervised learning such as text classification [16, 17], face expression 

recognition [18], and image retrieval [11, 19].   
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DEM differs from BDA in the use of unlabeled data and the way they treat the positive and negative 

examples in the discrimination step. However, the discrimination step is linear in both DEM and BDA, 

they have difficulty handling data sets which are not linearly separable. In CBIR, image distribution is 

usually modeled as a mixture of Gaussians, which is highly non-linear-separable. In this paper, we 

generalize the DEM from linear setting to a nonlinear one. Nonlinear, kernel discriminant analysis 

transforms the original data space X to a higher dimensional kernel ìfeature spaceî1 F and then projects 

the transformed data to a lower dimensional discriminating subspace ∆  such that nonlinear discriminating 

features could be identified and training data could be better classified in a nonlinear feature subspace.   

The rest of paper is organized as follows. In Section 2, we present nonlinear discriminant analysis 

using kernel functions [20, 21]. In Section 3, two schemes are presented for sampling training data for 

efficient learning of nonlinear kernel discriminants. In Section 4, Kernel DEM is formulated and in Section 

5 we apply Kernel DEM algorithm to various applications and compare with other state-of-the-art 

methods. Our experiments include standard benchmark testing, image classification on Corel photos and 

synthetic data, and view-independent hand posture recognition. Finally, conclusions and future work are 

given in Section 6. 

2. NONLINEAR DISCRIMINANT ANALYSIS 

Preliminary results of applying DEM for CBIR have been shown in [11]. In this section, we generalize the 

DEM from linear setting to a nonlinear one. We first map the data x via a nonlinear mapping φ  into some 

high, or even infinite dimensional feature space F and then apply linear DEM in the feature space F. To 

avoid working with the mapped data explicitly (being impossible if F is of an infinite dimension), we will 

adopt the well-known kernel trick [22].  The kernel functions ),( zxk compute a dot product in a feature 

                                                 
1 A term used in kernel machine literatures to denote the new space after the non-linear transform-this shall not be 
confused with the feature space concept used in content-based image retrieval to denote the space for features or 
descriptors extracted from the media data. 
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space F: ))()((),( zxzx φφ ⋅= Tk . Formulating the algorithms in F using φ  only in dot products, we can 

replace any occurrence of a dot product by the kernel function k, which amounts to performing the same 

linear algorithm as before, but implicitly in a kernel feature space F.  Kernel principle has quickly gained 

attention in image classification in recent years [13, 19-23].  

2.1. Linear Features and Multiple Discriminant Analysis 

It is common practice to preprocess data by extracting linear and non-linear features. In many feature 

extraction techniques, one has a criterion assessing the quality of a single feature which ought to be 

optimized. Often, one has prior information available that can be used to formulate quality criteria, or 

probably even more common, the features are extracted for a certain purpose, e.g., for subsequently 

training some classifier.  What one would like to obtain is a feature, which is as invariant as possible while 

still covering as much of the information necessary for describing the dataís properties of interest. 

A classical and well-known technique that solves thus type of problem, considering only one linear 

feature, is the maximization of the so called Rayleigh coefficient [24, 12]. 
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Here, W denotes the weight vector of a linear feature extractor (i.e., for an example x, the feature is given 

by the projections (WT·x) and 1S  and 2S are symmetric matrices designed such that they measure the 

desired information and the undesired noise along the direction W.  The ratio in equation (1) is maximized 

when one covers as much as possible of the desired information while avoiding the undesired. 

If we look for discriminating directions for classification, we can choose BS  to measure the 

separability of class centers (between-class variance), i.e., 1S in equation (1), and WS  to measure the 

within-class variance, i.e., 2S in equation (1). In this case, we recover the well-known Fisher discriminant 

[25], where BS  and WS  are given by: 
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�� == ( 2=C  for Fisher discriminant analysis) to denote the feature vectors 

of training samples. C is the number of classes, jN  is the number of the samples of the jth class, )( j
ix is the 

ith sample from the jth class, jm is mean vector of the jth class, and m is grand mean of all examples.  

If 1S  in equation (1) is the covariance matrix of all the samples 
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and 2S  identity matrix, we recover standard principal component analysis (PCA) [26].  

If 1S  is the data covariance and 2S  the noise covariance (which can be estimated analogous to 

equation (4), but over examples sampled from the assumed noise distribution), we obtain oriented PCA 

[26], which aims at finding a direction that describes most variance in the data while avoiding known noise 

as much as possible. 

PCA and FDA, i.e., linear discriminant analysis (LDA) are both common techniques for feature 

dimension reduction.  LDA constructs the most discriminative features while PCA constructs the most 

descriptive features in the sense of packing most ìenergyî. 

There has been a tendency to prefer LDA over PCA because, as intuition would suggest, the former 

deals directly with discrimination between classes, whereas the latter deals without paying particular 

attention to the underlying class structure.  An interesting result is reported by Martinez and Kaka [27] that 

this is not always true in their study on face recognition.  PCA might outperform LDA when the number of 

samples per class is small or when the training data non-uniformly sample the underlying distribution.  
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When the number of training samples is large and training data is representative for each class, LDA will 

outperform PCA. 

Multiple discriminant analysis (MDA) is a natural generalization of Fisherís linear discriminative 

analysis for multiple classes [12].  The goal is to maximize the ratio of equation (1). The advantage of 

using this ratio is that it has been proven in [28] that if WS  is nonsingular matrix then this ratio is 

maximized when the column vectors of the projection matrix, W, are the eigenvectors of BW SS 1− . It should 

be noted that W maps the original 1d -dimensional data space X to a 2d -dimensional space ∆  ( 12 −≤ Cd , 

C is the number of classes).  

For both FDA and MDA, the columns of the optimal W are the generalized eigenvector(s) 

iw associated with the largest eigenvalue(s) . ],,[ 1,21 −= CoptW www � will contain in its columns C-1 

eigenvectors corresponding to C-1 eigenvalues, i.e., iWiiB wSwS λ=  [12]. 

2.2. Kernel Discriminant Analysis 

To take into account non-linearity in the data, we propose a kernel-based approach. The original MDA 

algorithm is applied in a feature space F which is related to the original space by a non-linear mapping φ: 

)(xx φ→ .  Since in general the number of components in )(xφ can be very large or even infinite, this 

mapping is too expensive and will not be carried out explicitly, but through the evaluation of a kernel k, 

with elements )()()( jiji , xxxx φφ ⋅= Tk . This is the same idea adopted by the support vector machine 

[14], kernel PCA [29], and invariant feature extractions [30, 31].  The trick is to rewrite the MDA formulae 

using only dot products of the form j
T

i φφ ⋅ , so that the reproducing kernel matrix can be substituted into 

the formulation and the solution; eliminate the need for direct nonlinear transformation.  

Using superscript φ to denote quantities in the new space and using BS  and WS  for between-class 

scatter matrix and within-class scatter matrix, we have the objective function in the following form: 
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In general, there is no other way to express the solution FWopt ∈ , either because F is too high or 

infinite dimension, or because we do not even know the actual feature space connected to a certain kernel. 

But we know [22, 24] that any column of the solution optW  must lie in the span of all training samples in 
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where )](,),([ 1 Nxx φφ �=Φ . We can therefore project a data point kx onto one coordinate of the linear 

subspace of F as follows (we will drop the subscript on iw  in the ensuing): 
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where we have rewritten dot products, )(yx φφ ⋅T)( with kernel notation ),( yxk . Similarly, we can project 

each of the class means onto an axis of the subspace of feature space F using only products: 
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find  
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where ],,[ 11 −= Cαα �

�

�A , C is the total number of classes, N is the size of training samples, and BK  and 

WK  are NN × matrices which require only kernel computations on the training samples [22].  

Now we can solve for α� sí, the projection of a new pattern z onto w is given by equations (9)-(10).  

Similarly, algorithms using different matrices for 1S , and 2S  in equation (1), are easily obtained along the 

same lines.  
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2.3.  Biased Discriminant Analysis  

BDA [13] differs from traditional MDA defined in equations (1)-(3) and (5)-(7) in a modification on the 

computation of between-class scatter matrix BS  and within-class scatter matrix WS . They are replaced by 

PNS → and PS , respectively. 

    �
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where },,1,{ xi Ni �=x denotes the positive examples and },,1,{ yi Ni �=y denotes the negative 

examples, xm is the mean vector of the sets }{ ix , respectively. PNS →  is the scatter matrix between  the 

negative examples and the centroid of the positive examples, and PS  is the scatter matrix within the 

positive examples. PN → indicates the asymmetric property of this approach, i.e., the userís biased 

opinion towards the positive class, thus the name of biased discriminant analysis [13]. 

2.4. Regularization and Discounting Factors 

It is well known that sample-based plug-in estimates of the scatter matrices based on equations (2, 3, 6, 7, 

18, 19) will be severely biased for small number of training samples, i.e., the largest eigenvalue becomes 

larger, while the small ones become smaller. If the number of the feature dimensions is large compared 

with the number of training examples, the problem becomes ill-posed.  Especially in the case of kernel 

algorithms, we effectively work in the space spanned by all N mapped training examples )(xφ which are, 

in practice, often linearly dependent. For instance, for KMDA, a solution with zero within class scatter 

(i.e., AA W
T K =0) is very likely due to overfitting. A compensation or regulation can be done by adding 

small quantities to the diagonal of the scatter matrices [32]. 
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3. TRAINING ON A SUBSET 

We still have one problem: while we could avoid working explicitly in the extremely high or infinite 

dimensional space F, we are now facing a problem in N variables, a number which in many practical 

applications would not allow to store or manipulate NN ×  matrices on a computer anymore. Furthermore, 

solving an eigen-problem or a QP of this size is very time consuming ( )( 3NO ).  To maximize equation 

(17), we need to solve an NN ×  eigen- or mathematical programming problem, which might be intractable 

for large N. Approximate solutions could be obtained by sampling representative subsets of the training 

data },,,1|{ NMMkk <<= �x , and using T
kMkk kk )],(,),,([à

1 xxxxξ �= to take the place of kξ . Two 

data-sampling schemes are proposed.  

3.1. PCA-based Kernel Vector Selection 

The first scheme is blind to the class labeling. We select representatives, or kernel vectors, by identifying 

those training samples which are likely to play a key role in ],,[ 1 Nξξ �=Ξ . Ξ  is a NN × matrix, but 

Nrank <<Ξ)( , when the size of training dataset is very large. This fact suggests that some training 

samples could be ignored in calculating kernel features ξ . 

We first compute the principal components of Ξ . Denote the NN × matrix of concatenated 

eigenvectors with P. Thresholding elements of abs(P) by some fraction of the largest element of it allows 

us to identify salient PCA coefficients. For each column corresponding to a non-zero eigenvalue, choose 

the training samples which correspond to a salient PCA coefficient, i.e., choose the training samples 

corresponding to rows that survive the thresholding. Do so for every non-zero eigenvalue and we arrive at 

a decimated training set, which represents data at the periphery of each data cluster. 

Figure 1 shows an example of KMDA with 2D two-class non-linear-separable samples.  
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3.2 Evolutionary Kernel Vector Selection 

The second scheme is to take advantage of class labels in the data. We maintain a set of kernel vectors at 

every iteration which are meant to be the key pieces of data for training. M initial kernel vectors, )0(KV , 

are chosen at random. At iteration k, we have a set of kernel vectors, )(kKV , which are used to perform 

KMDA such that the nonlinear projection ∆∈== )()()()( )( k
i

Tk
opti

Tkk
i ξAxwy φ of the original data ix can 

be obtained. We assume Gaussian distribution )(kθ for each class in the nonlinear discrimination space ∆ , 

and the parameters )(kθ can be estimated by }{ )(ky , such that the labeling and training error )(ke can be 

obtained by )}(,|(maxarg)( klpl ijj

k
i θy= . 

If )1()( −< kk ee , we randomly select M training samples from the correctly classified training samples 

as kernel vector )1( +tKV at iteration 1+k . Another possibility is that if any current kernel vector is 

correctly classified, we randomly select a sample in its topological neighborhood to replace this kernel 

vector in the next iteration. Otherwise, i.e., )1()( −> kk ee , and we terminate. 

The evolutionary kernel vector selection algorithm is summarized below: 

Evolutionary Kernel Vector Selection: Given a set of training data },,1),,{(),( NilLD ii �=== xX  

to identify a set of M kernel vectors },,1,{ MivKV i �== . 

;;0 ∞== ek  );(_)0( XpickrandomKV =  // Init 

 do { 

  ),( )()( kk
opt KVKMDA XA = ;   // Perform KMDA 

  );,( )()( k
opt

k ojY AXPr=            // Project X to ∆  

  );,( )()( LYBayes kk =θ         // Bayesian Classifier 

  );,( )()()( kkk YLabelingL θ=  // Classification 

  ),( )()( LLErrore kk = ;           // Calculate error 

  if ( ))( ee k <   

   ;)(kee =  ;)(kKVKV =   ;++k  
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   });:({_ )()(
i

k
ii

k llxpickrandomKV ≠=  

  else 

   ;)1( −= kKVKV  
break; 

  end 
 } 
 return KV; 
 

4. KERNEL DEM ALGORITHM  

In this paper, image classification is formulated as a transductive problem, which is to generalize the 

mapping function learned from the labeled training data set L to a specific unlabeled data set U. We make 

an assumption here that L and U are from the same distribution. This assumption is reasonable because in 

content-based image retrieval, the query images are drawn from the same image database. In short, image 

retrieval is to classify the images in the database by: 

   }:,,|(maxarg
,,1

UULypy iijCji ∈∀=
=

xx
�

   (20) 

where C is the number of classes and iy is the class label for ix . 

The expectation-maximization (EM) [12] approach can be applied to this transductive learning 

problem, since the labels of unlabeled data can be treated as missing values. We assume that the hybrid 

data set is drawn from a mixed density distribution of C components },,1,{ Cjc j �= , which are 

parameterized by },,1,{ Cjj �==Θ θ . The mixture model can be represented as: 

    �
=

=Θ
C

j
jjjj cpcpp

1

)|();|()|( θθxx    (21) 

where x is sample drawn from the hybrid data set ULD ∪= . We make another assumption that each 

component in the mixture model corresponds to one class, i.e., },,1,{ Cjcy jj �== . 
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Since the training data set D is union of labeled data set L and unlabeled data set U, the joint 

probability density of the hybrid data set can be written as: 

        ∏� ∏
∈ = ∈

Θ=Θ=⋅ΘΘ=Θ
U

C

j L
iiiiijij

i i

cypcypcpcpDp
x x

xx
1

);|()|();|()|()|(    (22) 

The above equation holds when we assume that each sample is independent to others.  The first part of 

equation (22) is for the unlabeled data set, and the second part is for the labeled data set. 

The parameters Θ  can be estimated by maximizing a posteriori probability )|( Dp Θ . Equivalently, 

this can be done by maximizing )).|(log( Dp Θ  Let ))|()(log()|( ΘΘ=Θ DppDl , and we have 

      � � �
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x x
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));|()|(log());|()|(log())(log()|(  (23) 

Since the log of sum is hard to deal with, a binary indicator iz is introduced, ),,( 1 iCii zz �=z , denoted 

with observation jO : 1=ijz  if and only if ji cy = , and 0=ijz otherwise, so that 

  � �
∪ =

ΘΘ+Θ=Θ
D

C

j
jijij

i

OpOpzpZDl
x

x
1

));|()|(log())(log(),|(   (24) 

The EM algorithm can be used to estimate the probability parameters Θ  by an iterative hill climbing 

procedure, which alternatively calculates )(ZE , the expected values of all unlabeled data, and estimates 

the parameters Θ given )(ZE . The EM algorithm generally reaches a local maximum of )|( Dl Θ .  

As an extension to EM algorithm, [11] proposed a three step algorithm, called Discriminant-EM 

(DEM), which loops between an expectation step, a discriminant step (via MDA), and a maximization 

step. DEM estimates the parameters of a generative model in a discriminating space. 

As discussed in Section 2.2, Kernel DEM (KDEM) is a generalization of DEM in which instead of a 

simple linear transformation to project the data into discriminant subspaces, the data is first projected 

nonlinearly into a high dimensional feature space F where the data is better linearly separated.  The 
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nonlinear mapping )(⋅φ , is implicitly determined by the kernel function, which must be determined in 

advance. The transformation from the original data space X to the discriminating space ∆ , which is a 

linear subspace of the feature space F, is given by )(⋅φTw  implicitly or ξTA explicitly. A low-dimensional 

generative model is used to capture the transformed data in ∆ . 

�
=

=Θ
C

j
jjjj

T cpcpyp
1

)|();|)(()|( θθφ xw    (25) 

Empirical observations suggest that the transformed data y approximates a Gaussian in ∆ , and so in our 

current implementation, we use low-order Gaussian mixtures to model the transformed data in ∆ . Kernel 

DEM can be initialized by selecting all labeled data as kernel vectors, and training a weak classifier based 

on only labeled samples. Then, the three steps of Kernel DEM are iterated until some appropriate 

convergence criterion: 

• E-step:  set ]à;|[à )()1( kk DZEZ Θ=+  

• D-step: set
||
||

maxarg1

AA
AA

A
W

T
B

T

A

k
opt K

K
=+ , and project a data point x to a linear subspace of 

feature space F. 

• M-Step: set )à;|(maxargà )1()1( +

Θ

+ Θ=Θ kk ZDp  

The E-step gives probabilistic labels to unlabeled data, which are then used by the D-step to separate 

the data.  As mentioned above, this assumes that the class distribution is moderately smooth. 

 

5. EXPERIMENTS AND ANALYSIS  

In this section, we compare KMDA and KDEM with other supervised learning techniques on various 

benchmark datasets and synthetic data for several image classification tasks. 
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5.1. Benchmark Test for KMDA 

In the first experiment, we verify the ability of KMDA with our data sampling algorithms. Several 

benchmark datasets2 are used in the experiments. For comparison, KMDA is compared with a single RBF 

classifier (RBF), a support vector machine (SVM), AdaBoost, and the kernel Fisher discriminant (KFD) on 

the benchmark dataset [33] and linear MDA.  Kernel functions that have been proven useful are e.g., 

Gaussian RBF, )/( 2 ck zxzx -exp(-), = , or polynomial kernels, d)(), zxzx ⋅=(k , for some positive 

constants Rc ∈ and Nd ∈ , respectively [22].  In this work, Gaussian RBF kernels are used in all kernel-

based algorithms. 

In Table 1, KMDAñrandom is KMDA with kernel vectors randomly selected from training samples, 

KMDAñpca is KMDA with kernel vectors selected from training samples based on PCA, KMDAñ

evolutionary is KMDA with kernel vectors selected from training samples based on evolutionary scheme. 

The benchmark test shows the Kernel MDA achieves comparable performance as other state-of-the-art 

techniques over different training datasets, in spite of the use of a decimated training set.  Comparing three 

schemes of selecting kernel vectors, it is clear that both PCA-based and evolutionary-based schemes work 

slightly better than the random selection scheme by having smaller error rate and/or smaller standard 

deviation.  Finally, Table 1 clearly shows that superior performance of KMDA over linear MDA. 

5.2. Kernel Setting 

There are two parameters need to be determined for kernel algorithms using Gaussian RBF kernel. The 

first is the variance c and the second is the number of kernel vectors used. Till now there is no good 

method on how to choose a kernel function and its parameter. In the second experiment, we will determine 

variance c and number of kernel vectors empirically using Gaussian RBF kernel as an example. The same 

benchmark dataset as in Section 5.1 is used. Figure 2 shows the average error rate in percentage of KDEM 

with Gaussian RBF kernel under different variance c and varying number of kernel vectors used on Heart 
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data. By empirical observation, we find that 10 for c and 20 for number of kernel vectors gives nearly the 

best performance at a relatively low computation cost. Similar results are obtained for tests on Breast-

Cancer data and Banana data. Therefore this kernel setting will be used in the rest of our experiments. 

5.3. Image Classification on Corel Photos 

In the third experiment, a series of classification methods are compared in photo classification scenario. 

Those methods are MDA, BDA, DEM, KMDA, KBDA, and KDEM.  The stock photos are selected from 

widely used COREL dataset. Corel photos covers a wide range of more than 500 categories, ranging from 

animals and birds to Tibet and the Czech Republic. In this test, we use Corel photos consisting of 15 

classes with 99 images in each class. Randomly selected 4 classes of images are used in the experiment. 

One class of images is considered as positive while all the other 3 classes are considered as negative. The 

training set consists of 40 to 80 images with half positive and half negative images. The rest images in the 

database (1485) are all used as testing set.  

We will first describe the visual features used. There are three visual features used: color moments 

[34], wavelet-based texture [35], and water-filling edge-based structure feature [36]. The color space we 

use is HSV because of its de-correlated coordinates and its perceptual uniformity. We extract the first three 

moments (mean, standard deviation and skewness) from the three-color channels and therefore have a 

color feature vector of length 933 ====×××× . For wavelet-based texture, the original image is fed into a wavelet 

filter bank and is decomposed into 10 de-correlated sub-bands. Each sub-band captures the characteristics 

of a certain scale and orientation of the original image. For each sub-band, we extract the standard 

deviation of the wavelet coefficients and therefore have a texture feature vector of length 10. For water-

filling edge-based structure feature vector, we first pass the original images through an edge detector to 

generate their corresponding edge map. We extract eighteen (18) elements from the edge maps, including 

max fill time, max fork count, etc. For a complete description of this edge feature vector, interested readers 

                                                                                                                                                                
2The benchmark data sets are obtained from http://mlg.anu.edu.au/~raetsch/ 
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are referred to [36]. In our experiments, the 37 visual features (9 color moments, 10 wavelet moments and 

18 water-filling features) are pre-extracted from the image database and stored off-line.  

Table 2 shows the comparison of different classification methods using MDA, BDA, DEM and their 

kernel algorithms.  There are several conclusions: (1) The classification error drops with the increasing 

size of the training dataset for all methods; (2) All the kernel algorithms perform better than their linear 

algorithms. This shows that the kernel machine has better capacity than linear approaches to separate 

linearly non-separable data.  (3) KDEM performs best (comparable to KMDA for the training size 80) 

among all the methods.  This shows that the incorporation of unlabeled data and nonlinear mapping 

contributes to the improved performance. (4) DEM performs better than MDA. This shows that 

incorporation of unlabeled data in semi-supervised learning in DEM helps improve classification accuracy. 

(5) The results for BDA and DEM are mixed but KDEM performs better than KBDA. We will further 

compare KBDA and KDEM in the next section. 

As to the computational complexity of each algorithm, Table 2 also shows the actually executing time 

to run each algorithm. The Matlab program was running on a Pentium IV processor of 2.4 GHz CPU with 

256 MB memory. KDEM is most computationally complex among all the algorithms. But the extra 

computational complexity introduced by semi-supervised learning, i.e, EM, and the nonlinear mapping is 

still affordable, e.g., within 3 seconds, for the training data size 80 and testing data size 1485. 

Finally a summary of the advantages and disadvantages of the discriminant algorithms for MDA, 

BDA, DEM, KMDA, KBDA, and KDEM is given in Table 3. 

5.4. KDEM versus KBDA for Image Classification 

As reported in [13], biased discriminant analysis (BDA) has achieved satisfactory results in content-based 

image retrieval when the number of training samples is small (<20). BDA differs from traditional MDA in 

that it tends to cluster all the positive samples and scatter all the negative samples from the centroid of the 

positive examples. This works very well with relatively small training set. However, BDA is biased tuned 
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towards the centroid of the positive examples. It will be effective only if these positive examples are the 

most-informative images [3, 4], e.g., images close to the classification boundary.  If the positive examples 

are most-positive images [3, 4], e.g., the images far away from the classification boundary. The optimal 

transformation found based on the most-positive images will not help the classification for images on the 

boundary. Moreover, BDA ignores the unlabeled data and takes only the labeled data in the learning. 

 In the fourth experiment, Kernel DEM (KDEM) is further compared with the Kernel BDA (KBDA) 

on both image database and synthetic data. Figure 3 shows the average classification error rate in 

percentage for KDEM and KBDA with the same RBF kernel for face and non-face classification. The face 

images are from MIT facial image database3 [37] and non-face images are from Corel database. There are 

2429 faces images from MIT database.   There are 1485 non-face images (15 classes with about 99 in each 

class) from Corel database. Some examples of face and non-face images are shown in Figure 4. For 

training dataset, 100 face images are randomly selected from MIT database, and a varying number of 5 to 

200 non-face images are randomly selected from Corel database. The testing dataset consists of 200 

randomly images (100 faces and 100 non-faces) from two databases.  The images are resized to 1616×  and 

converted to a column-wise concatenated feature vector. 

In Figure 3, when the size of negative examples is small (<20), KBDA outperforms KDEM while 

KDEM performs better when more negative examples are provided.  This agrees with our expectation.  

In the above experiment, the size of negative examples is increased from 5 to 200. There is a 

possibility that most of the negative examples are from the same class. To further test the capability of 

KDEM and KBDA in classifying negative examples with varying number of classes, we perform 

experiments on synthetic data for which we have more controls over data distribution. 

A series of synthetic data is generated based on Gaussian or Gaussian mixture models with feature 

dimension of 2, 5 and 10 and varying number of negative classes from 1 to 9. In the feature space, the 

                                                 
3 MIT facial database can be downloaded from http://www.ai.mit.edu/projects/cbcl/software-datasets/FaceData2.html 
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centroid of positive samples is set at origin and the centroids of negative classes are set randomly with 

distance 1 to the origin. The variance of each class is a random number between 0.1 and 0.3. The features 

are independent to each other. We include 2D synthetic data for visualization purpose. Both the training 

and testing sets have fixed size of 200 samples with 100 positive samples and 100 negative samples with 

varying number of classes. 

Figure 5 shows the comparison of KDEM, KBDA and DEM algorithms on 2-D, 5-D and 10-D 

synthetic data. In all cases, with the increasing size of negative classes from 1 to 9, KDEM always 

performs better than KBDA and DEM thus shows its superior capability of multi-class classification. 

Linear DEM has comparable performance with KBDA on 2-D synthetic data and outperforms KBDA on 

10-D synthetic data. One possible reason is that learning is on hybrid data in both DEM and KDEM, while 

only labeled data is used in KBDA. This indicates that proper incorporation of unlabeled data in semi-

supervised learning does improve classification to some extent. 

5.5. Correlated versus Independent Features  

Feature independence is usually assumed in high-dimensional feature space for training samples. However, 

this assumption is not always true in practice. Such an example is color correlogram [38], a feature 

commonly used in content-based image retrieval.  

In the fifth experiment, we will investigate how feature correlation will affect algorithm performance 

in two-class classification problem such as image retrieval. Two classes of samples, i.e., positive and 

negative are synthesized based on the Gaussian mixture model (C=2) with feature dimension 10, variance 

1 and distance between the centroids of two classes 2.  How to generating correlated features is referred to 

[39] 

Table 4 shows the average error rate with different pair-wise correlation coefficients ρ among positive 

examples and negative examples. For example, the pair (0.1, 0.6) means the correlation among all pair-
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wise feature components is 0.1 for the negative examples and 0.6 for the positive examples. From table 2, 

the corresponding error rate of KDEM is 4.05%. 

It is clear when features are highly correlated, it becomes easier for Kernel DEM algorithm to separate 

the positive examples from the negative examples.  Because data is more clustered with larger correlation.  

Similar results are obtained for linear DEM algorithm. This is reasonable and an illustration example can 

be visualized in Figure 6. 1c  and 2c  represent the centroids of 2D two-class samples, respectively. When 

the features of two classes are independent to each other, their distributions can be illustrated by two 

circles in blue and red, respectively. Using discriminant analysis, the optimal transformation will be 

projection 1 onto subspace 1 (i.e., 1D space). However, two classes will still have some overlap between B 

and C along the projected 1D subspace and this will result in classification error. But when the features of 

two classes are highly correlated, the distributions of two classes are illustrated by two ellipses in blue and 

red, respectively. The optimal transformation found by discriminant analysis will be projection 2. In this 

case, the projected samples of two classes have no overlap and can be easily separated in 1D subspace.  

5.6. Hand Posture Recognition 

In the sixth experiment, we examine KDEM on a hand gesture recognition task.  The task is to classify 

among 14 different hand postures, each of which represents a gesture command model, such as navigating, 

pointing, grasping, etc.  Our raw dataset consists of 14,000 unlabeled hand images together with 560 

labeled images (approximately 40 labeled images per hand posture), most from video of subjects making 

each of the hand postures. These 560 labeled images are used to test the classifiers by calculating the 

classification errors. 

Hands are localized in video sequences by adaptive color segmentation and hand regions are cropped 

and converted to gray-level images. Gabor wavelet [40] filters with 3 levels and 4 orientations are used to 

extract 12 texture features. 10 coefficients from the Fourier descriptor of the occluding contour are used to 

represent hand shape. We also use area, contour length, total edge length, density, and 2nd moments of edge 
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distribution, for a total of 28 low-level image features (I-feature). For comparison, we represent images by 

coefficients of 22 largest principal components of the dataset resized to 20 × 20 pixels (these are 

ìeigenimagesî, or E-features).  In out experiments, we use 140, i.e., 10 for each hand posture, and 10,000 

(randomly selected from the whole database) labeled and unlabeled images respectively, for training both 

EM and DEM.  

Table 5 shows the comparison. Six classification algorithms are compared in this experiment. The 

multi-layer perceptron [41] used in this experiment has one hidden layer of 25 nodes. We experiment with 

two schemes of the nearest neighbor classifier. One uses just 140 labeled samples, and the other uses these 

140 labeled samples to bootstrap the classifier by a growing scheme, in which newly labeled samples will 

be added to the classifier according to their labels.  

We observe that multi-layer perceptrons are often trapped in local minima and nearest neighbors 

suffers from the sparsity of the labeled templates. The poor performance of pure EM is due to the fact that 

the generative model does not capture the ground-truth distribution well, since the underlying data 

distribution is highly complex. It is not surprising that linear DEM and KDEM outperform other methods, 

since the D-step optimizes separability of the class. 

Comparing KDEM with DEM, we find KDEM often appears to project classes to approximately 

Gaussian clusters in the transformed spaces, which facilitate their modeling with Gaussians.  Figure 7 

shows typical transformed data sets for linear and nonlinear discriminant analysis, in a projected 2D 

subspaces of three different hand postures.  Different postures are more separated and clustered in the 

nonlinear subspace by KMDA.  Figure 8 shows some examples of correctly classified and mislabeled hand 

postures for KDEM and linear DEM. 

6. CONCLUSIONS 

Two sampling schemes are proposed for efficient, kernel-based, nonlinear, multiple discriminant analysis. 

These algorithms identify a representative subset of the training samples for the purpose of classification. 
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Benchmark tests show that KMDA with these adaptations not only outperforms the linear MDA but also 

performs comparably with the best known supervised learning algorithms. We also present a self-

supervised discriminant analysis technique, Kernel DEM (KDEM), which employs both labeled and 

unlabeled data in training. On real image database and synthetic data for several applications of image 

classification, KDEM shows the superior performance over biased discriminant analysis (BDA), naïve 

supervised learning and existing semi-supervised learning algorithms.   

Our future work includes several aspects. (1) We will look into advanced regularization schemes for 

the discriminant-based approaches; (2) We will intelligently integrate biased discriminant analysis with 

multiple discriminant analysis in a unified framework so that their advantages can be utilized and 

disadvantages can be compensated by each other. (3) To avoid the heavy computation over the whole 

database, we will investigate schemes of selecting a representative subset of unlabeled data whenever 

unlabeled data helps.  (4) Gaussian or Gaussian mixture models are assumed for data distribution in the 

projected optimal subspace, even when the initial data distribution is highly non-Gaussian. We will 

examine the data modeling issue more closely with Gaussian (or Gaussian mixture) and non-Gaussian 

distributions. 
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Note: The figures in this paper are better viewed in color under http://www.cs.utsa.edu/~qitian/pr_special/ 

 

(a)                                                            (b) 

      

(c)                                                           (d) 

Figure 1. KMDA with a 2D two-class nonlinear-separable example. (a) Original data (b) The kernel 

features of the data (c) The normalized coefficients of PCA on Ξ , in which only a small number of them 

are large (in black) (d) The nonlinear mapping 
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Figure 2. The average error rate for KDEM with Gaussian RBF kernel under varying variance c and 

number of kernel vectors on Heart data 
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Figure 3.  Comparison of KDEM and KBDA for face and non-face classification  

 

     

(a) Face images from MIT facial database                           (b) Non-face images from Corel database 

Figure 4.  Examples of (a) face images from MIT facial database and (b) non-face images from Corel 

database
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(a) Error rate on 2-D synthetic data 
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(b) Error rate on 5-D synthetic data 
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(c)  Error rate on 10-D synthetic data 

Figure 5. Comparison of KDEM, KBDA and DEM algorithms on (a) 2-D (b) 5-D (c) 10-D synthetic data 

with varying number of negative classes  
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Figure 6. An illustration example of the optimal 1D subspace projection of correlated and independent 

features for 2D two-class samples 

 

         
(a)                                                                 (b) 

Figure 7. Data distribution in the projected subspace (a) Linear MDA (b) Kernel MDA. Different postures 

are more separated and clustered in the nonlinear subspace by KMDA. 
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          (a)                                                        (b)                                      (c)  

 
Figure 8. (a) Some correctly classified images by both DEM and KDEM (b) images that are mislabeled by 

DEM, but correctly labeled by KDEM (c) images that neither DEM nor KDEM can correctly label. 
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Table 1: Benchmark test: The average test error in percentage and its standard deviation 
 

Benchmark 
Error rate (%) and standard deviation 

Banana Breast-Cancer Heart 

RBF 10.8±0.06 27.6±0.47 17.6±0.33 

AdaBoost 12.3±0.07 30.4±0.47 20.3±0.34 

SVM 11.5±0.07 26.0±0.47 16.0±0.33 

KFD 10.8±0.05 25.8±0.48 16.1±0.34 

MDA 38.43±2.5 28.57±1.37 20.1±1.43 

C
la

ss
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n 

M
et
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KMDAñrandom 

KMDAñpca 

KMDAñevolutionary 

(# Kernel Vectors) 

11.03±0.26 

10.7±0.25 

10.8±0.56 

120 

27.4±1.53 

27.5±0.47 

26.3±0.48 

40 

16.5±0.85 

16.5±0.32 

16.1±0.33 

20 

 

Table 2 Comparison of classification methods on Corel photos  

Training Dataset Size Error rate (%) and standard 
deviation  

(Time used in second) 40 60 80 

MDA 
15.82±1.13 
(0.913 sec.) 

11.26±0.82 
(0.937 sec.) 

8.68±0.27 
(0.985 sec.) 

BDA 
11.24±0.97 
(0.835 sec.) 

10.03±0.89 
(0.875 sec.) 

7.59±0.11 
(0.906 sec.) 

DEM 
13.37±0.93 
(1.23 sec.) 

9.51±0.51 
(1.29 sec.) 

7.88±0.32 
(1.43 sec.) 

KMDA 
9.65±0.52 

(1.101 sec.) 
5.97±0.92 

(1.954 sec.) 
3.89±0.31 

(1.981 sec.) 

KBDA 
9.36±0.72 

(1.607 sec.) 
8.13±0.79 

(1.814 sec.) 
6.82±0.18 

(1.906 sec.) 

KDEM 
9.21±0.84 

(1.927 sec.) 
5.72±0.62 

(2.363 sec.) 
3.93±0.26 

(2.552 sec.) 
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Table 3: Summary of the discriminant algorithms. 

Issues Comments 
 

Problem 
Formulation 

 Well-known approaches  
• such as MDA;  
• EM steps in DEM, KDEM; 
• Kernel trick in all kernel algorithms. 

 

Computational 
Efficiency 

• Easy to implement, linear mapping such as MDA, BDA; 
• Though nonlinear projection, but kernel trick bypasses the 

computationally expensive non-linear projection, the 
computational cost is still affordable. Such as KMDA, KBDA; 

• Iterative procedure: DEM, KDEM. 

 
 

Effectiveness 

• Incorporation of unlabeled data in semi-supervised learning, DEM 
performs better than MDA; 

• With the introduction of kernel trick, nonlinear algorithms 
perform better than their linear algorithms; 

• KDEM works best for the combined reasons above. 

 

Priori knowledge of 
Class Number 

• Yes, MDA, DEM, KMDA, KDEM; 
• Without the prior knowledge of class number, MDA often reduces 

to two-class FDA, e.g., in content-based image retrieval (CBIR); 
• No, BDA, KBDA.  

(1+x)-classification problem 

 
 

Training Data Size 

• BDA works well for small training samples, e.g., in CBIR.   
• MDA, KMDA do not work well for very small training data; 
• The small sample problem is partially alleviated for DEM, KDEM 

with the introduction of unlabeled data. 

Class Equivalence • Yes. MDA, DEM, KMDA, KDEM; 
• No, biased towards one class such as BDA and KBDA.  

Regularization Yes for all discriminant algorithms. 
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Table 4: Error rate in percentage for KDEM on two-class synthetic data  

Correlation Coefficient of Positive Class 
Error Rate (%) 

0 0.1 0.3 0.6 0.9 

0 8.45 9.5 5.8 3.15 1.5 

0.1 9.5 7.9 6.85 4.05 1.2 

0.3 5.8 6.85 6.4 2.3 1.25 

0.6 3.15 4.05 2.3 1.6 0.35 

Correlation 
Coefficient of 
Negative Class 

0.9 1.5 1.2 1.25 0.35 0 

 

 

 

Table 5. View-independent hand posture recognition: Comparison among multi-layer perceptron 

(MLP), Nearest Neighbor (NN), Nearest Neighbor with growing templates (NN-G), EM, linear 

DEM and KDEM. The average error rate in percentage on 560 labeled and 14,000 unlabeled hand 

images with 14 different hand postures. 

 

 

 

Algorithm MLP NN NN-G EM DEM KDEM 

I-Feature 33.3 30.2 15.8 21.4 9.2 5.3 

E-Feature 39.6 35.7 20.3 20.8 7.6 4.9 


