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ABSTRACT

Probabilistic Variational Methods for Vision based Complex Motion Analysis

Gang Hua

Many emerging applications, including intelligent vision based human computer interaction,

intelligent video surveillance, virtual and augmented reality, animation, and biomedical im-

age analysis for computer aided diagnosis and surgery, demand effective and efficient vision-

based methods to analyze complex motions, such as articulated motion, deformable motion,

and multiple motions. The fundamental challenges of this inverse problem come from two

aspects: the high degrees of freedom in these complex motions, and the complications in the

image measurements. The high dimensionality of this problem has plagued the scalability

and efficiency of many existing methods.

In search for a new and scalable solution that overcomes the curse of dimensionality, we

view this problem from another angle and conjecture that the complexity of such a problem

can be approached by the collaboration among a set of low dimensional motion estimators.

Targeting on the two fundamental challenges, in this dissertation, we propose a distributed

and collaborative probabilistic reasoning framework for complex motion analysis. The the-

oretic foundation of the proposed approach is based on probabilistic graphical models. The

probabilistic variational inference on these graphical models clearly reveals a set of simple
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interactive Bayesian motion estimators, which obtains the optimal solution in a collabora-

tive fashion. All computations in the Bayesian inference can be efficiently performed in a

distributed and parallel way.

The proposed collaborative approach is also a distributed visual measurement integra-

tion framework, which handles measurement uncertainty, measurement multi-modality, and

measurement inconsistency in a principled way. Extensive experimental results on analyzing

different complex motions demonstrate the effectiveness, efficiency, scalability and robustness

of the proposed collaborative approach.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Visual analysis of complex motion

Visual motion analysis, or visual tracking, has continued to be an active research area in

computer vision for decades. The task is to recover the parameters of the target movement by

analyzing the input videos or image sequences. Unlike relatively simple single motion, where

only limited motion parameters need to be estimated for single object, complex motions

consist of multiple correlated motions, such as the motion of articulated structure [105,106,

108,126], the motion of complex deformable shapes [18,19,133,141], and the motion of

multiple objects [63, 64, 90, 137]. While it has been more or less successful to deal with

simple single motion [17,35,52,53], the solutions to complex motion analysis from video

are still far from satisfactory.

Effective and efficient complex motion analysis may greatly facilitate the advancement in

the emerging application areas of, but are not necessarily limited to, intelligent vision based

human computer interaction [12,42,48,67,122], motion capturing for animation [13,107],

intelligent video surveillance [56,57,139,140], biomedical image analysis for computer aided

diagnosis and surgery [141], and humanoid robotics, as shown in Fig. 1.1.

There are two fundamental challenges commonly reside in complex motion analysis. The

first fundamental challenge is the complications of complex motions themselves. Complex

motions have high degrees of freedom. The solutions to such high dimensional problems
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Figure 1.1. Possible applications of complex motion analysis.

potentially require tremendous computational cost. Since there are complex constraints

among the multiple motions, mostly we can learn a manifold [8, 104, 131] to characterize

them in a relative lower dimensional space. However, the intrinsic dimensionality of the

learned manifold may still be quite high, which still hinders efficient solution.

The second fundamental challenge is the complications of image measurements. We

regard the image to be jointly generated by the multiple motions and the background. Then

given the image data, the background clutter may interfere with the image measurement of

the complex motion. Moreover, the posterior beliefs of the multiple correlated motions are

conditional dependent. Such kind of conditional dependencies also hinder efficient solution

to this type of high dimensional problems.
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Viewing these challenging issues from another angle, we conjecture that if we exploit a set

of simple motion analyzers to analyze each of the multiple motions, and then integrate their

measurement results together based on the constraints among them, the performance may

be much better than if we use just one big complicated motion analyzer. In other words,

we expect that the “collaboration” among a set of simple motion analyzers will achieve

better results for complex motion analysis. Such a collaborative approach indeed follows

the methodology of divide-conquer-combine. There are two questions we are interested in

answering:

• What characterizes the optimal integration of the measurements of the set of motion

analyzers?

• Can we find an efficient computational diagram to obtain the optimal integration?

As a matter of fact, the concept of visual measurement integration is a bigger category.

More specifically, we can integrate our prior knowledge into the visual estimator, or integrate

the estimations from different visual cues such as edge and color [130], or integrate visual

measurements from multiple scales [41, 73], to obtain more robust solutions to computer

vision problems. There are also several important issues of visual measurement integration

that we need to address to achieve such a collaborative approach.

1.1.2. Visual measurement integration

There are many complications which affect the image formation process. Therefore, any

visual measurement is doomed to have uncertainties. For example, to locate an object in the

image scene, one classical technique is to match a shape model of the object with the image



19

gradient [52]. The matching process is inevitably smeared by the enormous edges presented

in the background of the image. We must account for these uncertainties.

The complications in the image formation process may also make the visual measurement

multi-mode, i.e., there may exist multiple results with high local confidences from that specific

visual measurement, only one of them is the true solution though. We must handle the

multi-modalities of the visual measurements well in the integration process to identify the

true solution.

What is worse, the different visual measurement information may be inconsistent, i.e.,

two measurements may significantly deviate from each other but both are quite confident

with themselves. The implication behind the inconsistency is that there must be false mea-

surements. We must identify these false image measurements to exclude them from being

integrated. Otherwise, these false visual measurements may completely degrade the integra-

tion results.

In summary, to achieve robust integration of multiple visual measurements, we must

address the following three issues:

• How to model the uncertainties of visual measurement information?

• How to efficiently integrate different visual measurements which are multi-mode?

• How to integrate multiple visual measurements which may be inconsistent?

1.1.3. Distributed and parallel computing

There are two main causes necessitate the application of distributed and parallel comput-

ing in complex motion analysis: the heavy computation involved in the solution, and the

distributed information integration resulted from the requirements of recovering each of the

multiple correlated motions.
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As we have mentioned, the high dimensional nature of complex motions potentially incurs

exponential increase in computation demands to obtain a solution. This phenomenon is

usually called the curse-of-dimensionality. To give a more concrete example, for articulated

body tracking, under the joint angle representation, we have to seek the solution at least in

a parametric space of 25 dimensions for the full human body. In a particle filtering [52,

53] based top-down approach, the main computation involved is to evaluate the image

observation of a sample hypothesis. However, the number of samples required to achieve

a satisfactory solution is subject to an exponential increase with the dimensionality, so does

the computational cost. The lack of scalability hinders the applicability of most existing

methods for complex motion analysis.

One means to relieve the curse-of-dimensionality is to take a distributed representation,

i.e., we can model each of the multiple correlated motions individually and reenforce the

constraints at the same time. This is just like searching for the solution in a set of different

but correlated manifolds, which compose the solution space. Based on distributed represen-

tations, efficient algorithms with close to linear complexity have been reported for articulated

body tracking [43, 105, 106, 126], human pose estimation [27, 47, 94, 95], multiple object

tracking [137] and structured deformable shape analysis [45,46],

Distributed representation advocates distributed information integration since the esti-

mation of each of the multiple motions must be sought locally with the constraints from the

others being reinforced. It is obvious that the solution to each component shares almost the

same computational paradigm. This makes it possible to perform the computations involved

in the solutions in a parallel fashion. Mostly, the solutions to the whole distributed model

need to be performed iteratively to reach an equilibrium condition, which represents the final

estimation of each of the multiple motions. Each iteration constitutes two steps:
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• Compute the solution to each motion (can be in a parallel way) by combining the

local estimation of the motion with the predictive estimations from the correlated

motions through the constraints among them.

• Reformulate the constraints, and thus recalculate the neighborhood predictive esti-

mations, based on the updated solution on each of the multiple correlated motions.

The ultimate solutions are the converged results from the iterations. It again reveals a

collaborative solution to complex motion analysis.

1.1.4. Probabilistic reasoning and graphical models

Probabilistic theory provides a solid foundation for uncertainty reasoning and information

integration. The uncertainty of a visual measurement can be conveniently captured by

a probabilistic distribution, and probabilistic information integration [16, 72] may be the

most widely adopted integration approach. Under a probabilistic formulation, computer

vision problems are usually formulated as the Bayesian inference of the hidden random

variables, or the estimation of the model parameters, given the image data we observed.

Moreover, Bayesian theory conveniently enables us to incorporate any a priori knowledge

or any reasonable assumptions about the solution of the problem of interest in the form of

prior distributions. Meanwhile, the integration of different visual measurement information

could be modeled as the interference of different random processes [125,130]. Nevertheless,

we still need to address the same problems of information integration in Sec.1.1.2.

Graphical model [58] is a graph way of representing the factorizations of probabilistic

systems. It can clearly and effectively present the correlations among the set of random

variables in a principled way. There is a substantial literature [26,29,31,41,43,46,47,51,

110,111,120,125,126,132] to exploit graphical models to solve computer vision problems.
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In fact, the information integration in many computer vision problems can be formulated as

and illustrated by the Bayesian inference or learning process on graphical models, where the

problems of uncertainty, multi-modality, and inconsistency in the visual measurements may

all be addressed in a principled way. Moreover, the category of Bayesian inference algorithms

developed based on probabilistic variational methods are highly suited to distributed/parallel

computing which have been demonstrated in [41,43–47,126]. Please refer to Chapter 2 for

more discussions on probabilistic inference on graphical models.

1.2. Motivation

The discussions in Sec.1.1 motivate us to exploit variational Bayesian inference algorithms

on graphical models to address the fundamental challenges of complex motion analysis. Our

ultimate goal is a collaborative approach to complex motion analysis from video. Before we

can achieve that, we need to achieve the following tasks:

• A probabilistic information integration framework which addresses measurement

uncertainty, measurement multi-modality, and even measurement inconsistency in a

principled way.

• An efficient computational paradigm which performs the information integration in

a distributed and parallel way.

• A theoretic sound and practical methodology to effectively implement these inte-

gration algorithms, more specifically, probabilistic inference algorithms.

The fulfillment of the first task will enable us to achieve more robust integration of multiple

measurements, and thus more robust results for complex motion analysis. The achievement

of the second task ensures that our solution to complex motion analysis be scalable, i.e., the

computational cost may not explode dramatically when the degrees of freedom of the complex
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motion increases. Last but not least, in many situations, we encounter the intractability of

closed-form implementation of a theoretic sound probabilistic inference algorithm, especially

when the probabilistic distributions involved are highly multi-mode. We are also interested

in addressing these implementation issues in this dissertation.

1.3. Organization

In this dissertation, we develop effective and efficient probabilistic reasoning algorithms

based on graphical models to address the fundamental challenges in visual analysis of complex

motions. The remainder of this dissertation is organized as follows:

• Chapter 2 presents a brief but comprehensive review of graphical models. Different

types of graphical models are introduced and their equivalence is discussed. We

also introduce different probabilistic inference algorithms on graphical models, in

particular, probabilistic variational methods.

• Using articulated body motion as a specific example, Chapter 3 presents a distrib-

uted approach to complex motion analysis from video. The motion of the articulated

body is modeled by a distributed Markov network. The Bayesian inference is per-

formed by a novel mean field Monte Carlo algorithm (MFMC), which combines

mean field variational method with particle filtering. It incorporates a set of inter-

active lower dimensional particle filters to obtain the solutions in a collaborative

way. It also reveals an intrinsic distributed information integration framework.

• Targeting on the multi-modality of the motion posteriors, Chapter 4 proposes a

novel variational maximum a posteriori (VMAP) algorithm. By combining a Gauss-

ian mean field variational analysis with a deterministic annealing scheme, VMAP

pursues the optimal MAP estimate of the probabilistic system defined on graphical
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models. Rigorous mathematic proof regarding the convergence of the algorithm is

presented.

• For automatic initialization of the collaborative motion analyzer, Chapter 5 pro-

poses a novel data driven belief propagation algorithm (DDBP), which in principle

combines importance sampling with belief propagation. It is an principled parallel

framework to combine top-down reasoning with bottom-up reasoning. Experiments

on estimating 2D human poses from single images obtain satisfactory results.

• To handle the situations when there are inconsistent measurements, in Chapter 6, we

present our preliminary theoretical investigation about the characteristics of mea-

surement inconsistency on graphical models. Two rigorous algebraic conditions are

presented to determine the consistency and inconsistency of pairwise measurements.

In addition, a more general criterion is presented. Based on the theoretical analysis,

a new information integration method is proposed and leads to encouraging results

when applied to the task of part based ensemble tracking.

• In Chapter 7, we summarize the dissertation in the views of complex motion analysis,

probabilistic inference on graphical models, as well as information integration. Some

meaningful future research directions are also discussed in the end.

1.4. Contributions

The original contributions of this work range from visual analysis of complex motions,

probabilistic inference on graphical models, and robust information integration. For Bayesian

inference on graphical models, we have the following technical contributions:

• A novel mean field Monte Carlo algorithm (MFMC), which reveals a set of col-

laborative particle filters for the Bayesian inference on any graphical models (e.g.,
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Markov networks). It also reveals an efficient distributed approach to integrating

multiple visual measurements.

• A novel variational maximum a posteriori algorithm (VMAP), which combines a

Gaussian mean field variational analysis with a deterministic annealing scheme. This

is a general Bayesian inference algorithm to approach to the global MAP estimate

on any graphical models. We provide rigorous proof of an information theoretic

theorem, which ensures the convergence of the VMAP algorithm.

• A novel data driven belief propagation algorithm, which combines top-down reason-

ing with bottom-up reasoning in a unified way.

For probabilistic information integration based on graphical models, our main contri-

bution is that we reveal an intrinsic relationship between the fixe-point of a probabilistic

integration system defined on graphical models and the consistency and inconsistency of

the multiple measurements being modeled. In the case that the uncertainty of each of the

measurements from the different sources can be captured by a Gaussian distribution, we pro-

vide two rigorous algebraic conditions to judge the consistency and inconsistency of pairwise

measurements. A more general criterion is also presented to evaluate consistency and incon-

sistency in a general setting. All these criteria facilitate to exclude those false measurements

from being integrated, and thus result in more robust visual inference results.

Most importantly, for complex motion analysis, our main contribution is a distributed and

collaborative computational framework, which efficiently handles the fundamental challenges

of visual analysis of complex motions. We stress beforehand here that although the main

application we have discussed in this dissertation is on visual analysis of complex motion,

the proposed approaches are all very general, which may also be applied to other computer

vision problems.
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CHAPTER 2

Probabilistic inference on graphical models: a brief review

2.1. Introduction

Probabilistic inference refers to the process of recovering some unknown random factors

of a system from some observed data, all under the reasoning of probabilistic theory. It is

an attractive approach to uncertainty reasoning and empirical learning [86] that has been

widely used in computer vision, pattern recognition, artificial intelligence, bio-informatics,

and economics, to list a few.

Denote U as the unknown factors of the system, e.g., it could be the unobservable latent

random variables, the parameters of the probabilistic model that represents the system, and

even the model itself. Also we denote Z as the observed data. Then, probabilistic inference

algorithms intend to compute useful probabilistic quantities, e.g., the posterior probability

P (U|Z), or to compute useful information theoretic quantities, e.g., the conditional entropy

H(U|Z), or even compute the estimate of U based on some optimal criteria, e.g., the maxi-

mum a posterior estimation (MAP) Û = arg maxU P (U|Z) or the commonly used maximum

likelihood estimation (ML) Û = arg maxU P (Z|U) when U represents the probabilistic model

or the model parameters.

Due to the flexibility of incorporating useful prior information into the probabilistic

model, Bayesian (posterior) inference is favored. Although the MAP estimation has been

criticized for being atypical and basis dependent [78], it prevents the over-fitting problem

in the maximum likelihood estimation. Therefore, this chapter mainly discusses Bayesian
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inference methods. In the mean time, we also use some spaces to discuss maximum likeli-

hood methods, mainly in section 2.2.2. According to the genre of U , the basic problems in

probabilistic inference can be categorized into

(1) Latent variable inference: the U represents the unobservable states of the

system. We usually assume that the probabilistic model as well as the model pa-

rameters are known. While if either of the two is not specified, we might need to

perform parameter averaging or model averaging.

(2) Parameter estimation: the U represents the model parameters. We can assume

that the probabilistic model has been specified here.

(3) Model selection: the U represents the probabilistic model which may be chosen

from a set of different models . The task is to determine which model is the best

one given the observed data Z.

However, as we may have noticed, the problem of parameter estimation is highly corre-

lated to model selection in the sense that different parameters do result in different models.

But the context of model selection is much larger because we may select among models of

different types. While the parameter estimation could only be performed before the types

of the models were specified. In addition, we may encounter problems in which we need to

solve several basic problems listed above together. For example, we may need to jointly per-

form latent variable inference and parameter estimation, or model selection and parameter

estimation.

Graphical model [7,58,59] is a powerful means of modeling multi-variate complex prob-

abilistic systems. It represents the factorization of the joint distribution of a probabilistic

system in a graph way, where mostly the nodes of the the graph denote the random variables,
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and the edges of the graph, either directed or undirected, denote the probabilistic quantities

defined on the set of connected random variables represented by the nodes. As we will also

discuss in Sec. 2.3, there are also graphical models in which there are two types of nodes,

namely variable nodes and function nodes, and the edges are not associated with any prob-

abilistic quantities [68]. The function nodes explicitly model the probabilistic correlations

among the set of variable nodes connected to them.

Because of the convenience in visualizing the correlations among the set of random vari-

ables of the probabilistic system, probabilistic reasoning with graphical models become a

popular approach, especially in the literature of computer vision [28,29,31,41,51,105,110,

125,132]. In this chapter, we present a introduction review of probabilistic reasoning with

graphical models. The rest of the chapter is organized as follows: in Sec. 2.2, we present the

general formulation of each of the basic problems of probabilistic inference. Then in Sec. 2.3,

we introduce various types of graphical models for probabilistic reasoning. After that, we

present a review of different probabilistic inference methods in Sec. 2.4. Finally, we conclude

this chapter with some discussion remarks in Sec. 2.5.

2.2. Basic problems of probabilistic inference

Before continuing the discussions of the formulation of each of the basic problems, we

firstly present the notations that we use throughout this chapter in Table 2.1. In summary,

we adopt bold-face letter to represent a random variable and normal-face letter to represent

a specific value that a random variable takes. In addition, a probabilistic system can usually

be represented or be defined by a joint distribution, i.e.,

ps ∼ P (Z,X,Θ,H). (2.1)
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ps A probabilistic system
z Observed data or observable random variable
Z {z1, . . . , zn}
x Latent unobservable random variable
X {x1, . . . ,xn}
H The probabilistic model
Θ The set of parameters of H
U Unknown factors of a probabilistic system, which could be

any of x, Θ and H or a subset of them
z A concrete value of z
Z {z1, . . . , zn}
x A concrete value of x
X {x1, . . . , xn}
θ A concrete parameter set of the probabilistic model
h A specific type of probabilistic model

Table 2.1. Detailed notations.

2.2.1. Latent variable inference

Assume that both the probabilistic model H and the model parameters Θ be known, then

the joint probability of the system becomes

ps ∼ P (Z,X) ∼ P (Z,X|θ, h). (2.2)

Suppose we observe that Z = Z. Then, the inference is to recover the posterior density

P (X|Z = Z). (2.3)

According to the Bayesian rule, we have

P (X|Z = Z) =
P (Z = Z,X)

P (Z = Z)
, (2.4)
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where

P (Z = Z) =

∫

X

P (Z = Z,X)dX (2.5)

is also called partition function or evidence. It is the general difficulty in evaluating partition

functions that makes the Bayesian inference not trivial to achieve.

2.2.2. Parameter estimation

Assume that the probabilistic model H be known and all the system random states could

be observed, but the model parameters Θ are unknown, then we immediately have the

likelihood probability, i.e.,

P (Z|Θ, h). (2.6)

A common technique for estimating Θ is the maximum likelihood (ML) estimation. Sup-

pose Z = {z1, z2, . . . , zN} contains N i.i.d. samples from P (Z|Θ, h), then the likelihood of

observing these samples is

L(Θ) =
∏

i

P (zi|Θ, h). (2.7)

The ML estimation θ̂ML is such that

θ̂ML = arg max
Θ
L(Θ). (2.8)

If we have a priori knowledge P (Θ) (without affecting the clarity, we will not show h

to simplify the notation), then we can also apply the Bayesian rule to achieve the MAP

estimation, i.e., 




P (Θ|Z) ∝ P (Z|Θ)P (Θ)

θ̂MAP = arg maxΘ P (Z|Θ)P (Θ)
. (2.9)
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While a more general problem is that there are also unobservable random states X in the

system, then the ML estimation of Θ can be obtained by the well informed EM algorithm [21]

for maximum likelihood estimation from incomplete data. The essence of the EM algorithm

is encoded in the following equation set. It basically involves the iteration of two steps, i.e.,

the E-Step and the M-Step,





L(Θ) = P (X,Z|Θ)

E − Step : Q(Θ,Θ∗) = E [logP (X,Z|Θ)|Z,Θ∗]

M − Step : Θ∗ = arg maxΘQ(Θ,Θ∗)

. (2.10)

where both steps guarantee to increase L(Θ), and Θ∗ represents the estimation of Θ in the

previous M-Step.

What is more, the idea behind the maximum likelihood EM algorithm can also be applied

to Bayesian estimation of the model parameters with incomplete data by deriving steps

similar to Eq. 2.10. This refers to the Bayesian variational EM algorithm [7] for estimating

model parameters, which can also be used for model selection.

2.2.3. Model selection and model averaging

Before proceeding to the discussion of model selection, we will firstly introduce Occam’s

Razor, which is an automatical principle (or the principle of parsimony) in all scientific

modeling. It is stated as follows, “one should not increase, beyond what is necessary, the

number of entities required to explain anything.”

The problem of Bayesian model selection is as follows: suppose the probabilistic model

H could be from a set of models SH = {h1, h2, . . . , hN}, then based on the observed data Z,
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the MAP selection of the model is

ĥMAP = arg max
H

P (H|Z) (2.11)

Actually, this tells us how to perform the model comparison, i.e.,

P (h1|Z)

P (h2|Z)
=
P (Z|h1)

P (Z|h2)

P (h1)

P (h2)
(2.12)

The first factor on the right side of Eq. 2.12 is called the Bayesian factor or likelihood ratio.

Suppose there are also unknown parameters Θi related to each model hi, then the like-

lihood terms are usually obtained by integrating the parameters out, e.g.,

P (Z|hi) =

∫

Θi

P (Z|Θi, hi)P (Θi|hi)dΘi, i = 1, . . . , N (2.13)

where P (Θi|hi) is the prior probability of the model parameters.

Then the probabilistic density at a new data Z1, which is also called predictive probability,

could be obtained by averaging over all the models and all the parameters, i.e.,

P (Z1|Z) =

N∑

i=1

P (hi|Z)

∫

Θi

P (Z1|Θi, hi)P (Θi|hi)dΘi. (2.14)

This is also called model averaging as it accounts for all the uncertainties on both models

and parameters. It may not be that straightforward, but the Bayesian factor embodies

Occam’s Razor automatically as it will favor models with simple form (i.e., with less free

parameters [78]) since more complex models can a priori model a larger range of data set

and thus distribute the probability more.
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2.3. Graphical model representation

Just as we have mentioned, a probabilistic system is usually defined by its joint probabil-

ity. In most real applications, the joint probability may be factorized due to the conditional

independencies, or local only correlations among the set of random variables. That is the

reason why graphical models have been favored in representing probabilistic systems be-

cause they can neatly present and visualize such kind of conditional independencies or local

correlations. Then, under the graphical model representation, the three basic problems of

probabilistic inference become latent variable inference, parameter learning and structure

learning, respectively. In this section, we will briefly review different types of graphical

models which are widely used in the literature. Actually, these graphical models can be

transformed into one another through certain topological and mathematical manipulations.

In this sense, they are equivalent [32,58].

2.3.1. Belief networks, Bayesian network, and dynamic Bayesian network

Bayesian network or belief network is a way of presenting a particular joint distribution

factorizations based on directed graphical models. For example, let XS = {x1,x2, . . . ,x6}

and the joint probability be

P (XS) = P (x1)P (x2)P (x4|x1)P (x5|x2)P (x3|x1,x2)P (x6|x4,x5). (2.15)

The Bayesian network representing such a joint distribution factorization is shown in Fig. 2.1.

The arrows in the Bayesian network shown in Fig. 2.1 are corresponding to the conditional

probabilities in Eq. 2.15. The node in the start of the arrow is called the parent of the

node in the end of the arrow. Actually, the general factorization of a Bayesian network is as
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Figure 2.1. A Bayesian network.

follows, suppose XS = {x1,x2, . . . ,xN}, then

P (XS) =

N∏

i=1

P (xi|Par(xi)), (2.16)

where Par(xi) denotes the set of all the parent nodes of xi.

A Bayesian network is said to be singly connected if there is no undirected loop in it.

For example, the Bayesian network in Fig. 2.1 is not singly connected. While dynamic

Bayesian network is a special set of singly connected Bayesian networks that aim at time

series modeling [85]. The hidden Markov model (HMM) [91] may be one of the most widely

used dynamic Bayesian network.

2.3.2. Markov random field and Markov network

The Markov random field (MRF) [71] or Markov network is another means of representing

joint distribution factorizations based on indirected graphical models. It is naturally suited
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Figure 2.2. Neighborhood system and cliques.

to model images. Basically, for modeling images, it involves choosing a neighborhood system

in the image coordinate system Ω, then the substructure in the neighborhood system with

fully connected nodes are called cliques. We can then define the potential VC(XC) on the

cliques of the neighborhood system, while XC is the set of random variables representing

pixel values at the image locations in the clique.

Assume the set of all pixel values of image I be ω = {xij , {i, j} ∈ Ω}, then the probability

of seeing image I is a Gibbs distribution, i.e.,

P (ω) =
1

CΩ

exp

(
−
∑

C
VC(XC)

)
(2.17)

where

CΩ =

∫

Ω

exp

(
−
∑

C
VC(XC)

)
dω (2.18)
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Figure 2.3. A Markov network.

Fig. 2.2 shows some typical neighborhood systems and the associated cliques on them (for

other higher order cliques, please refer to [33]). Indeed, the equivalence between a Markov

random field and a Gibbs random field defined by a Gibbs distribution has been proven in [33].

There is a special type of widely applied MRF where only pairwise potentials are used.

An example of such kind of Markov networks is shown in Fig. 2.3. The joint probability of

a Markov network is defined as

P (X,Z) =
1

CQ

∏

{i,j}∈E
ψij(xi,xj)

∏

i∈O
φi(xi, zi), (2.19)

where CQ is a normalization constant, E denotes the set of links among the latent vari-

ables, O denotes the set of links between a latent variable and an observed variable, and

both ψij(xi,xj) and φi(xi, zi) are called potential functions (in fact, exponential of negative

potentials). We can clearly notice that Markov networks are purely undirected graphical

models.
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Figure 2.4. A factor graph.

2.3.3. Factor graph

While the conditional probabilities and the potential functions are associated with directed

edges on Bayesian networks and undirected edges on Markov networks, respectively, the

factor graph [68] explicitly defines two types of nodes on a bipartite graph, i.e., the variable

node and the function node.

Fig. 2.4 presents an example of a factor graph with 7 variable nodes (white circle) and

function nodes (black box), each function node defines a function of all the variable nodes

connected to it. Let XS = {x1,x2, . . . ,x7}, the joint probability defined in this factor graph

is

P (XS) =
1

Cf
f1(x1,x3,x5)f2(x2,x3,x4)f3(x3,x4,x6,x7), (2.20)
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where Cf is again a normalization constant. More generally, for a factor graph with N

function nodes, the joint probability is

P (XS) =
1

Cf

N∏

i=1

fi(Xfi
), (2.21)

where Xfi
represents the set of variables attached to the function node fi.

2.3.4. Equivalence of the different graphical models

As a matter of fact, these three types of graphical models can topologically and mathemati-

cally be transformed to one another, i.e., they represent the same distribution factorizations.

For example, a directed Bayesian network may be converted to an undirected high-order

Markov network through the process called moralization. A broad discussion of the trans-

formations among different graphical models can be found in [32,58].

2.4. Probabilistic inference algorithm

For most real applications, we encounter situations where we must perform joint latent

variable inference and parameter estimation, or joint latent variable inference and model

selection. For both tasks, the latent variable inference is essential for the solution. Therefore,

in this section, we mainly discuss algorithms for latent variable inference. We also discuss

some methods for model selection and parameter learning in the last part of this section.

2.4.1. Exact inference algorithm

2.4.1.1. Sum-product algorithm and belief propagation. If there is no loop in the

graphical model (i.e., tree structured). There can be efficient propagation algorithms to
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Figure 2.5. Message passing example.

perform the exact inference of the marginal posterior distributions or maximum marginal esti-

mate, which is called the belief propagation algorithm (i.e., sum-product or max-product) [29,

58,82,134]. In fact, the famous forward-backward algorithms [85,91] and Viterbi algorithm

for hidden Markov model (HMM) are special cases of sum-product and max-product, respec-

tively. Not losing any generality, our discussions are presented under Markov networks.

For tree structured Markov networks, the sum-product belief propagation [28,29] can be

expressed by the following two equations:

mij(xi) =

∫

xj

φj(xj, zj)ψij(xj ,xi)
∏

k∈{N (j)\i}
mjk(xj)dxj (2.22)

P (xi|Z) =
1

ZQ
φi(xi, zi)

∏

k∈N (i)

mik(xi). (2.23)

The running of the belief propagation algorithm involves the iteration of Eq. 2.22 to conver-
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gence. The number of iterations necessary in the tree structured case equals to the depth of

the graphical model, i.e., the length of the longest path in the graphical model. We will use

a simple example to demonstrate the correctness of the algorithm. Suppose a probabilistic

distribution factorization is represented as the graphical model shown in Fig. 2.5, and we

would want to evaluate P (x1|Z), the calculation is as follows

P (x1|Z) =
1

C

∫

x2

∫

x3

∫

x4

φ(x1, z1)φ(x2, z2)φ(x3, z3)φ(x4, z4)ψ(x1,x2)ψ(x2,x3)ψ(x2,x4)

=
1

C

∫

x2

φ(x1, z1)φ(x2, z2)ψ(x1,x2)

∫

x3

φ(x3, z3)ψ(x2,x3)

︸ ︷︷ ︸
m23(x2)

∫

x4

φ(x4, z4)ψ(x2,x4)

︸ ︷︷ ︸
m24(x2)

=
1

C
φ(x1, z1)

∫

x2

φ(x2, z2)ψ(x1,x2)m23(x2)m24(x2)

︸ ︷︷ ︸
m12(x1)

=
1

C
φ(x1, z1)m12(x1), (2.24)

where C is the normalization constant. It is easy to figure out that Eq. 2.24 is a specific

example of Eq. 2.23.

2.4.1.2. Junction tree algorithm. When there are loops in the graphical model, direct

applying the belief propagation algorithm will not achieve the exact inference results. How-

ever, there exists more general algorithm, namely junction tree algorithm, which can perform

exact inference by the message passing process among clusters of nodes in loopy graphical

models. The junction tree algorithm usually involves the following steps.

(1) If the graphical model is directed, moralize it to be an undirected graphical model.

(2) Determining an elimination order of the nodes in the graphical model, i.e., triangu-

late the undirected graph.
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(3) Constructing the junction tree from the elimination order. This involves clustering

the nodes as several sets called super node and weight the edges among different

super nodes by the separator node set.

(4) Message passing among super nodes and separator nodes in the junction tree to

perform the inference.

In the junction tree, assume each super node Xsn has the potential ψ(Xsn) and each separator

node Xsep has the evidence φ(Xsep). Then the message propagation between two super-node

XV
sn and XW

sn , which are separated by the separator node XS
sep (V, W and S denote the set

of normal nodes in the super node or the separator node), are evaluated according to the

following two equations 



φ∗(XS
sep) =

∫
XV

sn\XS
sep
ψ(XV

sn)

ψ∗(XW
sn ) =

φ∗(XS
sep)

φ(XS
sep)

ψ(XW
sn )

. (2.25)

Example 2.4.1. Fig. 2.6 shows an example of applying the junction tree algorithm on a

Bayesian network, which follows exactly the same procedures as presented above.

2.4.2. The variational approach

As we may have noticed, exact inferences on complex probabilistic systems are not always

feasible to achieve. Variational approach provides a principled way for approximate infer-

ence. Instead of trying to recover the posterior distribution directly, it usually involves the

construction of a variational distribution. Then a lower-bound of the data likelihood will

be maximized by minimizing the KL divergence between the variational distribution and

the true posterior distribution. The key of the theoretic deduction of variational inference
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(a) Original BN (b) Moralized MN (c) Junction tree

Figure 2.6. Example of junction tree. In (c), triangles denote separator nodes
and ellipses denote super nodes.

methods is based on the Jensen’s inequality, i.e.,

lnP (Z) = ln

∫

U
P (Z,U)dU = ln

∫

U
Q(U)

P (Z,U)

Q(U)
dU ≥

∫

U
Q(U) ln

P (Z,U)

Q(U)
dU . (2.26)

Maximizing the lower bound with respect to the variational distribution Q(U) (actually, it

is achieved when the equality holds) will result in

Q(U) = P (U|Z), (2.27)

which is exactly the posterior distribution we would want to estimate. However, exact opti-

mization of Q(U) to achieve the maximum of the lower-bound is also intractable. In practice,

one always constrains the distribution Q(U) to make the optimization more mathematically
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tractable while also ensures the approximation to be as accurate as possible [58, 59]. We

discuss some of the widely used variational distributions in the following sections.

2.4.2.1. Mean field variational method. The most widely used variational distribution

Q(U) might be the ones that have the fully factorized form. More specifically, assume

U = {U1, . . . ,UL}, we let

Q(U) =

L∏

i=1

Qi(Ui), (2.28)

which is also called the mean field variation. Substituting Eq. 2.28 into Eq. 2.26, with the

constraints that
∫

Ui

Qi(Ui)dUi = 1, i = 1, . . . ,L (2.29)

we can formulate a Lagrangian multipliers from the lower bound and apply the elementary

calculus of variations by taking the functional variation of the Lagrangian w.r.t. each of the

factorized distribution Qi(Ui), we can easily obtain the following set of fixed-point equations,

i.e.,

Qi(Ui) =
1

Ci
exp

{∫

U\Ui

j 6=i∏

j=1...L
Qj(Uj) logP (Z,U)dU

}
, i = 1, . . . ,L (2.30)

where the Ci is the normalization constant. It is easy to figure out that when U contains both

the latent variables X and model parameters Θ, the factorization of these two will result in

the variational Bayesian EM algorithm [7], which can be deemed as a generalization of the

traditional EM algorithm [21].

2.4.2.2. Structured variational method. Just as the junction tree algorithm exploits

the local substructure of a graphical model to perform the message passing, the structured

variational method utilizes the local substructures of a graphical model to achieve more

accurate as well as more tractable variational approximation for the probabilistic inference.
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There are actually only two principles for choosing the structured variational distributions,

i.e.,

(1) The structured variational distributions must be mathematically more tractable.

(2) The structure of the graphical model representing the variational distribution should

be as close as possible to that of the original graphical model.

With the structured variational factorization, among different substructures, we perform the

mean field variational analysis. While inside each of the substructure, we can then perform

the exact inference using a suitable exact inference algorithm. A more detailed discussion

can be found in [54].

2.4.2.3. The free energy understanding of BP and mean field method. As we have

discussed, when there are loops in the graphical model, the local message passing belief

propagation is not able to obtain the exact inference results. But many empirical studies

show that if we still perform the belief propagation on loopy graphical models, we may still

recover satisfactory approximate inference results. This motivates many researchers to study

the theoretical explanation of this phenomenon [134,135]. Indeed, there are both physical

free energy explanation and mathematical explanation based on the calculus of variations.

As a matter of fact, there is an unified understanding of the belief propagation algorithm and

the mean field variational method, all based on the variational free energy approximation.

More detailed discussions can be found in [134]. Here we present a brief summary of the

content presented in [134] with our own notation and presentation.

Denote X = {x1,x2, . . . ,xL} as the set of all the random variables, and assume the

probabilistic system defined on X can be represented by a high-order Markov network, then
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the joint probability is defined as

P (X) =
1

CQ

∏

C
ψC(XC) (2.31)

=
1

CQ
exp

(
−
∑

C
VC(XC)

)
(2.32)

=
1

CQ
exp (−E(X)) (2.33)

Bayesian inference needs to calculate the Helmholtz free energy FH , which is

FH = − lnCQ. (2.34)

It is usually very difficult to evaluate the Helmholtz free energy since it may involve multiple

integrals of the random variables with complex distributions. An important method to solve

it is based on a variational approach. Suppose we have a variational distribution B(X) to

approximate P (X), then the variational free energy or the Gibbs free energy is

F (B) =

∫

X

B(X)E(X)dx +

∫

X

B(X) lnB(X)dX (2.35)

= U(B)−H(B) (2.36)

= FH +KL(B(X)‖P (X)) (2.37)

where U(B) is called the variational average energy, H(B) is called the variational entropy,

and KL(·) is the KL divergence between the two distributions.

Again, it is easy to figure out that we can minimize the KL divergence to zero to achieve

the exact results, but that is still intractable. Usually we can only minimize it on a specific
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set of distributions. For example, if we let

B(X) =
∏

i

Bi(xi), (2.38)

we can then approximate the Helmholtz free energy by the so-called mean field free energy.

This indeed results in the mean field variational method.

Another means of free energy approximation is the so-called Bethe free energy. This

includes the approximation as

B(X) =

∏
C BC(XC)∏L

i=1(Bi(xi))di−1
(2.39)

where di is the number of cliques that the node xi belongs to. We also have the constraints

that for any xi ∈ XC,

Bi(xi) =

∫

XC\xi

BC(XC). (2.40)

We then have the Bethe approximation to the Gibbs free energy, i.e.,

FBethe = UBethe −HBethe, (2.41)

where

UBethe =
∑

C

∫

XC

BC(XC)VC(XC)dXC (2.42)

and

HBethe = −
∑

C

∫

XC

BC(XC) lnBC(XC)dXC +

L∑

i=1

(di − 1)

∫

xi

Bi(xi) lnBi(xi)dxi, (2.43)

Please note that the Bethe free energy could be exact when there is no loops in the graphical

models. We can also figure out that the beliefs in the belief propagation algorithms are
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the fixed-points of the Bethe free energy, subject to the constraints that all the beliefs are

normalized and consistent [134]. Actually, any valid variational distributions will result in

a free energy approximation, this is the foundation for the generalized belief propagation

algorithm [134,136].

2.4.3. Monte Carlo methods

The Monte Carlo method is another type of approximate probabilistic inference algorithms.

It is based on the strong law of large numbers, i.e., when the number of i.i.d. samples from a

certain probabilistic distribution is large enough, then any order of the sample quadratures

will converge, with probability one, to the same order of distribution statistics. The Monte

Carlo algorithms are also called sampling algorithms. In this section, we will start from some

basic sampling algorithms and then move on to more complex sampling methods.

It is generally difficult to draw samples directly from a complex probabilistic distribution,

but it is assumed that we can conveniently evaluate the probability at one specific point. A

discussion on why this is true could be found in [78].

2.4.3.1. Basic sampling methods.

Uniform sampling. A direct thought of sampling would be the uniform sampling tech-

nique. The idea is to uniformly sample the state space of x and evaluate P (x), from which

we would want to sample, at each sample point. However, uniform sampling is not enough,

especially for probabilistic distributions in a high dimensional state space. The number of

samples would be fairly huge to obtain satisfactory results. A discussion of this issue on

medium size Ising model could also be found in [78].

Reject sampling. Again, suppose that P (x) is too complicated to be sampled directly,

but we have a proposal distribution Q(x) which is easy to be sampled from. Assume that we
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also know a constant value c such that

cQ(x) > P (x) (2.44)

Then the rejection sampling is performed according to the following steps:

(1) Sample x from Q(x).

(2) Generate µ from [0, cQ(x)].

(3) If µ > P (x), reject it, else keep it as one sample.

(4) Iterate the above steps until enough samples have been generated.

The main problem for reject sampling is that in high dimensional case, the c would be

very large and the rejection rate would be very high, thus it may be too time-consuming to

be a practical method.

Importance sampling. The idea of importance sampling is similar to the rejection

sampling, but it is more efficient in that it will generate weighted sample set instead of the

unweighted sample set from reject sampling.

The steps for importance sampling is as follows: instead of sampling from P (x) directly,

we sample x from the so-called importance function Q(x) which is easy to sample from. Then

we assign a compensation weight to x, i.e.,

ω =
P (x)

Q(x)
(2.45)

The problem for importance sampling, especially in the high dimensional case, is that

the importance function Q(x) must be as close to P (x) as possible to efficiently achieve a

satisfactory sample set.
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2.4.3.2. Markov chain Monte Carlo. In the literature of applied statistics, there have

been a family of well studied algorithms to sample from complex probabilistic distributions.

It usually involves the construction of a Markov chain whose stationary distribution is the

probabilistic distribution from which we want to sample. Then we can generate samples by

simulating the transitions of the Markov chains. After discarding the first certain number

of samples, which we call the samples in the burn-in stage, the sample set will represent the

target distribution very well. This family of sampling algorithms are called Markov chain

Monte Carlo (MCMC).

To guarantee that the stationary distribution of a Markov chain converges to the desired

distribution, one sufficient condition for that is the so-called detailed balance, i.e.,

Q(x′|x)P (x) = Q(x|x′)P (x′), (2.46)

where P (x) is the target distribution and Q(x′|x) is the transition probability of the Markov

chain. Please refer to [34] for a broad discussion of the MCMC algorithms.

Metropolis-Hasting algorithm. The Metropolis-Hasting algorithm [79] might be one

of the most generally applied MCMC algorithms. Suppose the current state of the Markov

chain is x, we then generate a proposal transition sample x′ from a proposal distribution

T (x′|x), then with probability

Q(x′|x) = min

(
1,
T (x′|x)P (x)

T (x|x′)P (x′)

)
(2.47)

the Markov chain transits to x′, otherwise it stays in x. It can be easily shown that the

transition probability defined in Eq. 2.47 guaranttees the detailed balance condition. Note

that there is no precondition for the proposal distribution T (x′|x) used, but a good one will
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enable the Markov chain to converge more quickly (higher mixing rate) and thus facilitate

the sampling process. While a bad one will result in a slowly converged Markov chain and

thus slow down the whole sampling process.

Gibbs sampling. Gibbs sampling [33] takes a different strategy to formulate the Markov

chain for sampling. At every time instant, the transition probability of the Markov chain is

the conditional probability of one random variable of the system given the state of all the

other random variables in the probabilistic system. Let the set of all the random variables

in the probabilistic system be X = {x1, . . . ,xL} and the joint probability be P (X), suppose

that at one time instant t, the state of the Markov chain is at Xt = {x1, . . . , xL}, then the

Gibbs sampling perform the following operations to generate the samples:

(1) Random choosing a xi, 1 ≤ i ≤ L with uniform probability for transition.

(2) Sample x′i from the conditional probability

P (xi|x1, . . . , xi−1, xi+1 . . . xL) (2.48)

(3) The state will be transited to Xt+1 = {x1, . . . , xi−1, x
′
i, xi+1 . . . xL}.

One advantage of the Gibbs sampling algorithm over the Metropolis-Hasting algorithm

is that the state of the Markov chain will always be transited at each time instant, while

it may stay in one state for a very long time if a bad proposal distribution is chosen in

the Metroplolis-Hasting algorithm. Thus, the Gibbs sampling algorithm generally achieves

higher mixing rate and thus faster convergence for sampling.

Slice sampling. Slice sampling [84] is a newly developed MCMC algorithm. The basic

idea is originated from the observation that to sample from a univariate probabilistic distri-

bution, we can sample uniformly from the region under the curve of the probabilistic density
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function, and then take into account just the horizontal coordinates of these samples. This

idea could be extended directly to the multi-variate case by sampling uniformly under the

plot of the multi-variate probabilistic distribution.

Let the set of all the random variables in the probabilistic system be X = {x1, . . . ,xL},

and the joint probability distribution be P (X), which may not even have been normalized.

Then what the slice sampling algorithm does is to introduce an auxiliary real valued random

variable y, whose joint probability with X is a uniform distribution over the volume under

the manifold defined by P (x), i.e.,

g(X,y) =





1
CQ

0 < y < P (X)

0 Otherwise
, (2.49)

where CQ =
∫
X
P (X)dX. Then the steps of the slice sampling algorithm to transit from the

current state Xt = {x1, . . . , xL} of the Markov chain is as follows [84]:

(1) Draw a real value y, uniformly from (0, P (Xt)) to define the slice region S.

(2) Find a super-rectangle T = (L1,R1)× (L2,R2)× . . .× (LL,RL), which contains at

least most part of the slice region S.

(3) Draw the new state Xt+1, uniformly from part of the slice inside this rectangle, i.e.,

from T ∩ S.

A detailed discussion about the convergence of the sliced sampling algorithm can be found

in [84].

2.4.3.3. Sequential Monte Carlo. Sequential Monte Carlo algorithm [24] refers to the

Monte Carlo method utilized to perform the Bayesian inference in dynamic probabilistic

systems. In the computer vision literature, the most successful application of the sequential
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Monte Carlo algorithm would be the Condensation algorithm [52]. Please refer to [24]

and [52] for more details about how to formulate a sequential Monte Carlo algorithm.

2.4.4. Miscellaneousness

2.4.4.1. Laplace method. Just as we have mentioned in Sec. 2.2.1, it is the general dif-

ficulty in evaluating the partition function or the normalization constant that confronts

probabilistic inference. Laplace’s method is an approximate algorithm in evaluating it. The

idea behind it is quite simple. Suppose an unnormalized probability density Pu(x),x ∈ RK ,

we need to evaluate the normalization constant

Zu =

∫

x

Pu(x)dx. (2.50)

Assume Pu(x) has a peak at x0, then we expand the lnPu(x) using Taylor’s expansion,

lnPu(x) ≈ lnPu(x0)−
(x− x0)

TA(x0)(x− x0)

2
, (2.51)

where A(x0) is the Hessian matrix of lnPu(x) at x = x0. Then we have

Pu(x) ≈ Pu(x0) exp

(
−(x− x0)

TA(x0)(x− x0)

2

)
, (2.52)

and thus

Zu ≈ Pu(x0)

√
(2π)K

detA(x0)
. (2.53)

2.4.5. Model selection and model scoring criteria

2.4.5.1. Bayesian information criterion (BIC) and minimum description length

(MDL). The Bayesian information criterion (BIC) or Schwarz criterion [92, 93] provides
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us with a principled criterion to score a model. Although it is called Bayesian information

criterion, it is actually neither Bayesian nor information theoretic [38,121]. It can be derived

from the Laplace method. For a probabilistic system ps, given the observed random state

Z = {z1, . . . , zn}, the goodness of a model H with the d effective parameters denoted as Θ

could be evaluated by the BIC, i.e.,

BIC = −2 lnP (Z|θ̂ML,H) + d lnn, (2.54)

where θ̂ML is the ML estimation of Θ and n is the sample size. The smaller the BIC, the

better the model. As we can easily observe, the subtracted quantity on the right side of

Eq. 2.54 is exactly the minimum description length (MDL) penalty. Therefore it will be

in favor of models with less number of effective parameters, given that the two models can

explain the observation equally.

2.4.5.2. Akaike information criterion (AIC). Another widely adopted information cri-

terion for model selection is the Akaike information criterion (AIC) [1]. It deserves the name

of information criterion because it can be strictly derived based on information theory. Still

for a probabilistic system ps, given the observed random state Z, the goodness of a model

H with the effective parameters Θ can be evaluated by the AIC, i.e.,

AIC = −2 lnP (Z|θ̂,H) + 2d, (2.55)

where θ̂ is the ML estimation of Θ. The smaller the AIC, the better the model. We could

easily observe that the AIC is also penalized by MDL.
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2.5. Conclusion remarks

In this chapter, we present a brief yet comprehensive reviews of the techniques of proba-

bilistic inference on graphical models, which is a powerful and principled means of uncertainty

reasoning and empirical learning. Firstly, we discuss the three basic problems in probabilis-

tic inference, namely latent variable inference, parameter estimation and model selection.

Then, we introduce different types of graphical models including Bayesian networks, Markov

networks, and factor graphs along with the discussions of their mathematic equivalences.

The correspondences of the three basic problems under graphical models then become latent

variable inference, parameter learning and structure learning. After that, we extensively dis-

cuss both exact and approximate probabilistic inference algorithms, as well as the criteria

for model selections (structure learning). With the background technologies introduced in

this chapter, we will proceed, in the following chapters, to develop novel algorithms based on

graphical models and probabilistic variational analysis to address the fundamental challenges

in visual analysis of complex motion.
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CHAPTER 3

Mean field variational analysis for articulated body tracking

Articulated body motion composes one of the most important types of complex motions.

Using it as a concrete example, this chapter presents a collaborative approach [126] to

scalable analysis of vision based complex motion analysis. As a matter of fact, the proposed

collaborative approach has also been applied to analyze other types of complex motions,

including the complex deformation [45, 46, 133], as well as motions of multiple identical

targets [137].

3.1. Introduction

Tracking articulated motion in video is an important problem, especially when the re-

search of video-based human sensing has been advocated to achieve such emerging applica-

tions such as non-invasive perceptual human computer interfaces [11,127], intelligent video

surveillance [36,124], gait analysis [114,119], automatic hand gesture recognition [128,129]

and automatic video footage annotation [14], etc.

The problem involves the localization and identification of a set of linked but articulated

limbs. Inheriting all the difficulties from single object tracking, the problem of tracking

articulated body has to tackle some special challenges. One of these is the complexity

incurred by the degrees of freedom of the articulated body.

Different from multiple target tracking where the motion of each target is usually in-

dependent of the others, the physical links among different limbs impose motion constrains
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upon them. In other words, the motion of each limb must be spatially coherent with the oth-

ers, which is reinforced by the kinematic structure of the articulated limbs. We can have an

intuitive comparison of these two cases by the configuration space which is the joint motion

space of the set of limbs. If the motions of limbs are independent, the configuration space will

enjoy a nice property that the motion of each limb stays in a manifold that is orthogonal to

the manifolds corresponding to the other limbs. Thus, independent trackers can be used to

track independent multiple targets and the complexity is almost linear w.r.t. the number of

targets. However, when the limbs are physically linked, the configuration space will not have

such a nice orthogonality and factorization property. Thus, the high dimensionality seems

unavoidable, which is generally associated with the exponential increase of computation due

to the curse of dimensionality.

Various approaches have been investigated to alleviate the computation complexity caused

by high dimensionality, such as dynamic programming [27, 109], annealed sampling [22],

partitioned sampling [76, 77], eigen-space tracking [8], hybrid Monte Carlo filtering [15],

covariance scaled sampling [108], etc., to name a few.

Different from these approaches, in this chapter, we propose a novel solution based on a

dynamic Markov network [45,46,126] and a mean field variational analysis. The proposed

dynamic Markov network encodes the spatial coherence of different limbs in an undirected

graphical model associated with the image observation processes, thus the model serves as

a generative model for the articulated motion. We perform the Bayesian inference based on

a variational mean field method, by which tight approximation may be achieved while the

computational complexity is significantly reduced. At each time instance, the mean field

solution is achieved through Monte Carlo simulation. Based on that, we design a mean
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field sequential Monte Carlo for articulated body tracking. Extensive experiments show the

effectiveness and efficiency of the proposed approach.

The remainder of this chapter is organized as follows: related work is summarized

in Sec. 3.2. Then, a distributed probabilistic representation of articulated body is pre-

sented in Sec. 3.3 based on Markov networks. After that, we present the general idea of

mean field variational analysis for Bayesian inference in Sec. 3.4 followed by the Monte

Carlo implementation of the mean field fixed-point iteration called mean field Monte Carlo

(MFMC) [45,46,126] in Sec. 3.5. In the context of dynamics, we adopt a dynamic Markov

network to model the articulated motion at each time instant. The Bayesian inference is per-

formed by a sequential version of the MFMC algorithm, which is called sequential MFMC.

They are all presented in Sec. 3.6. Extensive experimental results are reported in Sec. 3.7.

Finally we conclude this chapter in Sec. 3.8.

3.2. Related work

There is a substantial literature on articulated motion analysis, and many different ap-

proaches have been investigated. For all these methods, three important issues should be

addressed: the representations for articulated objects, the computational paradigms, and

the way of reducing computation.

There can be two typical representations for articulated object. One employs the joint

angles [14,77,97,131], which is in nature a centralized representation. While the other uses

the collection of the motion of all the limbs, e.g., the cardboard person [60], the decentralized

probabilistic model based on Markov network [43,126], the loose-limbed model [105,106],

and tree structured model [27,94], to list a few.
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Of course, the centralized joint angle representation is non-redundant and reflects the de-

grees of freedom of the articulated motion directly, while the second one is highly redundant.

The centralized representation usually results in a very high dimensional parametrization.

Since there are complex motion constraints, it may be possible to learn a lower dimensional

manifold to characterize the articulated motion [104, 131]. However, the intrinsic dimen-

sionality of the learned manifold may still be quite high. In this case, the motion analysis

problem can be posed as an unconstrained optimization problem in a high dimensional space.

On the other hand, if the articulated motion is redundantly described by the individual mo-

tion of the subparts, each subpart may be solved individually, and then projected to the

constrained space which reinforces the spatial coherence among them. Thus, it corresponds

to a constrained optimization problem. By taking advantage of the structure of the configu-

ration space resulted from such a redundant representation, efficient solutions can be found

as in this chapter.

There are mainly two different computational paradigms for articulated motion analysis:

the deterministic approach usually formulates the problem as a parameter estimation prob-

lem [10,60,97], and the solution is usually provided by some nonlinear optimization methods.

While the probabilistic approach formulates it as a Bayesian inference problem [22,105,126],

and the solution is provided by recovering the motion posteriors sequentially at each time

instant. Due to the non-Gaussian densities which commonly exist in a probabilistic formu-

lation [9, 52], closed-form implementation of the Bayesian inference is mostly intractable

and thus it is usually performed by Monte Carlo simulation. However, both approaches are

confronted by the high dimensionality. More specifically, for the deterministic approach, the
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optimization needs to be performed in a very high dimensional parametric space which is con-

fronted by the numerous local optima. As for the probabilistic approach, the computational

cost of a Monte Carlo algorithm may increase exponentially with the dimensionality [75].

Therefore, it is crucial to reduce the computation. Numerous techniques have been

proposed to improve the efficiency of the probabilistic approach. For example, a multiple

hypothesis tracking algorithm is proposed [14], which only keeps the salient modes of the

motion posteriors for more efficient Monte Carlo simulation. Partitioned sampling is in the

spirit of coordinate descent and preforms the sampling in a hierarchical fashion [76, 77].

Low dimensional manifold could be learned from the natural hand motion to reduce the

dimensionality [131]. In [105, 106], the non-parametric belief propagation algorithm [51,

110] is applied on the loose-limbed model to achieve the Bayesian inference of the articulated

body motion. Different from these methods, this chapter presents a mean field Monte Carlo

(MFMC) algorithm in which a set of low dimensional particle filters interact with one another

to solve a high dimensional problem collaboratively.

3.3. The representation of an articulated body

We denote the motion of each individual limb by xi, which can be the parameters of an

affine motion. The motion of an articulated body is the concatenation X = {x1, . . . ,xM}.

Certainly, it is highly redundant. The image observation associated with xk is denoted by

zk, which can be the detected edges of the shape contours of the limbs. The collective image

observations of the entire articulated body is Z = {z1, . . . , zM}. An important task is to

infer the posterior P (X|Z).

As shown in Fig. 3.1, a mixture of undirected and directed graphical model can be

used to characterize the generative process. The hidden layer is an undirected graph Gx =
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Figure 3.1. The Markov Network for an articulated body.

{V,E}, representing the spatial coherence constraints among different articulated limbs.

Obviously, different limbs are not independent, and each individual limb only interacts with

its neighborhood parts. We denote the neighborhood limbs of i by N (i). Clearly, it is a

Markov network. In addition, each individual limb is associated with its observation and the

conditional likelihood distribution P (zi|xi) is represented by a directed link.

Given the undirected graph of X, P (X) can be modeled as a Gibbs distribution and can

be factorized as:

P (X) =
1

Cc

∏

c∈C
ψc(Xc) (3.1)

where c is a clique in the set of cliques C of the undirected graph, Xc is the set of hidden

nodes associated with the clique c, ψc(Xc) is the potential function of this clique, and Cc is

a normalization term or the partition function. Although Cc is difficult to compute, we do

not compute it directly, since a Monte Carlo method will be used as shown in later sections.

The model accommodates two types of cliques: the first order clique, i.e., i ∈ C1 = V , and

second order clique, i.e., (i, j) ∈ C2 = E, where C = C1
⋃ C2. The associated ψ is denoted
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Figure 3.2. The constraint of two articulated parts.

by ψi and ψij , respectively. Thus, Eq. 3.1 can also be written as:

P (X) =
1

Cc

∏

(i,j)∈C2

ψij(xi,xj)
∏

i∈C1

ψi(xi) (3.2)

where ψi(xi) provides a local prior for xi, and ψij(xi,xj) presents the constraints between

the neighborhood nodes xi and xj. In other words, ψi(xi) represents a prior for the i-th

part, while ψij(xi,xj) reinforces the spatial coherence constraints between the i-th part and

the j-th part. As a specific example, it can be modeled as:

ψij(xi,xj) ∝ e−
1
2
D(xi,xj)

T Σ−1D(xi,xj) (3.3)

where D(xi,xj) = ui(xi) − uj(xj), and ui(xi) and uj(xj) are shown in Fig. 3.2. Here we

must emphasize that the zero mean Gaussian prior is a very weak prior, which only captures

the connectivity of the neighborhood limbs. The reason we adopt it is that our goal is to

analyze arbitrary articulated body motion instead of specific ones. More complex spatial

coherence potential functions may be learned for more specific stylized articulated motions.

Given a xi, its local observation zi is independent of other articulated parts. Thus, we have:

P (Z|X) =

n∏

i=1

pi(zi|xi). (3.4)
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The problem of great interest is to infer the posterior P (xi|Z). An intuition is that the

posterior of xi should be affected by three factors: its local prior ψi, its local evidence zi, and

the spatial coherence constraints reinforced by its neighborhood through ψij . This intuition

will become clearer in Sec. 3.4. Since the exact analysis of such a model is complicated

and involves heavy computation, it is more plausible to have an approximate but efficient

solution.

3.4. Mean field variational analysis

Variational analysis provides a principled method for approximate Bayesian inference [6,

55,59,123]. The core idea of variational approximation is to find a variational distribution

Q(X) to approximate the posterior distribution P (X|Z), such that the following cost function

is minimized, i.e.,

J(Q) = logP (Z)−KL (Q(X)‖P (X|Z)) . (3.5)

It is easy to figure out that maximizing J(Q) is equivalent to minimizing KL(Q(X)||P (X|Z))

since P (Z) is in fact a constant. Selecting a good class of variational distributions Q would

largely ease the difficulties of optimization, but it requires substantial creativity [59]. Here,

we adopt a fully factorized form:

Q(X) =

M∏

i

Qi(xi) (3.6)

where Qi(xi) only relies on xi. Then we have

J(Q) = logP (Z)−
∮

X

∏

j

Qj(xj) log

(∏
j Qj(xj)

P (X|Z)

)
dX (3.7)

=
∑

j

Hj(Qj(xj)) +

∫

xi

Qi(xi)EQ [logP (X,Z)|xi] dxi, (3.8)
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where

Hj(Qj(xj)) = −
∫

xj

Qj(xj) logQj(xj)dxj (3.9)

is the entropy of the distribution Qj(xj) and

EQ [logP (X,Z)|xi] =

∮

{xj}\xi

∏

{j}\i
Qj(xj) logP (X,Z)dX. (3.10)

The problem of Bayesian inference becomes a constrained optimization problem, i.e.,

Maximize J(Q)

s.t.
∫
xi
Qi(xi)dxi = 1, for i = 1 . . .M

(3.11)

It is solved by formulating the following Lagrangian multiplier, i.e.,

J∗(Q) = J(Q) +
∑

i

λi

(∫

xi

Qi(xi)dxi − 1

)
. (3.12)

To optimize J∗(Q), take the variation of J∗(Q) w.r.t. each Qi(xi) and the derivative of J∗(Q)

w.r.t. each λi and setting them to zero, we obtain the following set of Euler equations, i.e.,





− logQi(xi)− 1 + EQ[logP (X,Z)|xi] + λi = 0

∫
xi
Qi(xi)dxi − 1 = 0

. (3.13)

Solve this equation set, we easily obtain





Qi(xi) = exp (λi − 1) exp (EQ[logP (X,Z)|xi])

λi = 1− log
(∫

xi
exp {EQ[logP (X,Z)|xi]}

) . (3.14)

We thus obtain a set of fixed point equations, i.e., for each 1 ≤ i ≤M ,

Qi(xi) =
1

Ci
exp {EQ[logP (X,Z)|xi]} (3.15)
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Figure 3.3. Three factors affecting the updating of Q(xk).

where Ci is the partition function for normalization. The iterative updating of Qi(xi) will

monotonically decrease the KL divergence, and eventually reach an equilibrium. These

fixed-point equations are called mean field equations.

Moreover, the factorization of P (X) in Eq. 3.2 and P (Z|X) in Eq. 3.4 enable further

simplification of the mean field equations in Eq. 3.15. It is easy to show that:

Qi(xi) =
1

C ′
i

pi(zi|xi)ψi(xi)Mi(xi), (3.16)

where

Mi(xi) = exp





∑

k∈N (i)

∫

xk

Qk(xk) logψik(xi,xk)




 , (3.17)

where C ′
i is a constant, and N (i) is the neighborhood of limb i. From Eq. 3.16, the intuition

stated at the end of Sec. 3.3 is more pronounced, i.e., the variational belief of a limb xi is

determined by three factors: the local conditional likelihood pi(zi|xi), the local prior ψi(xi),

and the beliefs from the neighborhood limb xN (i) (we call it neighborhood prior). This is

illustrated in Fig. 3.3.
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Thus,we can treat the term pi(zi|xi)ψi(xi) as an analogue to the local belief, and treat

the term Mi(xi) as an analogue to the “message” propagated through the nearby subpart

of xi in the belief propagation algorithm [28], but the computation of Mi(xi) here is easier.

In addition, we can clearly see from these equations that the computation is significantly

reduced by avoiding multi-dimensional integrals, since Eq. 3.16 involves only single integral.

3.5. Mean field Monte Carlo (MFMC)

In this section, we propose a Monte Carlo method to implement the mean field iterations

as discussed in Sec. 3.4. We call this method mean field Monte Carlo (MFMC).

Once the mean field iterations converge, then the set of optimal variational distributions

Qi(xi), where i = 1, . . . ,M , is obtained and can be treated as the optimal approximation to

the posterior density P (xi|Z). To make the presentation clear, here we use a 2-link body as

an example. Without loss of any generality, we use i and j to index the two linked limbs,

and we use k to index the mean field iteration. At the k − 1-th iteration, for each limb, a

set of particle is maintained to represent the variational distribution, i.e.,

Qk−1
i (xi) ∼ {s(n)

i (k − 1), π
(n)
i (k − 1)}Nn=1

Qk−1
j (xj) ∼ {s(n)

j (k − 1), π
(n)
j (k − 1)}Nn=1 (3.18)

where s and π denote the sample and the weight respectively. Then at the next iteration,

we perform the following steps according to Eq. 3.16:

(1) Sampling local prior ψi(xi) for {s(n)
i (k), 1}Nn=1;
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(2) Calculating the “message” from j:

m
(n)
i =

N∑

t=1

π
(n)
j (k − 1) logψij(s

(n)
i (k), s

(t)
j (k − 1)). (3.19)

(3) Performing observation for each particle s
(n)
i (k),

w
(n)
i = P (zi|s(n)

i (k)). (3.20)

(4) Re-weighting the particles by:

π
(n)
i (k) = em

(n)
i × w(n)

i . (3.21)

and normalize to produce {s(n)
i (k), π

(n)
i (k)}.

(5) Performing the same steps for j according to Eq. 3.16. And then increase k for next

mean field updating.

After the k-th iteration, we end up with:

Qk
i (xi) ∼ {s(n)

i (k), π
(n)
i (k)}Nn=1

Qk
j (xj) ∼ {s(n)

j (k), π
(n)
j (k)}Nn=1

After several iterations, the distribution will reach an equilibrium. For a limb which is linked

to multiple limbs, the only difference is in the 2nd step of calculating “messages”,

m
(n)
i =

∑

j∈N (i)

N∑

t=1

π
(n)
j (k − 1) logψij(s

(n)
i (k), s

(t)
j (k − 1)). (3.22)

which sums over all “messages” passed from the neighbors N (i) (i.e., the Markov blanket)

of xi.
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Since si describes the hypothesis motion of limb i, its image observation zi should be a

function of si, i.e., P (zi|xi) is in fact evaluated by P (zi(si)|si). Since P (zi(si)|si) will be used

to re-weight the belief (or the posterior density) of xi, the locations of the particles {s(n)
i } will

affect the faith of approximating the belief by the set of particles if the ratio of valid particles

is not satisfactory (meaning that a small portion of the particles dominates the re-weighting).

To enhance the ratio of valid particles, we use importance sampling technique [74] to place

the particles to “better” locations.

The only modification on the above mean field Monte Carlo (MFMC) is on the first

step: instead of sampling the local prior ψi(xi) directly to produce {s(n)
i , 1

N
}Nn=1, we generate

samples {s(n)
i , 1

N
}Nn=1 from an importance density g(xi). After weight compensation, the set

of re-weighted particle is still a properly weighted set for the density ψi(xi), i.e.,

ψi(xi) ∼ {s(n)
i ,

ψi(s
(n)
i )

g(s
(n)
i )
}Nn=1. (3.23)

The selection of importance density may be arbitrary, as long as it can provides beneficial

information. Here we give an specific example by using a two-link (where i and j are

connected limbs). To generate samples for ψi(xi), we find the means s̄i and s̄j from the two

particle sets. After identifying the point ūj on s̄j and the median axis L̄i of s̄i (see Fig. 3.4),

we sample u
(n)
i from G(ui : ūj,Σu), and L

(n)
i from G(Li : L̄i,ΣL), where G is a Gaussian.

Then the sample s
(n)
i is produced by (L

(n)
i , u

(n)
j ), and the importance density is:

g(xi) = G(ui : ūj,Σu)G(Li : L̄i,ΣL). (3.24)

For limbs which are linked to multiple limbs, we can build one such a Gaussian from each

of its neighbors. Then a Gaussian mixture with equal weights for each of the Gaussian
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components can be constructed to form the importance function, i.e.,

g(xi) =
1

K

∑

j∈N (i)

gj(xi) (3.25)

where K is the total number of neighbors of xi. The use of importance sampling techniques

greatly enhances the robustness of the mean field Monte Carlo algorithms.

3.6. Dynamic Markov network and sequential mean field Monte Carlo

Sec. 3.4 and Sec. 3.5 describe the mean field approximation and mean field Monte Carlo

at one time instance. They can be easily modified for tracking. When considering multiple

time instances, the model becomes a dynamic Markov network, as shown in Fig. 3.5. Denote

the collection of observations by Zt = {Z1, . . . ,Zt}. Tracking algorithms aim at inferring

P (Xt|Zt) by knowing P (Xt−1|Zt−1). It involves a density propagation process [52]. Once X

consists of a number of articulated parts, the increase of dimensionality will incur exponential

increase of computation. The advantage of mean field approximation is that it decouples

different parts, and transforms the problem of exponential complexity to a simpler problem

with close to linear complexity. The constraint reinforcement needs some computation as a

cost, but it is not significant.
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Figure 3.5. Dynamic Markov network for articulated body motion.

At time instance t, mean field approximation finds a variational distribution Qi,t(xi,t) to

approximate P (xi,t|Zt) for the i-th limb. The mean field equation can be written as:

Qi,t(xi,t) =
1

C ′
i

pi(zi,t|xi,t)×
∫
P (xi,t|xi,t−1)Qi,t−1(xi,t−1)dxi,t−1

× exp





∑

k∈N (i)

∫

xk,t

Qk,t(xk) logψik(xi,t,xk,t)




 (3.26)

Comparing Eq. 3.26 to Eq. 3.16, we clearly observe that the prediction probabilistic density

∫
P (xi,t|xi,t−1)Qi,t−1(xi,t−1)dxi,t−1 in Eq. 3.26 plays the same role as ψi(xi) in Eq. 3.16. Thus,

at time instance t, the variational belief of the i-th limb is also determined by three factors:

the local evidence, the prediction prior from previous time frame, and the belief of the

neighborhood limbs.

Therefore, the sequential mean field Monte Carlo can be obtained by modifying the mean

field Monte Carlo algorithm in Sec. 3.5. At the first step, instead of sampling from ψi(xi),

we should sample the prediction prior instead. Suppose at t− 1, Qi,t−1(xi,t−1) is represented
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by:

Qi,t−1(xi,t−1) ∼ {s(n)
i,t−1, π

(n)
i,t−1}Nn=1. (3.27)

Then, we can use the following steps to replace the 1st step in the mean field Monte Carlo

algorithm in Sec. 3.5:

1.a Re-sampling from Qi,t−1(xi,t−1) for {s̃(n)
i,t−1,

1
N
}Nn=1.

1.b ∀ s̃(n)
i,t−1, sampling s

(n)
i,t from P (xi,t| s̃(n)

i,t−1).

Impressive results are obtained and are reported in Sec. 3.7.

We have a rough comparison on the computational complexity of the proposed approach

with the original Condensation algorithm [52] with joint angle representation. Assume

the articulated body consists of M limbs, each of which contribute one DoF, and assume

a number of T particles are needed for tracking one limb. In addition, we assume when

one more DoF is added, Condensation needs P × T particles to work. Through our

experiments, 10 is reasonable for P . In our mean field Monte Carlo, we denote the number

of mean field iterations by K, which is 5 in our experiments. In both methods, the most

intensive computation is on calculating image observation, while the extra computation

induced by Mi(xi) in Eq. 3.16 is negligible. Thus, the complexity of our method is O(TKM),

while Condensation has O(TPM−1) which is much higher than the proposed mean field

Monte Carlo algorithm.

In addition, the proposed mean field Monte Carlo (MFMC) algorithm is also different

from the partitioned sampling method, although both methods reduce the exponential com-

plexity to close linear complexity. Partitioned sampling needs the independence assumption

to decompose the dynamics, thus it works with the joint angle representation, while the pro-

posed MFMC formulates the problem in a differen way. In addition, partitioned sampling
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is a hierarchical search which is uni-directional (it may be revised to run back and forth,

though), while MFMC is collaborative and iterative, since the fixed point is achieved by the

bi-directional interactions among a set of low-dimensional particle sets.

3.7. Experiments on tracking articulated body

We perform extensive experiments on articulated body with different DoFs, and obtain

impressive results as reported in this section.

3.7.1. Experimental setup

Our experiments mainly concern about 2D tracking. Thus we adopt a cardboard model

where each limb in the articulated body is represented by a planar object, and thus the

state of xi is the parameters of a 2D affine transform. The motion model P (xi,t|xi,t−1) is

a standard 2nd order constant acceleration model for each limb, which can be estimated

online.

The observation model P (zi|xi) is also an important factor in tracking. We use two types

of visual cues: edge and intensity. We adopt the same method in Condensation [9,52] for

edge observation, where a set of independent measurement lines were used to measure the

likelihood of detected edge points. In addition, since the articulated targets are human body

parts and the skin or clothes on the body parts are similar, we also use the intensity clue

and assume the distribution of the intensity of a limb be a Gaussian distribution. The mean

and variance of the Gaussian density is trained for each individual limb with the manual

initialization in the first frame.
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Figure 3.6. The first five iterations of MFMC on the (2-part) Arm sequence.

Figure 3.7. The first five iterations of MFMC on the (3-part) Finger sequence.

Figure 3.8. Mean field Monte Carlo (MFMC): tracking 2-part arm.

3.7.2. Results of MFMC iteration

To demonstrate that the mean field iterations do converge and function as expected, we

collect the intermediate results on MFMC iterations. Two examples are shown in Fig. 3.6

and Fig. 3.7, which show the iteration process at a specific time instant on a 2-part arm

sequence, and on a 3-part finger sequence, respectively. In both cases, the estimates of the

first five iterations are shown. Before the iteration, the initial status is quite unpleasant.

But after a couple of mean field iterations, the estimates settle down on the right positions

as expected. From our experiments, most iterations converge in less than five times.
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Figure 3.9. Multiple independent tracker (MiT): tracking 2-part arm.

3.7.3. Various articulated objects

To demonstrate the effectiveness, efficiency and scalability, we perform experiments on vari-

ous articulated objects of difference DoFs, including a 2-part arm, 3-part finger, 6-part upper

body, and 10-part full body.

The first test sequence is a 2-part arm, which consists of two limbs: upper arm and

lower arm. The sequence consists of 441 frames. The lower arm presents larger motion than

upper arm in the testing sequence. The MFMC algorithm performs excellently due to the

constraint reinforcement. Sample frames are shown in Fig. 3.81.

We compare the results from MFMC with multiple independent trackers (MiT). Although

there are only two limbs, MiT does not produce satisfactory results, since either one has risks

to lose track and there are no other constraints to get it back except image observations, and

MiT hardly produce plausible results satisfying the physical link constraints. Some frames

of MiT are shown in Fig. 3.9.

The second test sequence is on a 3-part finger and consists of 182 frames. As expected,

MFMC produces very robust and stable results. Sample result images are shown in Fig. 3.10.

The third test sequence is on a 6-part upper body, in which complex arm motions as well as

global movement of the torso and head are presented. The sequence consists of 834 frames.

1All video results are available upon request
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Figure 3.10. Mean field Monte Carlo (MFMC): tracking 3-part finger.

Figure 3.11. Mean field Monte Carlo (MFMC): tracking 6-part upper body.

Although the articulation is quite complicated, it does not fail the MFMC algorithm. Sample

result images are shown in Fig. 3.11.

The most complicated test sequence we have experimented is on 10-part full body motion,

and the sequence has 767 frames. Arms and legs are the most articulated body parts, and

they present significant motion. None of our run of MiT succeed, because a leg is easy to get

lost and never be able to come back. Sample result images of MiT are shown in Fig. 3.12.

When MFMC is applied, the tracking result is still very stable unlike MiT. It is able to

track the articulated motion until frame 368. Through subjective evaluation, the tracking

quality does not decrease due to the increase of the complexity of the articulation. Sample

result images are shown in Fig. 3.13. The MFMC algorithm runs on a single processor PC

of 2.0GHz running Window XP. We do not perform any code optimization. For all these

experiments, the number of mean field iterations is set to 5. The number of particles for each

part and the frame rates are shown in Table 3.1. As we can clearly observe from the table,

with 200 samples for each limb, the processing frame rates decrease almost linearly w.r.t.
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experiments 2-part 3-part 6-part 10-part

particles/part 200 200 200 200

frame/second 2.02 1.28 0.94 0.56
Table 3.1. A comparison of the computation of different articulated objects.
The exponential requirement for computation is overcome as expected.

Figure 3.12. Multiple independent tracker (MiT): tracking 10-part full body.

Figure 3.13. Mean field Monte Carlo (MFMC): tracking 10-part full body.

the number of limbs. This empirically demonstrates that the proposed MFMC algorithm

does achieve linear complexity w.r.t. the number of limbs.

3.8. Conclusion

Tracking articulated objects is a challenging problem, since the increase of the number

of limbs and the physical connection constraints of them would potentially incur high di-

mensionality, and fail tracking algorithms developed for single target. Thus, algorithms with

close to linear complexity would have much better scalability. In this chapter, we propose a

collaborative approach to achieve such a goal. Instead of using the joint angle representa-

tion which is irreducible, we adopt a highly redundant representation for articulated body,

i.e., represent individual limb by its own motion parameters, but reinforce the constraints
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of different limbs by a Markov network. Variational analysis is performed for probabilistic

reasoning on this graphical model. Interestingly, a set of fixed point equations (i.e., the mean

field equations) is found, which suggests a collaborative solution to the problem through the

iterative interactions among neighborhood limbs. Then a mean field Monte Carlo (MFMC)

algorithm is designed to achieve effective computation. In the context of dynamics, we

propose a dynamic Markov network model and MFMC is extended to a sequential MFMC

algorithm for visual tracking. Extensive experiments clearly validate our approach.

One of the future work is to extend the algorithm to 3D. Since self-occlusion seems a

severe issue for articulated motion, another possible direction is to design collaborative al-

gorithms for solving the occlusion problem. Moreover, since a centralized joint angle repre-

sentation may facilitate the incorporation of high-order motion constraints, another possible

future work would be to design algorithms that combine centralized and decentralized rep-

resentation together to achieve more efficient and more accurate tracking of the articulated

body.
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CHAPTER 4

Variational maximum a posterior estimation

As we have discussed in Chapter 3, the proposed collaborative approach reveals the

probabilistic integration of three measurement sources: the local likelihood, the dynamic

priors, and the neighborhood priors. One challenge behind such a integration process is

that these visual measurements tend to have multiple modes. This directly results in the

multimodality of the integrated results, i.e., there are several results obtained from the visual

measurement integration, only one of them is true though. One approach to addressing this

issue is to keep multiple hypothesis for the integration results. However, in many cases, a

unique result to the target problem is necessary. Therefore, we must identify the optimal

mode of the integrated visual measurements and regard it as the final result. This is what

this chapter is about, i.e., an efficient probabilistic variational method to achieve that.

4.1. Introduction

Bayesian inference methods recover the posterior distribution P (X|Z), or find the max-

imum a posteriori (MAP) estimation X̂ = arg maxX{P (X|Z)}, where Z is the set of ob-

servations of the stochastic system, and X is the underlying stochastic processes gener-

ating Z. Many real problems can be effectively modeled and solved under the Bayesian

inference framework. In the literature of signal processing and computer vision, Bayesian

methods are widely used in signal estimation [2], image segmentation [3, 4, 116], image

super-resolution [29,30] and visual tracking [106,126,130], etc.. Many of these Bayesian
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inference problems are formulated and represented by probabilistic graphical models [29,30,

106,126,130].

Most traditional methods of Bayesian inference such as the belief propagation (BP)

algorithm [29, 30, 134] and the variational inference methods [6, 46, 123, 126] focus on

recovering either the exact or the approximate posterior distributions. The problem is that

even if we could obtain the exact posterior distribution, in general it is still very difficult to

find the MAP estimate since it involves global optimization. The Markov chain Monte Carlo

(MCMC) technique with simulated annealing (SA) [33, 65, 79] provides a principled way

to search for the global optimum of the posterior and the convergence in probability to the

global optimum has been proven [33]. However, the SA schemes are usually computationally

intensive, which hinders their applicability in many real applications.

In this chapter, we propose an efficient approach to finding the MAP estimate by an

annealed mean field variational analysis. We show that when the covariance of a variational

Gaussian distribution approaches to zero, the infimum point of the KL divergence between

the variational Gaussian and the real posterior will be the same as the supreme point of

the real posterior. Thus in the limit, minimizing the KL divergence between the variational

Gaussian and the real posterior is equivalent to maximizing the real posterior. The advantage

of minimizing the former is that we can nicely incorporate a deterministic annealing (DA)

scheme [70, 88, 89, 138] into the mean field fixed-point iterations, which will eventually

converge into the optimal or a near-optimal maximum point of the real posterior. This new

method, namely variational MAP, is an efficient and effective method for obtaining the MAP

estimate of a complex stochastic system.

The remainder of this chapter is organized as follows. In Sec. 4.2, related work are

categorized and discussed. Then in Sec. 4.3, we construct the theoretic foundation of the
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variational MAP algorithm by revealing a general theorem of the KL divergence between a

Gaussian and an arbitrary p.d.f.. In Sec. 4.4, without loss of generality, we deduce the mean

field fixed-point iterations under a Markov network, where the mean field approximation is

constrained to be a multivariate Gaussian. We then propose the variational MAP algorithm

in Sec. 4.5. Furthermore, a Monte Carlo implementation of such a variational MAP algorithm

is proposed in Sec. 4.6. Extensive experimental results are demonstrated and discussed in

Sec. 4.7. Finally we conclude our work and propose the possible future work in Sec. 4.8.

4.2. Related work

We propose the variational MAP algorithm under the context of graphical models, since

it is a powerful means of representing real stochastic systems. Moreover, the MAP estimate

involves global optimization. Related work can thus be categorized into three. The first

category is related to graphical model representation of stochastic systems. The second

category involves the Bayesian inference algorithms on graphical models. While the third

category is related to the global optimization methods.

Bayesian network (BN), dynamic Bayesian network (DBN) [83,85], Markov network [29,

30] and dynamic Markov network [41,46,126] are all typical graphical models [58]. They

are widely used for modeling and solving computer vision problems. To mention some,

a BN is proposed in [120] for spatial-temporal segmentation of video sequences. Various

DBNs are proposed to address different problems in visual tracking, such as multiple cue

co-inference [130], switching observation models for contour tracking in clutter [125] and

tracking the appearances of multiple targets against occlusion [132]. The Markov network

is adopted to achieve image super-resolution [29,30]. While various dynamic Markov net-

works are adopted to perform articulated human body tracking [126], to analyze structured
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deformable shapes [46] and to formulate a rigorous bi-directional multi-scale visual tracking

algorithm to address the abrupt motion [41]. Although there are many types of graphical

models, they all can be transformed into one another [58].

For Bayesian inference in graphical models, when there is no loop, the sum-product algo-

rithm or belief propagation (BP) [29,58] can obtain the exact inference efficiently through

a local message passing process. When there are loops, the loopy BP [82] and generalized

BP [134] can obtain good approximate results [29,31]. As an approximation, Monte Carlo

techniques such as Markov chain Monte Carlo (MCMC) [3,4,58,116] and sequential Monte

Carlo [9,52,53] can be used for implementing the Bayesian inference by sampling. In addi-

tion, probabilistic variational approach provides a principled way for approximate inference

such as the mean field variational analysis [6,46,54,123,126], which seeks the best approx-

imate results by minimizing the KL divergence between the mean field distribution and the

real posterior distribution.

The non-parametric BP [110] and the Pampas algorithm [51] are proposed to implement

the Bayesian inference on complex real valued graphical models by combining BP with a

MCMC sampler. A different approach is the sequential mean field Monte Carlo algorithm

(SMFMC) [46,126], which combines the mean field variational analysis with the sequential

Monte Carlo technique. It is also proposed to implement efficient Bayesian inference on

complex real valued graphical models.

Finding the MAP estimate is a global optimization problem. In terms of complexity, it is

a NP-hard problem in the combinatory context. However, the stochastic simulated anneal-

ing (SA) [33,65,79] can achieve good results in many applications since the convergence in

probability to the global optimum is proven [33]. But SA algorithms are often inherently

slow due to their randomized local search strategy. Deterministic annealing (DA) [89,138]
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methods intend to overcome the inefficiency of the SA methods. They are based on deter-

ministic optimization scheme, but they incorporate stochastic smoothing by optimizing over

a probabilistic state space [89]. Although global optimality may not be guaranteed for DA,

many empirical studies have shown that the DA methods are very likely to achieve optimal

or near optimal solutions [89]. The annealing methods are enlightened by the annealing

process of a thermodynamic system, which drives the system to stay in the lowest energy

and thus most probable state. Annealing methods have been widely used in image process-

ing, computer vision and pattern recognition for robust M-Estimation [70], for designing

piecewise regression models [96], for image texture segmentation and grouping [88] and for

object recognition [23], to list a few.

In [22], an annealed particle filtering algorithm, which integrates a SA scheme with the

sequential Monte Carlo algorithm, is proposed to find the maximum of the articulated human

motion posteriors. Instead of using MCMC, weighted re-sampling is preformed during the

SA process. Notwithstanding the empirically demonstrated effectiveness, this algorithm is

largely based on heuristics and there is no strict theoretic proof about the convergence of

such a process.

The variational MAP algorithm [42, 43] proposed in this chapter integrates the mean

field variational inference method [6,46,58,123,126] with a DA scheme [88,89,138]. By

constraining the mean field variational distribution to be a multivariate Gaussian, the co-

variance of the Gaussian will be used as the “temperature” for annealing. In each step of

the annealing, we iterate the Gaussian mean field fixed-point equations to convergence. As

the covariance of the variational Gaussian approaches to zero, the mean of it will be very

likely to converge into the global maximum point or a near global maximum point of the real

posterior. Although the original mean field variational method [58,126] can only obtain an
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approximation of the real posterior, the proposed variational MAP algorithm can find the

exact optimal or near-optimal MAP estimate. It is an efficient and direct MAP inference

algorithm for complex stochastic systems.

4.3. Kullback-Leibler divergence between a Gaussian and an arbitrary p.d.f.

The KL divergence or relative entropy between two probabilistic distribution g(x) and

p(x) is defined as

KL (g(x)‖p(x)) =

∫

x

g(x) log
g(x)

p(x)
dx. (4.1)

It is a measurement of the dissimilarity between two distributions. It has the property that

it is zero if g(x) and p(x) are equal almost everywhere (a.e.) and positive otherwise. But

it is not a real distance since it is not symmetric, i.e., KL(g(x)‖p(x)) 6= KL(p(x)‖g(x)).

Generally, minimizing KL(g(x)‖p(x)) w.r.t. g(x) will favor those g(x) distributions whose

probability densities all lie in the regions with high probability under p(x), but without the

requirement that all those areas are covered. While minimizing KL(p(x)‖g(x)) w.r.t. g(x)

will favor the settings of g(x) which can cover all the high probability areas in p(x), even if

this will result in assigning the high probability area of g(x) to the very low probability area

of p(x) [123].

It is also worth noting that the KL divergence in Eq. 4.1 is finite only when g(x) and

p(x) have the same support(we set 0 log 0
0

= 0, which is motivated by continuity.) [20]. Thus

if g(x) is a Gaussian and p(x) is compactly supported, the KL(g(x)‖p(x)) will be +∞.

Based on the above observations, if we constrain the g(x) distribution to be a Gaussian

distribution, we have the following theorem relating the supreme of p(x) and the infimum

of KL(g(x)‖p(x)). We must emphasize beforehand that the integrability assumption in
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Eq. 4.2 is essential otherwise the KL(g(x)‖p(x)) could be +∞ no matter how the Gaussian

distribution g(x) is translated and scaled.

Theorem 4.3.1. Let p(x), x is a random vector in Rn, be a bounded, continuous and

everywhere positive p.d.f. with the properties:

• There exists a unique x∗ ∈ Rn such that p(x∗) = supx∈Rn p(x)

• p(x) is proper, i.e., p(x)→ 0 as x→∞

• The following integrability condition in Eq. 4.2 holds

∣∣∣∣
∫

x

exp

{
−xTx

2

}
log p(x)dx

∣∣∣∣ < +∞ (4.2)

Suppose q(x) ∼ N (x|0, In) is a Gaussian distribution with zero mean and identity covari-

ance matrix In, then denote qµ̃σ(x) ∼ N (x|µ̃, σ2In),x ∈ Rn as the Gaussian distribution

with mean µ̃ and diagonal covariance σ2In. Assume µ̃σ is such that KL(qµ̃σ
σ (x)‖p(x)) =

inf µ̃KL(qµ̃σ(x)‖p(x)), then

lim
σ→0

µ̃σ = x∗. (4.3)

Proof. The proof can be found in Appendix B based on several Lemmas in Appendix A.

�

Eq. 4.3 in Theorem 4.3.1 nicely reveals to us a DA scheme to find the maximum point

of p(x), i.e., we can minimize w.r.t. µ̃ a series of KL(qµ̃σ(x)‖p(x)) . This can be achieved

by initially setting the σ2 to be very large value and decreasing it asymptotically to zero.

When the σ2 is very large, the optimization of KL(qµ̃σ(x)‖p(x)) is just a convex optimization

problem [89]. With the decreasing of the σ2, the KL(qµ̃σ(x)‖p(x)) will have more local
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minima and the optimization is more complex. For a fixed σ2, we can run an optimization

algorithm to find the minimum of KL(qµ̃σ(x)‖p(x)), then the result will be used as the initial

point of the optimization in the next step of annealing. As σ2 decreases asymptotically to

zero, the whole annealed optimization process will be very likely to converge into the global

minimum of the KL(qµ̃σ(x)‖p(x)), and thus the global maximum of p(x).

Moreover, in many cases, the p(x) is not directly in hand, so we may not be able to

maximize it directly. For example, in the Bayesian inference problem presented in Sec. 4.4,

where p(x) is corresponding to the posterior distribution which must be inferred from the

observations. In Sec. 4.5, we show that by using a novel variational inference framework, the

problem of optimal MAP estimation can be efficiently solved by minimizing the KL diver-

gence between a variational Gaussian and the real posterior distribution without explicitly

recovering the latter.

4.4. Gaussian mean field variational analysis

In this section, we present the Gaussian constrained mean field variational analysis, which

functions as the optimization method in one annealing step in the variational MAP algorithm.

To better illustrate it, we adopt a specific type of graphical model, i.e., the Markov network

as shown in Fig. 4.1. Since different types of graphical models can be transformed to one

another [58], adopt a specific type of graphical model will not lose the generality of the

proposed algorithm.

In a Markov network, each zi represents an observation of the latent random variable xi.

Each undirected link is associated with a potential function ψij(xi,xj), which models the

probability of two adjacent nodes being in a certain state pair. Each directed link represents

an observation function φi(zi|xi) which models the probability of the observation zi given xi.
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Figure 4.1. An example of Markov network.

Denotes X = {xi, i = 1 . . .M} as the set of latent random variables and Z = {zi, i = 1 . . .M}

as the set of all observations. Then the joint probability of the Markov network is

P (X,Z) =
1

C

∏

{i,j}∈E
ψij(xi,xj)

∏

i∈V
φi(zi|xi), (4.4)

where E is the set of undirected links, V is the set of directed links, and C is a normalization

constant. Note here we only define 2nd order potentials in the hidden layer for X. Then the

Bayesian MAP inference in the Markov network is to find

X̂ = arg max
X

P (X|Z). (4.5)

We show that by combining the mean field variational method [6,45,46,54,123,126] with

a DA scheme [89,138], we can efficiently find the optimal or near optimal MAP estimation

of the joint posterior P (X|Z).
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To achieve that, firstly, we adopt the mean field approximation, i.e.,

P (X|Z) ≈ Q(X) =
M∏

i=1

Qi(xi). (4.6)

Suppose all the random variables share one common dimension N , we further constrain

each of the Qi(xi) as a multivariate Gaussian, i.e.,

Qi(xi) ∼ N (xi|µ̃i,Σi), (4.7)

where µ̃i is the N dimensional mean vector and Σi = σ2IN is a fixed N × N diagonal

covariance matrix. Then Q(X) is a N ×M dimensional multivariate Gaussian distribution

with NN ×NM dimensional diagonal covariance matrix as follows:

Q(X) ∼ N (X|µ̃,Σ) = N




X




µ̃1

µ̃2

·

·

µ̃M




,




σ2IN 0 0 0 0

0 σ2IN 0 0 0

0 0 · 0 0

0 0 0 · 0

0 0 0 0 σ2IN







. (4.8)

Following the general idea of variational inference, again, we can construct a cost function

J(Q) by Eq. 3.5. Now the constrained optimization problem is

Maximize J(Q)

s.t. Qi(xi) ∈
{
N (xi|µ̃i, σ2IN )|µ̃i ∈ RN

}
, for i = 1 . . .M

(4.9)

We solve this constrained optimization problem by taking a strategy similar to the gra-

dient projection method [98,99]. Firstly, we relax the constraint by letting Qi(xi) be any

valid probabilistic distributions. Then we can perform the standard mean field variational
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analysis presented in Sec. 3.4 to obtain the mean field fixed point equations [45,46,54,126],

i.e., for each i = 1 . . .M , we have

Qi(xi) =
1

Ci
eEQ[logP (X,Z)|xi], (4.10)

where Ci is the normalization constant to assure that Qi(xi) be a valid probability density

function. We can iterate this set of fixed-point equations in order to find a minimum point

of KL(Q(X)‖P (X|Z)) when Q(X) is a product of M Gaussian distributions with fixed

covariance σ2In, i.e.,

µ̃i =

∫

xi

xiQi(xi)dxi (4.11)

=
1

Ci

∫

xi

xie
EQ[logP (X,Z)|xi]dxi. (4.12)

We call this set of fixed-point equations as Gaussian mean field fixed point equations. In

fact, it is easy to figure out that Eq. 4.12 will minimize KL(Qi(xi)||N (xi|µ̃, σ2In)) w.r.t.

N (xi|µ̃, σ2In), where Qi(xi) is the unconstrained variational p.d.f. from Eq. 4.10, and

N (xi|µ̃, σ2In) is a Gaussian distribution with fixed covariance σ2In. In this sense, Eq. 4.12

represents a projection of any p.d.f. Qi(xi) to the functional space spanned by all the Gauss-

ian distributions with the fixed covariance σ2In. Then the projected Gaussian distribution

will be used for the next mean field iteration. This process will continue until the mean

field iterations reach the fixed-point. It exactly follows the same strategy of the gradient

projection method [98,99].
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Embedding Eq. 4.4 and Eq. 4.7 into Eq. 4.12, we obtain the set of factorized fixed-point

equations, i.e.,

µ̃i =
1

C ′
i

∫

xi

xiφi(zi|xi)e
P

j∈N (i)

R
xj

N (xj |µ̃j ,σ
2IN ) logψij(xi,xj)dxj

dxi, (4.13)

where C ′
i is again a normalization constant and N (i) indicates the set of neighboring nodes

of xi. Then we iteratively assign Qi(xi) = N (xi|µ̃i, σ2IN ) where µ̃i is calculated according

to Eq. 4.13. Please note that the covariance of the variational Gaussian distribution is kept

fixed during the fixed-point iteration and projection process.

For a constant Σ = σ2INM , Eq. 4.13 is the Gaussian mean field fixed-point equation

to update µ̃i. We can iterate this set of fixed-point equations, and µ̃i will converge to a

minimum point of KL(Q(X)||P (X|Z)). This set of fixed-point equations is efficient since

the updating of each µ̃i only involves the local computation in the neighborhood of xi in the

graphical model.

However, another issue of interest is that to solve the constrained maximization of J(Q),

we may directly take the derivative of J(Q) w.r.t. the mean µ̃i of each of the Gaussian Qi(xi)

and set them to zero. By interchanging the derivative and integral in Eq. 3.8 we can then

obtain the following equations

µ̃i =

∫
xi

xiQi(xi)EQ{logP (X,Z)|xi}dxi∫
xi
Qi(xi)EQ{logP (X,Z)|xi}dxi

. (4.14)

Again, by embedding Eq. 4.4 into Eq. 4.14, we obtain the factorized version of Eq. 4.15, i.e.,

µ̃i =
1

C ′′
i

∫

X

xi
∏

j∈V
Qj(xj)




∑

(k,l)∈E
logψkl(xk,xl) +

∑

m∈V
logφm(xm)



 dX, (4.15)

where C ′′
i is again a normalization constant.
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While it seems that Eq. 4.15 be a more direct solution, our experiments show that even

in a relative simple synthetic problem as that in Sec. 4.7.2, the iteration of Eq. 4.15 failed

to converge. Two reasons might explain why this happens: (1). the deduction of Eq. 4.14

involves an interchange between derivative and integral, which may not be justified; (2).

the iteration of Eq. 4.15 is not numerically stable, i.e., it might be easily got trapped in

some saddle points. Another reason that we adopt Eq. 4.11 is that the updating of µ̃i only

involves the local computation in the neighborhood of the node xi, while Eq. 4.15 does not

have such kind of nice local property. Therefore, Eq. 4.11 is more justified as well as more

computationally efficient than Eq. 4.15.

4.5. Variational MAP by deterministic annealing

Based on Theorem 4.3.1 in Sec. 4.3 and the multivariate Gaussian constrained mean field

variational analysis in Sec. 4.4, we show that we can nicely adopt a DA scheme to efficiently

find the optimal MAP estimate without explicitly recovering the P (X|Z).

We firstly relax the problem of estimating the global maximum of P (X|Z), i.e., we can

instead minimize KL(Q(X)‖P (X|Z)) where Q(X) is constrained to be a multivariate Gauss-

ian with a fixed diagonal covariance Σ = σ2INM as in Eq. 4.8. We can then apply the DA

scheme revealed by Theorem 4.3.1. This is achieved by regarding the σ2 as the temper-

ature T for annealing. We can set it to be very large at the start. The minimization of

the KL(Q(X)‖P (X|Z)) in this start setting is usually a trivial convex optimization prob-

lem [89]. Then the multivariate Gaussian constrained mean field iteration in Eq. 4.13 can

usually find the only minimum point under this setting. Using this result as an initializa-

tion, we decrease σ2 to be smaller toward zero and run the mean field iteration in Eq. 4.13
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Variational Maximum a Posteriori Algorithm

(1) Initialization: Annealing control parameter m = 0; Tmax be very large where
the annealing starts and Tmin be very small near zero where the annealing stops;
let IN be the N ×N identity matrix; denote ~µi,0 as the set of randomly generated
mean vector for initialization.

(2) Annealing: m = m+ 1, T = Tmax

m
, then Σi = T × IN ; ~µi,m = ~µi,m−1, i = 1 . . .M ;

If T > Tmin, goto Step 3, else goto Step 4.
(3) Mean field iteration: Update ~µi,m based on the current value of ~µi,m and the

fixed Σi according to Eq. 4.13. Iterate this step until convergence. Then jump
back to Step 2.

(4) Result: ~µ∗
i = ~µi,m, i = 1 . . .M , are the MAP estimation of P (X|Z).

Figure 4.2. Variational MAP algorithm.

again. We can repeat the process until the σ2 decreasing to near zero. Then upon conver-

gence, the whole annealing process will be very likely to obtain the global minimum of the

limσ→0 KL(Q(X)‖P (X|Z)), and thus the global maximum of P (X|Z). Therefore, we only

need to control one parameter T = σ2 for the annealing process. Generally, we propose the

variational MAP algorithm as shown in Fig. 4.2.

Nevertheless, the annealing scheme, i.e., the decreasing rate of T , needs to be carefully

designed to have a good optimization result. Unfortunately, it seems that a theoretic analysis

of the annealing rate is very difficult. In the proposed algorithm, we let the annealing control

parameter T decrease hyperbolically with the annealing number K. In our experiments, such

an annealing scheme always obtains satisfactory results. Please note that although the mean

field variational analysis can only obtain an approximate posterior, the proposed algorithm

is very likely to obtain the exact optimal MAP estimate.

4.6. Monte Carlo simulation of the variational MAP

In a real valued graphical model such as that in Fig. 4.1, if all the observation functions

φi(zi|xi) and all the potential functions ψij(xi,xj) are Gaussian, then we may obtain a closed
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form analytical solution of the fixed-point equations in Eq. 4.13. However, either φi(zi|xi) or

ψij(xi,xj) can be complex non-Gaussian distributions, e.g., the image observation function

in the Condensation contour tracker [9,52,53] is the interference of a Gaussian random

process and a Poisson random process due to the background clutter. This makes it very

difficult to obtain analytical solutions to the fixed-point equations in Eq. 4.13, e.g., it would

be very difficult to evaluate the normalization constant C ′
i, since it involves multiple integrals

of complex distributions.

Nevertheless, under the non-Gaussian case, we can seek the help of Monte Carlo simu-

lation to approximately evaluate Eq. 4.13. According to the strong law of large numbers,

as the number of i.i.d. samples from a distribution approaches to infinity, any order of the

sample quadrature will converge to the same order of distribution statistics with probability

one. Thus, to evaluate Eq. 4.13, firstly, we can generate M sets of samples to approximate

each of the Qi(xi), i.e.,

Qi(xi) = N (xi|~µi, σ2IN) ∼ {si,k}Kk=1, i = 1 . . .M, (4.16)

where K is the number of samples used for simulation. Then these M sets of samples can

be used for evaluating Eq. 4.13 approximately, i.e.,

~µi =
1

C ′′′
i

K∑

k=1

si,kφi(zi|si,k) exp




∑

j∈N (i)

1

K

K∑

l=1

logψij(si,k, sj,l)



 , (4.17)

where

C ′′′
i =

K∑

k=1

φi(zi|si,k) exp



∑

j∈N (i)

1

K

K∑

l=1

logψij(si,k, sj,l)


 . (4.18)
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Variational MAP Monte Carlo

(1) Initialization: Set the annealing control parameter m = 0; let Tmax be very
large where the annealing starts and Tmin be very small near zero where the anneal-
ing stops; let IN be the N ×N identity matrix; denote ~µi,0 as the set of randomly
generated mean vector for initialization.

(2) Annealing: m = m+ 1, T = Tmax

m
, then Σi = T × IN ; ~µi,m = ~µi,m−1, i = 1 . . .M .

If T > Tmin, goto Step 3, else goto Step 4.
(3) Mean field iteration: Sample {si,k}Kk=1 from Qi(xi) = N (xi|~µi,m,Σi) for i =

1 . . .M , and calculate the updated ~µi,m based on these sets of samples according
to Eq. 4.17. Iterate this step until convergence. Then jump back to Step 2.

(4) Result: ~µ∗
i = ~µi,m, i = 1 . . .M , are the MAP estimation of P (X|Z).

Figure 4.3. Monte Carlo implementation of the variational MAP algorithm.

is the normalization constant. Therefore, we propose the Monte Carlo implementation of

the variational MAP algorithm in Fig. 4.3.

In fact, the use of Monte Carlo simulation in the variational MAP algorithm has other

advantages in some computer vision applications. For example, in visual tracking, since

the detection of the target is in general very difficult, it would be hard to obtain the image

observation zi and thus it is hard to evaluate the observation likelihood φi(zi|xi). Whereas in

a sample based Monte Carlo algorithm, the observation likelihood φ(zi|xi) can be evaluated

in a top-down approach, i.e., for each sample si,k, we can easily match the model represented

by the sample with the image data or image features corresponding to the sample, just as

in the Condensation contour tracker [9,52,53].

4.7. Validation experiments and application to articulated body tracking

In this section, we present extensive experimental results of both synthetic problems

and real applications, which demonstrate the effectiveness and efficiency of the proposed

variational MAP algorithm.
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(a) T = σ2 = 16.0 (b) T = σ2 = 6.0

(c) T = σ2 = 2.0 (d) T = σ2 = 0.2

(e) p(µ) (f) −log(p(µ))

Figure 4.4. Evolution of the KL(q(x)‖p(x)) w.r.t. µ during annealing: (a).
the KL topology when T = 16.0; (b). the KL topology when T = 6.0; (c).
the KL topology when T = 2.0; (d). the KL topology when T = 0.2; (e). the
plot of the Gaussian mixture p(µ). (f) the plot of the − log p(µ).
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4.7.1. Evolution of the topology of the KL divergence during annealing

In this experiment, we use an illustrative example to present the topology of the KL di-

vergence between a Gaussian distribution and a multi-modal Gaussian mixture during the

process of annealing. As shown in Fig. 4.4, it does evolve as we expected from Theorem 4.3.1.

The real distribution p(x) = 0.4 ·N (x|−5, 0.2)+0.1 ·N (x|−2, 0.2)+0.25 ·N (x|3, 0.2)+

0.25 ·N (x|5, 0.2) is a Gaussian mixture of four kernels. The q(x) = N (x|µ, σ2) is a Gaussian

distribution. The annealing parameter is T = σ2. We can observe in Fig. 4.4(a) that when

T is large, i.e., T = 16.0, the KL(q(x)‖p(x)) is really a convex function w.r.t. µ. Then, with

the decreasing of T , the KL(q(x)‖p(x)) will have more local minima, i.e., when T = 6.0 or

T = 2.0, the KL(q(x)‖p(x)) has two local minima as shown in Fig. 4.4(b) and Fig. 4.4(c).

As the T decreases to near zero, i.e., T = 0.2, the KL(q(x)‖p(x)) has four local minima

at µ = −5.0,−2.0, 3.0, 5.0, respectively. Each of them corresponds to one of the four local

maxima of p(x). The global minimum of KL(q(x)‖p(x)) is at µ = −5.0, which exactly

corresponds to the global maximum of p(x) at x = −5.0, as shown in Fig. 4.4(d).

For comparison, we also present the plot of p(µ) in Fig. 4.4(e) and− log p(µ) in Fig. 4.4(f).

Compare Fig. 4.4(d) with Fig. 4.4(f), we empirically demonstrate that as a function of µ,

the topology of KL(q(x)‖p(x)) does converge to the topology − log p(µ) as σ2 approaches

to zero. This result is what we expect from the Lemma 2 in the appendix A.

4.7.2. Variational MAP inference in an illustrative synthetic problem

To investigate the convergence of the proposed variational MAP algorithm, we perform it

on an illustrative synthetic problem, which is modeled as a two-nodes Markov network in

Fig. 4.5.
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Figure 4.5. Two-nodes Markov network for the illustrative synthetic problem,
where ψ12(x1,x2) = N (x2 − x1|6.0, 0.3), φ1(z1|x1) = 0.5N (z1|x1 − 3.0, 0.3) +
0.4N (z1|x1, 0.2)+0.1N (z1|x1+4, 0.4) and φ2(z2|x2) = 0.3N (z2|x2−5.0, 0.2)+
0.1N (z2|x2 − 2.0, 0.3) + 0.4N (z2|x2 + 3.0, 0.2) + 0.2N (z2|x2 + 5.0, 0.1).

In this synthetic problem, both x1 and x2 are one dimensional random variables. The

potential function between these two random variables is modeled as a Gaussian distribution

, i.e.,

ψ12(x1,x2) = N (x2 − x1|6.0, 0.3) (4.19)

The observation function φi(zi|xi), i = 1, 2 are modeled as two Gaussian mixtures respec-

tively, i.e.,

φ1(z1|x1) = 0.5N (z1 − x1| − 3.0, 0.3) + 0.4N (z1 − x1|0, 0.2) (4.20)

+ 0.1N (z1 − x1|4, 0.4)

φ2(z2|x2) = 0.3N (z2 − x2| − 5.0, 0.2) + 0.1N (z2 − x2| − 2.0, 0.3) (4.21)

+ 0.4N (z2 − x2|3.0, 0.2) + 0.2N (z2 − x2|5.0, 0.1).

Then we randomly choose the observations z1 and z2 and perform the proposed variational

MAP algorithm on it, we show the Bayesian MAP inference results in Fig. 4.6.
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From Fig. 4.6(a), we can observe the convergence of the proposed variational MAP al-

gorithm in this illustrative synthetic problem when {z1, z2} = {10.0, 16.0}. We randomly

choose the initialization of µ1 and µ2 and run the algorithm many times, every time we obtain

the same convergence curve, i.e., the converged result after the first step of annealing will

always be the ’∗’ shown in Fig. 4.6(a) at {µ1, µ2} = {9.6011, 17.6728}. This is what we ex-

pected since when T is very large, theKL(·) is a convex function and thus the optimization in

this case will surely converge into the only minimum point, e.g., {µ1, µ2} = {9.6011, 17.6728}

in this case.

We can also observe that the proposed algorithm does converge to the global maximum

of the posterior distribution, i.e., our algorithm converges at {µ1, µ2} = {12.6824, 18.3793}

which is shown as the ’△’ in Fig. 4.6(a) and the numerically calculated MAP estimate is at

around {x1,x2} = {12.70, 18.40}. Considering the possible error of the numerically calcu-

lated MAP estimate, we conclude that our algorithm does recover the global maximum of

the posterior distribution P (x1,x2|z1 = 10.0, z2 = 16.0). For comparison and visualization,

we also present the topology of the posterior distribution P (x1,x2|z1 = 10.0, z2 = 16.0) in

Fig. 4.6(b).

Although in theory, we can not guarantee the algorithm to obtain the global optimal

MAP estimation, extensive running of the experiments on the synthetic problem shows that

the proposed variational MAP algorithm does always converge to the global maximum of

the posteriori distribution. We present two other experimental results from Fig. 4.6(c) to

Fig. 4.6(f). Again, both the convergence curve and the topology of the posterior distribution

are presented.

Some of the details of the experiments are described as follows. Firstly, the Tmax is set

to 200 and Tmin is set to 0.01, where the annealing starts and ends respectively. Secondly, in
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(a) z1 = 10.0, z2 = 16.0 (b) P (x1,x2|z1 = 10.0, z2 = 16.0)

(c) z1 = 6.944, z2 = 14.218 (d) P (x1, x2|z1 = 6.944, z2 = 14.218)

(e) z1 = 7.3762, z2 = 18.6813 (f) P (x1,x2|z1 = 7.3762, z2 = 18.6813)

Figure 4.6. Convergence of the Variational MAP: (a) ∗ = {9.60, 17.67}.
△ = {12.68, 18.38}. The numerical global optimal {x1,x2} = {12.70, 18.40};
(c) ∗ = {8.30, 16.45}. △ = {10.04, 16.13}. The numerical global optimal
{x1,x2} = {10.00, 16.10}; (e) ∗ = {7.76, 15.89}. △ = {10.11, 15.85}. The
numerical global optimal {x1,x2} = {10.10, 15.80}.
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each step of the annealing, we iterate Eq. 4.13 until convergence, i.e., we stop the updating

of µ1 and µ2 if the difference between the updated value and the previous value is below the

pre-specified threshold of 0.01.

Another concern would be about the convergence rate of the proposed variational MAP

algorithm. Although a theoretical analysis of the convergence rate is very difficult, on the

synthetic two-node problem, we generally observe that the first step of annealing takes the

most number of iterations which ranges from 10 to 15 to converge, then in the following steps

of annealing, it only takes 1 to 2 steps for the mean field iteration to converge. Therefore,

empirically we achieve fast convergence of the proposed variational MAP algorithm. By

the way, how to design the annealing scheme to achieve better result is also of interest just

as we have mentioned in Sec. 4.5. However, a theoretic study of this problem seems to be

a tremendous work. In all the experiments, we use the hyperbolical decreasing annealing

scheme, i.e., T = Tmax

K
, it does achieve satisfactory results.

In fact, instead of manually setting a Tmin for stopping the annealing, we can develop

more rigorous criterion for the convergence of the annealing from the change of the KL(·).

To make it clear, we plot the change of the KL(·) during the annealing of the experiment

reported in Fig. 4.6(a) and Fig. 4.6(b), as shown in Fig. 4.7. From Fig. 4.7, we observe

dramatic decrease of the KL(·) value in the approximately first 2000 round of annealing.

Then the KL(·) will increase very slowly with the decreasing of T . The hexagons in the plot

represents the KL(·) value after each 1000 round of annealing. Thus, there is one and only

one global minimum KL(·) value during annealing in all the annealing steps. By checking

the simulation results, we find that after the annealing which achieves the global minimum

KL(·) value, the proposed variational MAP algorithm has already converged to the global

maximum of the real posterior, e.g., in the experiments shown in Fig. 4.7, when the algorithm
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(a) All the iterations (b) First 100 iterations

Figure 4.7. The change of the KL(Q1(x1)Q2(x2‖P (x1,x2|z1 = 10.0, z2 =
16.0))) during annealing. It is dramatically decreased in the first 1303 round
of annealing and then increase very slowly in the following annealing process.
The proposed variational MAP algorithm actually has converged to the global
maximum of the real posterior distribution P (x1,x2|z1 = 10.0, z2 = 16.0)) at
{µ1, µ2} = {12.6824, 18.3793} after the 1303 round of annealing at T = 0.1535.
The total number of the Gaussian constrained mean field iteration is 1420 up
to the end of the 1303 annealing.

achieves the global minimum KL(·) value during the annealing, it has converged to the global

MAP of the real posteriori distribution at {µ1, µ2} = {12.6824, 18.3793}, which corresponds

to the 1303 round of annealing with T = Tmax

1303
= 200

1303
= 0.1535 and the total number of

the mean field iteration is 1420. Actually, in the experiment, the running of the mean field

iteration with annealing temperature after T = 0.1535 will not change µ1 and µ2 any more,

it will just increase the KL(·) value a little bit since the Gaussian variational distribution

tends to be more peaky.

Although we only show one plot of the change of the KL(·) value during annealing, all the

experiments we have run showed the same pattern of the changes. Therefore, we conclude

that we can stop the annealing when we find that after one step of annealing, the resulted

KL(·) value is not less than the KL(·) value after the previous step of annealing. This also
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finds the optimal Tmin which will result in the most efficient running of the algorithm. How-

ever, evaluating the KL(·) value may involve tremendous computation by itself. Therefore,

we still tend to manually set the Tmax and Tmin to avoid the overhead introduced by the

evaluation of the KL(·) value.

Under the same experimental setting, we also run the iteration of Eq. 4.15 on the same

problem. Our observation is that the annealed iteration process does not converge at all.

We show the experimental results when z1 = 10.0, z2 = 16.0 in Fig. 4.8. Fig. 4.8(a) shows

the curve of the annealed iteration of Eq. 4.15, it failed to converge. Checking the value

of the KL divergence during the iteration process, we find that it is increasing instead of

decreasing with the iteration. We show the curve of the KL divergence in Fig. 4.8(c) while

Fig. 4.8(d) presents the same curve in the first 100 iteration.

4.7.3. Variational MAP for tracking articulated human body

In this experiment, we implement the Monte Carlo simulation of the variational MAP algo-

rithm for tracking articulated human body. We adopt the same Markov network to represent

the articulated human body just as that in Chapter 3, where each body part is represented

as a quad shape and the motion of each of them is represented as a probabilistic random

variable in the 6 dimensional affine space. Please refer to Chapter 3 for the detailed descrip-

tion of the potential function ψij(xi,xj) and the observation function φi(zi|xi) of the Markov

network.

Then the Monte Carlo version of the variational MAP algorithm is performed sequentially

to recover the motion of the articulated human body from the video. Some of the sample

result images are shown in Fig. 4.9. The proposed variational MAP algorithm recovers the
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(a) z1 = 10.0, z2 = 16.0 (b) P (x1,x2|z1 = 10.0, z2 = 16.0)

(c) All the iterations (d) The first 100 iterations.

Figure 4.8. Annealed iteration of Eq. 4.15 in the 2-D illustrative synthe-
sized problem: (a) z1 = 10.0, z2 = 16.0. ∗ = {14.330, 10.148}. △ =
{18.391, 6.5445}. The numerically global optimal is around {x1,x2} =
{12.70, 18.40}; (b) P (x1,x2|z1 = 10.0, z2 = 16.0); (c) The KL value change in
all the iterations. (d) The KL value change in the first 100 iterations.

articulated full-body motion very well across the video sequence, which has 767 frames. This

is actually the annealed version of the MFMC algorithm proposed in [46,126].

For comparison, we also have implemented the MFMC algorithm [126] and the multiple

independent tracker which has been used as a comparison of the MFMC algorithm in [126].

Our experimental results reveal that the MFMC algorithm can track the articulated motion



102

(a) #38 (b) #66 (c) #103 (d)#114 (e) #138

(f) #168 (g) #228 (h)#288 (i) #299 (j) #333

(k) #349 (l) #388 (m) #424 (n) #456 (o) #504

(p) #568 (q) #678 (r) #718 (s)#748 (t) #766

Figure 4.9. Variational MAP for tracking articulated human body, the video
sequence has 767 frames and it can robustly recover the full human body
motion across the whole sequence.

well until the 368th frame and it loses track after that. The reason for the tracking failure

of the MFMC algorithm is that the heavy multi-modality of the motion posterior causes the

mean estimate to be significantly deviated from the MAP estimate of the motion. Thus it

could hardly indicate the true motion, e.g., as we can observe in frame #370. It will make

the online estimated dynamical model to be not accurate, which in turn causes tracking

failure. Also, just as reported in [126], the multiple independent tracker loses track from

the start.
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(a) #8 (b) #68 (c) #108 (d) #148 (e) #184

(a) #1 (b) #28 (c) #58 (d) #118 (e) #148

(a) #8 (b) #38 (c) #98 (d) #208 (e) #268

Figure 4.10. Tracking 10-part full body by variational MAP: First row-Clap
sequence; Second row-Swing sequence; Third row-Toss sequence. Frame
numbers are indicated in the bottom of the result image.

When comparing the variational MAP algorithm with the MFMC algorithm, we set all

the parameters of the potential functions ψij(xi,xj) and the observation functions φi(zi|xi)

to be the same for both algorithms. Because of the annealing process, the proposed vari-

ational MAP algorithm needs more mean field iterations than the MFMC algorithm. Our

experiments show that only the first step of annealing needs more iterations, in the following

steps of annealing, it generally needs less than half of the mean field iterations of the MFMC

algorithm. So the variational MAP algorithm only increases the computation linearly in

comparison with the MFMC algorithm. Therefore, based on the analysis of the complexity

of the MFMC algorithm [46,126], the variational MAP algorithm also achieves linear com-

plexity with respect to the number of body parts in tracking the articulated human body.
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Here we present some more tracking results on three video sequences, in which a person

performs three actions such as “clap”, “swing” and “toss”. The video sequences have 186,

216 and 335 frames respectively. These video sequences are more challenging due to the

self occlusion between the limbs and torso. The variational MAP algorithm obtains robust

results and sample result images are presented in Fig. 4.10. For clarity, we only overlay the

skeleton of the quadrangle shapes of the recovered articulated motion on the sample images.

The last video sequence we have tested is a full-body video sequence of 212 frames, where

the background is more cluttered. We present sample result images in Fig. 4.11. As we can

observe, the background wall behind the moving person is quite cluttered. Although the

variational MAP algorithm successfully recovers the motion from the video, the results are

less smooth than the results obtained when the background is clean. The reason is that in our

current implementation, the motion prior encoded in the hidden layer of the Markov network

is a zero mean Gaussian to reinforce the spatial coherence constraints. As we have discussed,

this prior is a weak one. Therefore, the image likelihood functions must be reasonable good

for the proposed approach to obtain good results. Although we build the image likelihood

functions from both edge and intensity cues to make it more robust, the cluttered background

may still degrade the quality of the adopted image likelihood function, and thus degrade the

quality of the tracking results. Solution to this degradation issue due to clutter may be

building better image likelihood functions. For example, when the background is static, we

can perform background subtraction firstly to remove the background clutters. We must

emphasize here that none of the experimental results reported here used any background

subtraction techniques. When the background is not static, we may build more discriminative

image likelihood functions using more image cues such as textures and color distributions.

We defer that to our future work.
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(a) #10 (b) #24 (c) #49 (d) #69 (e) #88

(f) #106 (g) #145 (h) #168 (i) #184 (j) #203

Figure 4.11. Tracking 10-part full body. The background present significant
clutter. Frame numbers are indicated in the bottom of the result image.

All the algorithms are implemented using C++, no code optimization is performed. They

are running in a 2.5 GHz PC under Windows XP. We design 6 annealing steps and in the

first step of the annealing, we iterate the mean field fixed-point equations for 6 times and

in the following annealing steps, we run the mean field fixed-point equations for 3 times.

The algorithm can thus run at the speed of 0.2 frames per second. While in the MFMC

algorithm, we iterate the mean field fixed-point equation 6 times and the mean values of the

recovered mean field distribution are adopted as the tracking result. It can roughly run at

the speed of 0.6 frames per second, just similar to what has been reported in Chapter 3. We

also use 200 particles for each of the body parts.

Another issue of interest would be that if using one control parameter T for all the dif-

ferent component of the state random variable xi is a good setting. In theory, it will have

no problem, but in real experiments, it may encounter problems since different components

of xi may have different ranges. For example, in the 6 dimensional affine motion space, the

translation component and the scaling component have different ranges. Thus we design
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different annealing schemes for different component of the affine state vector, i.e., the an-

nealing of the translation components of xi starts at Tmax1 = 8 and the annealing of the

scaling components of xi starts at Tmax2 = 0.6.

4.8. Conclusion and future work

This chapter proposes a novel variational MAP algorithm for the optimal MAP estimation

of complex stochastic systems. By constraining the mean field variational distribution to be

multivariate Gaussian, a DA scheme is naturally incorporated to the mean field variational

analysis to pursue the optimal MAP estimation. Our main contributions are:

(1) We show that the limit of the topology of the KL divergence between a multivariate

Gaussian distribution g(X) = N (X|µ̃, σ2I) and an arbitrary p.d.f. p(X), when the

σ2 approaches to zero, will converge to the topology of −log(µ̃)(see Lemma 2 in

Appendix A). Thus there is an one-to-one correspondence of the minima between

the limσ2→0KL(g(X)||p(X)) and the maxima of the p.d.f. p(X), and the limit of

the infimum point of the KL divergence will converge to the supreme point of the

p(X), as shown in Theorem 4.3.1.

(2) Based on Theorem 4.3.1, we nicely incorporate a DA scheme into the Gaussian

constrained mean field variational analysis to pursue the optimal MAP estimation

of complex stochastic systems. Although DA may not guarantee global optimality,

our extensive synthetic and real experiments show that it is very likely to achieve a

global or near global optimal result. Therefore, we achieve an efficient and effective

way for optimal MAP estimation.

There are also several questions need to be further investigated:
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(1) Although we have empirically shown that the mean field fixed-point iteration in

Eq. 4.11 and 4.12 is superior to the iteration in Eq. 4.14 and 4.15, i.e., the latter two

failed to converge even in a relative simple synthetic problem, we are still interested

in investigating theoretically why the former two equations can obtain better results

under the context of optimization.

(2) Is there an optimal annealing scheme which can guarantee to achieve the optimal

results more efficiently? The answer of this question will also reveal the convergence

rate of the annealing scheme.

(3) When will the proposed variational MAP algorithm achieve the global optimality?

Although generally in our experiments, the variational MAP algorithm with the

hyperbolic decreasing DA scheme achieves good results, practically there is no guar-

antee that the algorithm will achieve global optimality. Should there be a sufficient

condition, or a necessary condition, or both for the global optimality?

(4) With regarding to applying the proposed variational MAP algorithm to computer

vision problems, should there be an efficient way of incorporating some bottom-up

processing to facilitate more efficient convergence of the algorithm? The answer

of this question will achieve a data driven variational MAP algorithm for many

computer vision problems.

We will further study the above questions in our future work.
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CHAPTER 5

Data driven belief propagation for human pose estimation

To automatically bootstrap the collaborative motion analyzer, e.g., to automatically

initialize the articulated body tracking algorithm, we need to recover the motion parameters

from single images. That is, we no longer have the dynamic priors to be integrated into

the proposed collaborative approach. This chapter present how we can incorporate a data

driven scheme into the proposed collaborative approach to effectively achieve this goal, which

nicely combines bottom-up reasoning and top-down reasoning in a unified way. Again, to be

concrete, we use articulated body as an example.

5.1. Introduction

Inferring human pose from single images is arguably one of the most difficult problems in

computer vision and finds numerous applications from motion analysis to action recognition.

In this chapter, we posit the 2-D human pose estimation problem within a probabilistic

framework and develop an inference algorithm on a rigorous statistical footing. A human

body pose is modeled by a Markov network where the nodes denote body parts and the edges

encode constraints among them. An efficient data driven belief propagation Monte Carlo

algorithm with importance sampling functions, built from low-level visual cues, is proposed

to infer the 2-D human pose from a single image snapshot.

From a set of manually labeled images, we apply principal component analysis to learn the

2-D shape models of each body part which serve as prior knowledge in predicting potential
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candidates. Each body part is represented by a state variable describing its shape and

location parameters. The data driven importance sampling for the head pose is built using

a computationally efficient AdaBoost-based face detector [118]. Constrained by the head

location from face detection, a probabilistic hough transform [66] is adopted to extract salient

line segments in the image and they are assembled to form good candidates for constructing

an importance sampling function for the human torso. A skin color model pertaining to the

specific subject in the image is built based on the face detection result, and is utilized in

sampling functions to predict potential body part candidates such as arms and legs.

The data driven importance functions for body parts are incorporated in the belief propa-

gation Monte Carlo framework for efficient Bayesian inference of the human pose. For human

pose estimation, the observation models are built based on the steered edge response of the

predicted body parts. Diametric to the sequential data driven Markov chain Monte Carlo

algorithm, the proposed algorithm integrates both top-down as well as bottom-up reasoning

mechanism with visual cues, and carries out the inference tasks in parallel within a sound

statistical framework. For concreteness, we apply the developed method to estimate pose

of soccer players in single images with cluttered backgrounds. Experimental results demon-

strate the potency and effectiveness of the proposed method in estimating human pose from

single images.

The organization of the rest of the chapter is as follows: in Sec. 5.2, related work are

summarized and discussed. We then present our articulated human body model in Sec. 5.3.

The data driven belief propagation algorithm (DDBP), along with means of building impor-

tance functions from bottom-up, are presented in Sec. 5.4. Validation experimental results

are shown and discussed in Sec. 5.5. We conclude with discussions on limitations of the

current work and future plan to tackle these problems in Sec. 5.6.
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5.2. Prior work and context

While there exist numerous works on human body tracking [81], only a few of them ad-

dress the initialization problem, i.e., estimating the human pose from single or multiple views.

We observe the emergence of research work on this topic with impressive results [25,69,80]

in the last few years. These algorithms are categorized into deterministic and statistical

methods for ease of presentation.

Deterministic methods either approach this problem by applying deterministic optimiza-

tion methods where the objective function is the matching error between the model and the

image data [5,25] or between the image data and the exemplar set [101]. An alternative

is to build detectors for different body parts and rank the assembled configuration based

on a set of human coded criteria [80]. Notwithstanding the demonstrated success, there

exist many challenging issues to be resolved for robust and efficient pose estimation. First,

it entails solving an optimization problem of high dimensionality and thus the computation

is inevitably intractable unless certain assumptions are explicitly made. Consequently, the

application domains are limited to uncluttered backgrounds [5, 25] or the human body of

fixed scale [80]. Second, the set of exemplars must be large enough to cover the parameter

space to achieve satisfactory estimation results at the expense of growing computational

complexity [101]. Third, it is difficult to build robust body part detectors except faces [118]

due to the large appearance variation cased by clothing [80].

One salient merit of statistical formulation for posture estimation is that prior knowledge

of human body parts (e.g., appearance, shape, edge and color) can all be exploited and in-

tegrated in a rigorous probabilistic framework for efficient inference. Ioffe and Forsyth [49]
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propose an algorithm to sequentially draw samples of body parts and make the best predic-

tion by matching the assembled configurations with image observations. However, it is best

applied to estimate poses of humans in images without clothing or cluttered background

since their method relies solely on edge cues. Sigal et al. [106] resort to a non-parametric

belief propagation algorithm [51,110] for inferring the 3-D human pose as the first step of

their human tracking algorithm. Background subtraction and images from multiple views

are employed to facilitate the human pose estimation and tracking problems. Lee and Co-

hen [69] apply the data driven Markov Chain Monte Carlo (DDMCMC) algorithm [116]

to estimate 3-D human pose from single images, in which the MCMC algorithm is utilized

to traverse the pose parameter space. Nevertheless it is not clear how the detailed balance

condition and convergence in the Markov chain are ensured. Most importantly, the problem

of inferring 3-D body pose from single 2-D images is intrinsically ill-posed as a result of depth

ambiguity.

In this work [133], we propose a statistical formulation to infer 2-D body pose from

single images. Different from the previous works, the proposed algorithm integrates the top-

down and bottom-up inference with visual cues through a data driven belief propagation

Monte Carlo algorithm for Bayesian reasoning. The algorithm is intrinsically parallel which

is in direct contrast to the sequential sampling algorithm [49] and the sequential DDMCMC

approach [69]. Furthermore we explicitly learn the shape models of body parts using quad-

rangles rather than rectangular templates [25,49,80], thereby facilitating inference of pose

parameters.



112

5.3. Bayesian formulation

We posit the human pose estimation problem within a Bayesian framework and the task

is to recover the hidden states, i.e., pose parameters, from image observations.

5.3.1. Markov network

A human body configuration is represented by a Markov network as shown in Figure 5.1.

Each random variable xi represents the pose parameter (i.e., hidden state) of body part

i, e.g., xh describes the pose of head, xt describes the pose of torso, and xrul describes

the pose of the right-upper-leg. Each undirected link models the constraints between two

adjacent body parts by a potential function ψij(xi,xj). Each directed link depicts the image

observation zi of body part i with an observation likelihood function φi(zi|xi). Let S be the

set of all subscripts, we denote the set of pose parameters X = {xi, i ∈ S} and the set of

observations Z = {zi, i ∈ S}, respectively. The joint posterior distribution of this Markov

network is

P (X|Z) ∝
∏

(i,j)∈E
ψij(xi,xj)

∏

i∈V
φi(zi|xi), (5.1)

where E is the set of all undirected links and V is the set of all directed links [58]. Con-

sequently, the pose estimation problem is formulated as a Bayesian inference problem of

estimating the marginal posterior distribution P (xi|Z).

A brute force approach to computing Eq. 5.1 is intractable since it involves numerous

integrals of real valued random variables in every P (xi|Z). The belief propagation algorithms,

facilitated by local message passing (i.e., local computation), offer an efficient solution to

such inference problems. Recently a Monte Carlo approach for belief propagation is proposed

to deal with graphical models with non-Gaussian distributions [41]. In Sec. 5.4, we present
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Figure 5.1. Markov network for human body pose.

a novel data driven belief propagation algorithm, which naturally integrate the bottom-up

reasoning with the belief propagation Monte Carlo algorithm in a principled way.

5.3.2. Pose parametrization

We represent each body part by a quadrangular shape in a way similar to the existing

works [25, 80]. However, we do not model them with rectangles or trapezoids since the

body contours usually do not form parallel lines in images. From a set of 50 images, we

manually labeled the quadrangular shapes and poses of human parts which best match

human perception. A few examples of the labeled images are illustrated in Fig. 5.2.

For each of the labeled quadrangular shape, we define the lines along the body outer

contour as the left and the right lines, and the other two lines as the top and the bottom

lines, respectively. We define the local coordinate system of each body part by choosing the

centroid of the quadrangular shape as its origin. The Y axis is pointed from the middle
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Figure 5.2. Examples of labeled images.

Figure 5.3. Normalization of the labeled shape.

point of the top line to the middle point of the bottom line, and the X axis is perpendicular

to the Y axis such that the local coordinate system is only subject to a rotation and a

translation of the image coordinate system. Each labeled shape is then rotated with respect

to a reference frame and then normalized in both X and Y directions, i.e., the length (width)

along the X axis between the left and the right lines is normalized to 40 pixels, and the length

(height) along the Y axis between the top and the bottom lines is normalized to 50 pixels, as

depicted in Fig. 5.3. Each normalized shape is then represented by a 8-dimensional vector

by clockwise enumerating the coordinates of the four vertices.
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Figure 5.4. The original shapes (first row), the normalized (second row), and
the reconstructed (third row) shapes of the right-upper-arm using probabilistic
PCA.

We apply probabilistic principal component analysis (PCA) [115] to each set of the 8-

dimensional normalized body part shapes for dimensionality reduction. In Sec. 5.4.2, we show

how we use the learned shape model with probabilistic PCA to construct good importance

sampling functions for body parts. In our experiments, 99% of the shape variation can be

retained with the top 3 principal components. We denote the shape representation with

reduced dimensionality for each body part i ∈ S as psi. Consequently, the 2-D pose of body

part i can be represented by the rotation θ, scaling sx, sy, and translation tx, ty, in both X

and Y directions of psi, i.e.,

xi = {psi, sx, sy, θ, tx, ty}. (5.2)

where we call psi the intrinsic pose parameter and the rest the extrinsic pose parameters.

By learning a low-dimensional shape representation, we reduce the originally 13-dimensional

state space to 8 dimensions which in turns facilitates efficient sampling process. Fig. 5.4

shows some of the original labeled shapes, the normalized shapes, as well as the reconstructed

shapes from the probabilistic PCA for the right-upper-arm. It is clear that the reconstructed

shapes match well with the original labeled shapes.
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5.3.3. Potential function and likelihood model

As mentioned earlier, a potential function ψij models the pose constraints between two

adjacent body parts. For pose estimation, the natural constraints entail any two adjacent

body parts should be loosely connected [106], and we use a Gaussian distribution to model

the Euclidean distance between the link points of two adjacent body parts, i.e.,

ψij(xi,xj) ∝ exp

(
−‖P̃tij − P̃tji‖

2

2σ2
ij

)
. (5.3)

where ‖ · ‖ is the Euclidean distance, σij is the variance learned from the manually labeled

images, and P̃tij is the link point of the ith to jth body part while P̃tji is the link point of

the jth to ith body part. Fig. 5.5 shows all the link points of the body parts. In our model,

the link points are either corner points or middle points of either bottom or top line of the

shape. For example, the link point of the left-upper-arm to the torso is defined as the corner

point of the left line and the bottom line of the left-upper-arm shape, and the link point of

the torso to the left-upper-arm is also specified by the corner point of the left-bottom corner

of the torso shape. Whereas the link point of the left-upper-arm to the left-lower-arm is

delineated by the middle point of the top line of the left-upper-arm shape, the link point of

the left-lower-arm to the left-upper-arm is defined as the middle point of the bottom line of

the left-lower-arm shape.

Although object appearance or texture has been successfully utilized in tasks such as

face detection, the body contour information may be the only salient cue at our disposal as

clothing causes large visual variation. In this work, the likelihood function φi is constructed

based on the average steered edge response [103] along the boundaries of the pose hypothesis

of an body part. For example, let the rotation angle of one line segment l be α and the total
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Figure 5.5. Each pair of red circle points represents the link point pair of two
adjacent body parts. The link points are either corner points or middle points
of bottom or top lines.

number of points on the line is Nl, then the average steered edge response is

Ēl,α =
1

NlEm
∑

(xi,yi)∈l
|Ex(xi,yi) sinα− Ey(xi,yi)cosα|, (5.4)

where Em is the maximum value of the steered edge response. Unlike [103], we do not com-

pute the steered edge response at different scales because the average steered edge responses

across scales may make the steered edge response less discriminant.

Instead, we compute the steered edge response in the RGB channels, i.e., E (R)
α (xi),

E (G)
α (xi) and E (B)

α (xi) for each hypothesized body part xi. For head and torso, the aver-

age steered edge response is computed using all the four line segments of the shape pose

hypothesis, whereas the average steered edge response is only calculated on the left and right

line segments for the other body parts. Since all the steered edge responses have been nor-

malized between 0 and 1, the likelihood function is defined based on the maximum steered
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edge response, i.e.,

φi(zi|xi) = max(E (R)
α (xi), E (G)

α (xi), E (B)
α (xi)). (5.5)

The reason for using the maximum steered edge response from different color channels is

based on our empirical studies in which more discriminant likelihood functions can be ob-

tained using the maximum rather than average edge response. We have experimented with

the Gibbs likelihood model proposed in [100] but the performance is less satisfactory. One

explanation is that background subtraction is utilized so that the body contours can be bet-

ter extracted before learning a Gibbs model for likelihood estimation [100]. Nevertheless,

background subtraction is inapplicable in this work as we aim to estimate human pose from

single images.

5.4. Data driven belief propagation

With the Bayesian formulation described in Sec. 5.3, the pose estimation problem is

to infer the marginal posterior distribution. In this section, we propose a data driven be-

lief propagation Monte Carlo algorithm (DDBPMC) for Bayesian inference on real valued

graphical models.

5.4.1. Belief propagation Monte Carlo

Belief propagation is an efficient algorithm to compute posterior, P (xi|Z), through a local

message passing process where the message from xj to xi is computed by [29,58]:

mij(xi)←
∫

xj

φj(zj|xj)ψij(xi,xj)
∏

k∈N (j)\i
mjk(xj), (5.6)
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where N (j)\i is the set of neighboring nodes of xj except xi. The belief propagation algo-

rithm iteratively updates the messages passed among the connected nodes until it converges,

and the marginal posterior distribution P (xi|Z) on node xi can be efficiently computed by

P (xi|Z) ∝ φi(zi|xi)
∏

j∈N (i)

mij(xi). (5.7)

When both the potential function ψij(xi,xj) and the observation likelihood φi(zi|xi)

are Gaussian distributions, Eq. 5.6 can be evaluated analytically and thus Eq. 5.7 can be

analytically computed. However, situations arise where the observation likelihood functions

φi(zi|xi) can only be modeled with non-Gaussian distributions. In such cases, the messages

mij(xi) are also non-Gaussians, thereby making the computation intractable.

To cope with this problem and allow greater flexibility, we resort to Monte Carlo ap-

proximation within the belief propagation formulation, and thereby a belief propagation

Monte Carlo (BPMC) algorithm. We represent both the message mij(xi) and the marginal

posterior distribution P (xi|Z) as weighted sample sets by

mij(xi) ∼ {s(n)
i , ω

(j,n)
i }Nn=1, j ∈ N (xi) (5.8)

P (xi|Z) ∼ {s(n)
i , π

(n)
i }Nn=1. (5.9)

The iterative computation in the belief propagation can be implemented based on these

weighted sample sets as summarized in Fig. 5.6.

Note that in both the non-parametric belief propagation [110] and Pampas [51] al-

gorithms, the messages as well as the marginal distributions are modeled with Gaussian

mixtures, and the message passing process is carried out by a Markov chain Monte Carlo
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Monte Carlo simulation of the belief propagation algorithm

(1) Importance Sampling: Sample {s(n)
i,k+1}Nn=1 from an importance function

Ii(xi).

(2) Re-weight: For each s
(n)
i,k+1 and each j ∈ N (i), set ω

(j,n)
i,k+1 =

G
(j)
i (s

(n)
i,k+1)/Ii(s

(n)
i,k+1) where

G
(j)
i (s

(n)
i,k+1) =

N∑

m=1


π(m)

j,k φj(z
(m)
j,k |s

(m)
j,k )ψji(s

(m)
j,k , s

(n)
i,k+1)

∏

l∈N (j)\i
ω

(l,m)
j,k


 (5.10)

(3) Normalization: Normalize ω
(j,n)
i,k+1, j ∈ N (i), then set and normalize

π
(n)
i,k+1 = pi(z

(n)
i,k+1|s

(n)
i,k+1)

∏

l∈N (i)

ω
(l,n)
i,k+1

(4) Iteration: k ← k + 1, iterate 1→ 4 until convergence.

(5) Inference: p(xi|Z) ∼ {s(n)
i , π

(n)
i }Nn=1 where s

(n)
i = s

(n)
i,k and π

(n)
i = π

(n)
i,k .

Figure 5.6. Data driven belief propagation.

(MCMC) algorithm. In contrast, the BPMC algorithm models both the messages and mar-

ginal distributions with weighted samples, and the message passing process is computed

efficiently based on the samples drawn from an importance sampling. It is worth emphasiz-

ing that good importance functions leads to efficient computation in the BPMC algorithm

and better inference results. In Sec. 5.4.2, we show how we construct good importance

functions with bottom-up visual cues for human pose estimation.

5.4.2. Data driven importance sampling

In this section, we describe the importance functions for drawing samples of body parts

using different visual cues. For concreteness, we present our algorithm with an application

to estimate pose of soccer players in images. In such cases, we can exploit certain image cues

for computational efficiency.
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(a) (b) (c) (d)

Figure 5.7. (a). Face detected by a AdaBoost-based face detector. (b). Image
specific skin color segmentation. (c). Fitted lower-arm and upper-leg hypothe-
ses. (d) Upper-arm and lower-leg hypotheses (yellow quadrangular shape).

5.4.2.1. Importance function for head pose. With the demonstrated success in de-

tecting faces efficiently, we utilize a variant of the AdaBoost-based face detector [118] to

locate the face of a human in an image. However, this view-based detector performs best

in detecting faces in upright frontal views although this problem can be alleviated by utiliz-

ing a multi-view extension. Figure 5.7(a) shows one face detected by the AdaBoost-based

detector.

One common problem with this view-based face detector is that the raw detection results

are usually not very accurate (i.e., the returned rectangles do not precisely lock on faces in

the correct pose and often enclose background pixels), and thus more efforts are required

to better estimate head pose. Since skin color pixels account for the majority portion of

a rectangular area enclosing a face, we use a k-means algorithm (k = 2) to group the

pixels within the rectangle into skin/non-skin clusters. The center of the face rectangle is

repositioned to centroid of the cluster of skin color pixels. We then project the rectangular

shape onto the learned PCA subspace of the head shape, thereby obtaining its intrinsic pose

parameters as defined in Eq. 5.2. Along with the extrinsic rotation, scaling and translation
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parameters extracted from the face rectangle, we obtain an approximated head pose Ixh,

and thereby an importance sampling function:

Ih(xh) ∼ N (xh|Ixh,Σh) (5.11)

where Σh is a diagonal covariance matrix.

5.4.2.2. Importance functions for arm and leg pose. For the human pose estimation

problem considered in this chapter, the soccer players often wear short sleeve shirts and

short trunks, and consequently skin color is a salient cue for locating lower-arm and upper-

leg regions.

A skin color model is constructed from the pixels of skin color cluster obtained from the

k-means algorithm within the detected face region as discussed in Sec. 5.4.2.1. Specifically,

a 2-D color histogram is computed from the normalized RGB pixel values of the skin color

cluster. Although it is difficult and time consuming to develop a generic skin color model to

account for all variations (as a result of lighting and race factors), it is relatively easy and

effective to construct a skin color model specific to the human subject considered for pose

estimation, and consequently skin color regions can be extracted effectively with thresholds.

Fig. 5.7(b) shows some segmentation results using the learned skin color histogram, and

Fig. 5.7(c) shows the results with best fit rectangles after discarding small blobs. Note that

the number of skin tone blobs do not necessarily match the number of body parts. Geometric

cues such as shape, size, position, and orientation with respect to the head position of a

human can be exploited to generate good pose hypotheses for the lower-arm and the upper-

leg body parts from these fitted rectangles. The hypotheses for the upper-arm and the

lower-leg are then generated by first rotating the shape with respect to the link point of the
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corresponding lower-arm and the upper-leg hypotheses respectively, and then evaluating the

image likelihoods based on edge response using Eq. 5.4 and Eq. 5.5 for each rotation angle.

The hypotheses with maximum likelihoods for upper-arm and lower-leg parts are selected

for importance functions. Fig. 5.7(d) shows one hypothesis for each of the upper-arm and

lower-leg. The importance sampling function is modeled by a Gaussian mixture of these

hypotheses. That is, after obtaining K good pose hypothesis Ix
(n)
i , n = 1 . . .K for body part

i, we draw samples from the importance function

Ii(xi) ∼
K∑

n=1

1

KN (xi|Ix(n)
i ,Σi), i ∈ S \ {h, t}, (5.12)

where Σi is a diagonal covariance matrix. Note that a small number of K good hypotheses

facilitate efficient sampling and inference process although it may have adverse effects if the

value is too small.

5.4.2.3. Importance function for torso pose. Locating the torso region may be the

most important task in human pose estimation since it is connected to most of the other

body parts. However, detecting a torso part is difficult as it is usually clothed and thereby

has a large variation in appearance. Without salient image cues (e.g., color and texture)

to facilitate the detection process, we utilize line segments extracted from the probabilistic

Hough transform [66] to assemble good shape hypotheses of the torso part.

A Canny edge detector is first applied to build the edge map, and then a probabilistic

Hough transform is performed to detect those near-horizontal and near-vertical line segments.

For each combination of a pair of vertical line segments, lv1, lv2 and a pair of horizontal line

segments lh1, lh2, let their corner points of the assembled shape be pv1,h1, pv1,h2, pv2,h1, and
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pv2,h2 respectively. Torso hypotheses are obtained by solving an optimization problem with

an objective function specified by

(1) The normalized shape of a good hypothesis should be reconstructed by the learned

PCA subspace of the torso with minimum error.

(2) The distance between a good hypothesized torso part should be as close to the

detected face as possible.

(3) The two vertical lines, lv1, lv2 should be as symmetric as possible in the assembled

shape.

subject to the constraints that pv1,h1, pv1,h2, pv2,h1, and pv2,h2 are within the range of image.

For each of the M torso hypotheses Ix
(n)
t obtained by solving the above-mentioned op-

timization problem (n = 1, . . . ,M and usually M < 10), we compute the response of edges

extracted by the Canny detector with likelihood β
(n)
t using functions similar to Eq. 5.4 and

Eq. 5.5. The importance sampling function for the torso pose is specified by a Gaussian

mixture, i.e.,

It(xt) ∼
M∑

n=1

β
(n)
t N (xt|Ix(n)

t ,Σt). (5.13)

where Σt is the diagonal covariance matrix. Fig. 5.8 shows one example of the detected

near-horizontal and near-vertical line segments from the probabilistic Hough transform, and

the corresponding torso hypotheses. Although the number of combinations using horizontal

and vertical lines is large, solving the above-mentioned optimization problem significantly

prunes the number of torso hypotheses (i.e, M < 10), thereby facilitating efficient and

effective inference.
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(a) (b) (c)

Figure 5.8. (a). Original image. (b). Line segments extracted by probabilistic
Hough transform (red for near-vertical and blue for near-horizontal lines). (c).
Torso hypotheses assembled from the line segments shown in (b).

5.5. Experiments on human pose estimation

For concreteness, we apply our algorithm to estimate pose of soccer players in images.

The proposed algorithm can be extended to estimate human pose in other domains.

5.5.1. Validation of the likelihood model

To demonstrate the effectiveness of the likelihood function proposed in Sec. 5.3.3, we gen-

erate a number of left-lower-leg hypotheses by translating the correctly labeled body part

horizontally as shown in Fig. 5.9(a), and their likelihoods are shown in Fig. 5.9(b).

As exemplified in Fig. 5.9(b) the maximum likelihood occurs at the correct labeled loca-

tion (i.e., 0 translation horizontally). The two small peaks correspond to the cases when one

of the left and right lines of the shape pose is aligned with the boundary of the left-lower-leg

in the image. The likelihood plots for the other body parts are similar to Fig. 5.9(b) except

the likelihood model for the torso may not peak at the correct labeled location and may have
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Figure 5.9. (a) Translation of the left-lower-leg part with respect to the correct
location horizontally. (b) Likelihoods of the translated left-lower-leg hypothe-
ses from the correct location.

more local peaks (due to noisy edge response). This observation indicates that the difficulty

of constructing a likelihood model of the torso part using only edge cues.

5.5.2. Pose estimation results

To learn the PCA subspace for each body part, we collected a set of 50 images and manually

labeled the quadrangular shapes and poses of human body parts which best match human

perception. For pose estimation experiments, we gathered another set of 30 images and

manually located the body parts as ground truth (We will make the test image set publicly

available at appropriate time.). These images contain humans with large variation in pose

and backgrounds, as well as occlusions either due to clothing or view angles. The values of

the diagonal covariance matrices in importance functions Eq. 5.11-Eq. 5.13 are empirically

learned from the training image set.

Empirical results on estimating pose of soccer players in single images are illustrated in

Fig. 5.10 where the best estimated shapes and locations of body parts are enclosed with

quadrangles (video demo is available upon request.). The experimental results show that
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Figure 5.10. Experimental results of human pose estimation.
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Head Torso LUA LLA RUA
RMSE 14.32 18.96 14.62 11.85 19.52

RLA LUL LLL RUL RLL Overall
RMSE 19.01 23.75 18.19 20,48 18.98 17.96

Table 5.1. Average root mean square error (RMSE) of the estimated 2-D pose
for each body part and for the whole body (e.g., LUA refers to left-upper-arm).

our algorithm is able to locate the body parts and estimate their pose well even though

they appear in different posture, background, view angles and lighting conditions. Our

algorithm is able to infer poses which are heavily occluded in Fig. 5.10(f)-(g) as a result

of data driven importance sampling from the visual cues. Specifically, the left lower leg

of the player in Fig. 5.10(f) is located as a result of the best pose estimation using image

likelihoods and importance function Eq. 5.12. Similarly, the occluded body parts and their

poses in Fig. 5.10(h)-(j) are inferred using the proposed DDBPMC algorithm.

We evaluate the accuracy of our pose estimation algorithm by computing the root mean

square errors (RMSE) between the estimated body pose enclosed by quadrangles and the

ground truth, i.e., the RMSE between the four corner points of the two quadrangles. The

average RMSE of each body part as well as that of the overall full body pose estimation

over the 30 test images are presented in Table 5.1. At first glance, it seems that the RMSE

of our algorithm is larger than the result of 20 test images reported in [69] even though

the test sets are different. Nevertheless, we compute the accuracy of four points for each

body parts while they just evaluated the accuracy of the joint locations, and thus the RMSE

comparison is not justified. Further, the number of points set we compute is larger than

that in [69]. Another complicating factor is the difficulty of determining what the “ground

truth” of body pose is, as a result of covered clothing and difference of human perception

in labeling body parts as well as pose precisely. Finally, the average RMSE of each image
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Figure 5.11. Overall RMSE of each of the test images.

is presented in Fig. 5.11 to show the distribution of the overall RMSE among the 30 test

images.

The current implementation of the proposed algorithm draws 500 samples for each of the

body parts, and the message passing process of the DDBPMC algorithm is iterated 6 times.

Without code optimization, it takes about 2 to 3 minutes to process an image on a Pentium

IV 1.7 GHz machine with 256 MB memory.

5.5.3. Discussions

Compared with the most relevant work [69], the problem we address in this chapter is well

posed rather than inferring 3-D pose from single 2-D images. Furthermore, the test images in

our work are more challenging since they contain complex poses with occlusions in textured

background. Finally, we have done a larger scale experiment.
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Although the experimental results demonstrate success of our algorithm in pose estima-

tion from single images, there are a few research issues to be explored. The body postures

such as torso may be more accurately estimated with more complicated body shapes. How-

ever, the inference problem will be more complicated due to the increasing degrees of freedom

in body shape. The proposed algorithm sometimes fails when long line segments are observed

near the torso region. This is not surprising since long line segments often cause problems

in generating good hypotheses of the torso region.

5.6. Concluding remarks

We propose a rigorous statistical formulation for 2-D human pose estimation from sin-

gle images. The theoretic foundation of this work is based on a Markov network, and the

estimation problem is to infer pose parameters from observable cues such as appearance,

shape, edge, and color. A novel data driven belief propagation Monte Carlo (DDBPMC)

algorithm, which combines both top-down and bottom-up reasoning within a rigorous sta-

tistical framework, is proposed for efficient Bayesian inference. This is in contrast to the

data driven Markov chain Monte Carlo (DDMCMC) algorithm in that DDBPMC carries

out the Bayesian inference in parallel while the DDMCMC algorithm performs sequentially.

Experimental results demonstrate the potency and effectiveness of the proposed method in

estimating human pose from single images.

The proposed algorithm can be easily extended to better estimate human pose in situa-

tions where contour or motion cues abound. Our future work will focus on integrating visual

cues to build better data driven importance functions for a more efficient pose estimation

algorithm.
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CHAPTER 6

Robust integration of inconsistent measurement

Another challenging issue in the proposed collaborative measurement integration frame-

work is that the different visual measurements may be inconsistent. When inconsistency

happens, it is obvious that there exists false measurements. It is harmful to blindly in-

tegrate all the measurements without excluding the false ones. This chapter presents our

preliminary theoretic study on this complication, which results in a robust measurement

integration framework based on a probabilistic variational Bayesian method. Encouraging

results are obtained when we apply it to the task of robust part based ensemble tracking.

6.1. Introduction

In many vision problems, estimations are made based on integrating multiple sources

of measurements to reduce the uncertainty. A measurement can generally be characterized

by a mean vector and a covariance reflecting its uncertainty (multi-modal measurement

can be treated as multiple measurements). To list a few examples, different sources can

be different visual cues such as color and contour [130], different limbs of an articulated

body [105, 126], different components of one object [37, 50], neighborhoods of a pixel in

motion estimation [16], and dynamics and image observations in visual tracking [52]. This

is a fundamental problem.

Most existing integration methods assume the consistency among various sources [61,

72]. If the different sources are independent and consistent, the optimal integration can
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be obtained by the best linear unbiased estimator (BLUE) [72]. If they are correlated

but consistent, the covariance intersection (CI) [61] obtains a consistent and conservative

estimate. However, the consistency assumption may not hold in practice. Basically, if two

measurements can be regarded as being generated from the same model (e.g., a Gaussian),

then they can be treated consistent, otherwise they are inconsistent. The measurements

from different sources can be very confident (i.e., small covariance) but are quite different.

They do not agree with each other and it makes less sense to fuse them together forcefully.

Measurement inconsistency fails both BLUE and CI methods.

Indeed, this problem is not uncommon in computer vision applications. For example,

a wrong dynamic prediction in Bayesian visual tracking is very likely to be inconsistent

with detected image observations. This is especially true when the target presents sudden

dynamic changes. Such an inconsistency shall fail Kalman filtering that is based on BLUE.

In part-based tracking, the measurements of different parts may be conflicting when some

parts are distracted by camouflages or occluded. The aperture problem in motion estimation

is another example [16].

Unfortunately, the handling of inconsistency is not well addressed in the literature. There-

fore, it is desirable to carry out some basic study of inconsistency in order to identify the

solution to robust measurement integration. We are particularly interested in answering two

questions: (a) how can we detect inconsistency from the measurements? and (b) how can we

handle it in integration? We need to develop principled criteria to characterize inconsistency

and develop efficient method to detect and resolve it.

This chapter describes a novel distributed integration approach based on the theory of

Markov networks [44]. Although Markov networks were widely applied to solve visual infer-

ence problems [29,105,126], the study of information fusion of the inference over Markov
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networks is largely remained unexplored. In this chapter, we proved a new theorem that

provides two algebraic criteria to examine the consistency and inconsistency for pair-wise

measurements. In addition a general criterion is proposed to detect inconsistency in a general

setting.

Since the presence of inconsistency implies the presence of false or outlier measurements,

our method can automatically identify the inconsistent measurements and eliminate the false

ones for further integration. Based on the proposed integration approach, we have developed

a robust part-based tracking algorithm in which measurements of various parts are integrated

for tracking, although there exists some inconsistent ones.

There are some previous work which are aware of the inconsistency problem such as the

covariance union (CU) [117] and the variable bandwidth density fusion (VBDF) [16]. They

either increase the covariance of the integrated estimate to achieve covariance consistency

with each of the integrated measurements [117], or seek for the most salient mode across all

scales of the measurements kernel density [16]. None of them provides a principled criteria

to evaluate measurement inconsistency, i.e., they can not determine when two measurements

can be regarded as being obtained from one model.

The distributed probabilistic model for measurement integration is presented in Sec. 6.7.

We then present our theoretical study of measurement inconsistency for pairwise measure-

ments in Sec. 6.3, which provides two algebraic conditions to determine measurement con-

sistency and inconsistency. Based on our theoretical study of inconsistency, we propose a

general criterion for false measurement arbitration based on majority rule in Sec. 6.4. After

that, we present the proposed robust measurement integration framework in Sec. 6.5. Ex-

tensive experimental results are presented in Sec. 6.6, followed by our conclusion remarks in

Sec. 6.7.
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6.2. Formulation of multi-source integration

Markov network provides a principled methodology for the distributed integration of

multiple sources. The joint posterior defined on a Markov network is

P (X|Z) =
1

C

∏

{i,j}∈E
ψij(xi,xj)

∏

i∈V
φi(xi, zi), (6.1)

where C is a normalization constant, X = {xi : i = 1 . . . N}, Z = {zi : i = 1 . . . N} and N

is the number of sources modeled in the Markov network.

Each xi denotes the integrated estimate at node i, and zi is the local measurement of

source i. Set V indicates the set of {xi, zi} pairs and each pair has a compatibility function

φi(xi, zi). Let xi, zi be in Rn, since the measurement is a {zi,Σi} pair, φi(xi, zi) is in nature

a Gaussian, i.e.,

φi(xi, zi) =
1√

(2π)n|Σi|
e(−

1
2
(zi−xi)

T Σ
−1
i (zi−xi)). (6.2)

Set E defines the neighborhood relationships in the Markov network. If xj is the neighbor of

xi, then xj can provide a predictive estimate fij(xj) for xi. ψij(xi,xj) is the compatibility

function of the neighboring xi and xj, i.e., a Gaussian

ψij(xi,xj) =
e

(
− (xi−fij (xj ))T (xi−fij (xj ))

2σ2
ij

)
√

(2π)nσnij
(6.3)

.
=

e

(
− (xi−Aijxj−µij )T (xi−Aijxj−µij )

2σ2
ij

)
√

(2π)nσnij
, (6.4)

which indicates if xi and fij(xj) can be regarded as being drawn from one common model

and σ2
ij is the scalar variance. When fij is nonlinear, we linearize it by Taylor expansion, i.e.,

µij = fij(0) and Aij =
∂fij(xj)

∂xj
|xj=0 is the n × n Jacobian. So we only consider the setting
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of Eq. 6.4. The σ2
ij indeed models the uncertainties between the local estimate xi and the

neighborhood estimate Aijxj + µij.

The integration of all the measurements is to perform the Bayesian inference on Eq. 6.1.

Nevertheless, when some measurements are inconsistent with the others, it indicates there

are false ones. Blindly integrating them will jeopardize the whole integration process. Let

O = {Oi, i = 1 . . .N} be the binary set to indicate if zi is false, i.e., Oi = 1 means it is and

vice versa. O divides Z into two sets, i.e., the false set ZO and the normal set ZŌ = Z \ZO.

Reliable integration requires eliminating the false ones, i.e., we should perform the Bayesian

inference on

P (X|ZŌ) =
1

C ′

∏

{i,j}∈E
ψij(xi,xj)

∏

zi∈ZŌ

φi(xi, zi), (6.5)

where C ′ is again for normalization. Before we can achieve that, we need a rigorous criteria

to judge inconsistency. For integration, this concept is always qualitative [117], we proceed

to provide principled quantitative criteria.

6.3. Measurements inconsistency

Intuitively, assume Aij and µij be known, given all the {zi,Σi}, the estimate of σ2
ij is a

natural indicator of whether xi and Aijxj + µij is consensus, i.e., if σ2
ij is very small, then

they are consensus since ψij(xi,xj) is approaching to a delta function, and vice versa. Denote

Θ = {σ2
ij : {i, j} ∈ E}, Eq. 6.1 is indeed P (X|Θ,Z). The MAP estimate of xi and the ML

estimate of Θ can be obtained by the following Bayesian EM algorithm [85], i.e.,

xi = (Σ−1
i +

∑

j∈N (i)

1

σ2
ij

I)−1


Σ−1

i zi +
∑

j∈N (i)

1

σ2
ij

(Aijxj + µij)


 (6.6)

σ2
ij =

1

n
(xi −Aijxj − µij)T (xi −Aijxj − µij) (6.7)
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Fixing Θ, the E-Step in Eq. 6.6 obtains the MAP estimate of xi by fixed-point iteration.

It is actually performing the BLUE [72] fusion of the local estimate and neighborhood

estimate. Fixing X, the M-Step in Eq. 6.7 maximizes P (X|Θ,Z) w.r.t. Θ. Combining

the two steps together also constitutes a fixed-point iteration for σ2
ij . In practice, we add a

small regularization constant ǫ (e.g., 0.01) on the right-side of Eq. 6.7 to avoid the numerical

problem of zero.

Another intuition is that the consensus between the estimate of xi and Aijxj + µij is

equivalent to the consistency of the measurements {zi,Σi} and {zj,Σj}. Therefore, when

zi and zj are consistent, the estimate of xi and Aijxj + µij will be consensus, i.e., they will

be almost the same. From Eq. 6.7, the estimate of σ2
ij will always approach to zero, i.e.,

zero is the only fixed-point. On the contrary, if they are inconsistent, then the estimate of

xi and Aijxj + µij may deviate from each other, i.e., the convergent results of σ2
ij may be

non-zero. This indicates that there exists non-zero fixed-point for σ2
ij . These motivate us for

the following definition for inconsistency.

Definition 6.3.1. If zero is the only fixed-point for σ2
ij in the Bayesian EM, {zi,Σi} and

{zj,Σj} are consistent; if there exists non-zero fixed-points for σ2
ij, they are inconsistent.

This definition motivates us to detect the inconsistency by checking the convergent value

of σ2
ij . We thus have the following criterion to test consistency.

Criterion 6.3.2. With a proper initialization, if the convergent results of σ2
ij in the

Bayesian EM approaches to zero, then {zi,Σi} and {zj,Σj} are consistent. If it converges

to a non-zero value, then they are inconsistent.
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In practice, a proper initialization should guarantee σ2
ij to converge to a non-zero fixed-

point if there exists one. Such a condition is necessary because zero is always a trivial

fixed-point (see App. C). For better mathematical understanding of Definition 6.3.1, we

proved the following Theorem 6.3.3 by studying the convergence of the Bayesian EM for

pair-wise measurements. In Corollary 6.3.4, we also present a guidance to choose the proper

initialization for Criterion 6.3.2 .

Theorem 6.3.3. For a Markov network which models the integration of two sources,

denote ẑ2 = A12z2 + µ12, Σ̂2 = A12Σ2A
T
12, P = Σ1 + Σ̂2 which is real positive definite,

Cp the 2-norm conditional number and σ2
Pmax the largest eigenvalue of P, and σ̂2

12 as the

convergent results of σ2
12 in the Bayesian EM. We have

(a) There exists a zero and at least one non-zero σ̂2
12 if

1

n
(z1 − ẑ2)

TP−1(z1 − ẑ2) ≥ 2 +
√
Cp +

1√
Cp
. (6.8)

(b) σ̂2
12 can only be zero if

1

n
(z1 − ẑ2)

TP−1(z1 − ẑ2) < 4. (6.9)

(c) When there exists non-zero σ̂2
12, at least one of them is such that 0 < σ̂2

12 ≤ σ2
Pmax

The proof is presented in App. C. Highlighted by Theorem 6.3.3(c), we have the following

corollary.
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Corollary 6.3.4. Under the same condition of Theorem 6.3.3, initializing σ2
12 to be the

largest eigen-value σ2
Pmax or the trace T (P) of P in the Bayesian EM can guarantee a non-

zero convergence for σ2
12 if there exists one.

The proof is presented in App. D. Theorem 6.3.3 and Corollary 6.3.4 provide a sound

mathematical justification of Definition 6.3.1 about inconsistency and consistency. We denote

the left side of Eq. 6.8 and Eq. 6.9 as d(z1, z2), which is in fact a Mahalanobis distance. In

principle, when d(z1, z2) is too large, statistically {z1,Σ1} and {z2,Σ2} are significantly

deviated from each other and thus they are inconsistent. In this case there exists at least

one non-zero convergence of σ2
12. On the other hand, if d(z1, z2) is small, statistically {z1,Σ1}

and {z2,Σ2} are not deviated from each other and thus they are consistent. Then there will

be only zero convergence for σ2
12.

Theorem 6.3.3(a) and (b) present two algebraic criteria (sufficient conditions) to judge

if {z1,Σ1} and {z2,Σ2} are inconsistent or consistent, i.e., if Eq. 6.8 holds, then they are

inconsistent, and they are consistent if Eq. 6.9 holds. The following remarks would make

the understanding more clear:

• Since Bc = 2 +
√
Cp + 1√

Cp

≥ 4, if 4 ≤ d(z1, z2) < Bc, we can not directly tell

if there exists a non-zero σ̂2
12. In other words, we can not immediately decide the

consistency unless we run the Bayesian EM.

• In one dimensional case, i.e., n = 1, we have Bc = 4. Then the inconsistency/consistency

of z1 and z2 can be determined by testing if d(z1, z2) R 4.

• For n ≥ 2, if Cp is good to be near 1, then Bc would be very close to 4. The interval

[4, Bc) would be very tight. Then either Bc or 4 can be approximately used for

detecting inconsistency similar to the case n = 1.
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• For n ≥ 2, if Cp is not good to be very large, then Bc ≫ 4. We must run the

Bayesian EM with a proper initialization to judge the consistency when d(z1, z2)

falls in [4, Bc).

• In a general setting, from Corollary 6.3.4, the largest eigenvalue or the trace of

Σi + Σj +
∑

k∈N (i,j) Σk is a proper initialization, where N (i, j) is the neighborhood

of i and j. The trace is preferable since it can be more efficiently obtained.

6.4. Detection of inconsistency and falseness

Based on Criterion 6.3.2, let Lij be the binary variable to indicate whether {zi,Σi} and

{zj,Σj} are inconsistent, i.e., Lij = 1 represents that they are and vice versa. Then the

criterion to identify the inconsistency is

Lij =





0 if σ2
ij ≤ ǫ

1 if σ2
ij > ǫ

, (6.10)

where ǫ is the same regularization constant added in Eq. 6.7.

After the detection of inconsistency, the majority rule is adopted to determine if {zi,Σi}

is false, i.e., if {zi,Σi} is inconsistent with the majority of its neighbors, then it is false,

and vice versa. Without any other knowledge, the majority rule may be the best one to

discriminate false measurements. The basic assumptions are that there are at least three

sources and the majority of the sources will obtain correct and thus consistent measurements.

Since Oi is the binary variable to indicate if zi is false, suppose part i has Mi neighbors,

then

Oi =






0 if
∑

j∈N (i)Lij ≤ ⌊Mi

2
⌋

1 if
∑

j∈N (i) Lij > ⌊Mi

2
⌋

(6.11)
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where ⌊Mi

2
⌋ is the largest integer that is not larger than Mi

2
.

However, when the degrees (i.e., the number of neighboring nodes) of the nodes in the

Markov network are highly unbalanced, the majority rule may fail even if there are less than

50% false measurements. One such example would be that the connections of N > 6 nodes

form a circle and meanwhile the nodes x1, x2 and x3 are connected with all the other nodes.

Then if the measurements z1, z2 and z3 are false and thus inconsistent with the others, all

the other measurements will be regarded as “false” from Eq. 6.11.

Such a problem may not exist when the degrees of the nodes are well balanced. This

reveals to us that in order to well exploit Eq. 6.11, we must construct a balanced Markov

network to integrate the multiple sources, i.e., the degrees of the nodes must be close to one

another.

6.5. Robust integration for ensemble tracking

Given all {zi,Σi}s, we propose a two-stage robust integration approach:

(1) False discrimination: Perform the Bayesian EM on the original Markov network

Mo defined by Eq. 6.1 and then identify the false measurements set ZO based on

Eq. 6.11.

(2) Robust Integration: Remove all zi ∈ ZO, from Mo. This forms the reduced

Markov network Mr defined by Eq. 6.5. Perform the Bayesian EM on Mr to

obtain the estimates for all xi with ZO being removed from Eq. 6.6 and Eq. 6.7.

It is a completely distributed robust integration approach, where all the operations are per-

formed individually at each node of the Markov network. After the false measurement at

one source node i has been eliminated, as we can observe from Eq. 6.6 (eliminating zi and

Σi from it), the estimate of xi will rely purely on the neighborhood estimates.
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It can be immediately applied to part-based visual tracking (i.e., an ensemble tracker),

where ψij(xi,xj) captures the structured constraints between two neighboring parts. It is

also general to incorporate different tracking algorithms to obtain the part measurements

{zi,Σi}, such as particle filtering [52] and flow based Lucas-Kanade tracker (LK) [102], etc..

There are three situations: (1) The measurements of all the parts are normal and con-

sistent. (2) The measurements of some parts are missing, i.e., the φi(xi, zi) is a Gaussian

with large co-variance. This might happen when the visual pattern of the target undergoes

large variations but the visual model does not capture it well. (3) The measurements of

some parts are inconsistent with those of the other. This implies that some measurements

are false and it may be caused by either occlusion, clutter or camouflage in visual tracking.

Our robust integration approach handles all these three situations in a unified way.

6.6. Experiments

6.6.1. Illustrative numerical example

We adopt a 2D numerical example to demonstrate how σ2
ij changes during the Bayesian EM.

The Markov network models three sources, which are neighbors of one another. Without loss

of generality, we set all Aij = I and µij = 0. In all the simulations, we fix z1 = [2.1, 2.2]T ,

z2 = [2.2, 2.1]T and Σ1 = Σ2 = [2.0, 1.0; 1.0, 2.0]. We then set {z3,Σ3} to be different values

to simulate the three situations. Highlighted by Corollary 6.3.4, we always initialize all σ2
ij

to be the trace of Σ1 + Σ2 + Σ3.

We firstly simulate the case of false measurement, e.g., z3 = [8.0, 9.0]T and Σ3 =

[2.0, 1.0; 1.0, 2.0]. It is obvious that {z3,Σ3} is false. The changes of σ2
12, σ

2
13 and σ2

23 are

presented in the first row of Fig. 6.1. As we can observe, σ2
12 converges to 0.01, and both

σ2
13 and σ2

23 converges to 18.25. Using Eq. 6.11, we easily identify z3 as a false measurement
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Figure 6.1. The change of σ2
ij in the Bayesian EM. First row: measurement

z3 is false. Second row: measurement z3 is missing. Third row: all the
measurements are consistent.

and it will be eliminated in the robust inference step. The MAP estimates before false elim-

ination are x1 = [2.83, 2.87]T , x2 = [2.83, 2.87]T and x3 = [6.65, 7.55]T , which are erroneous

and can be rectified after we eliminated z3.

We then simulate the case of missing measurement, e.g., z3 = [8.0, 9.0]T with Σ3 =

[10.0, 1.0; 1.0, 10.0]. Although z3 is deviated from z1 and z2, its covariance Σ3 is pretty large

so it is still consistent with the others. The changes of σ2
ij are presented in the second row

of Fig. 6.1. We can observe that all of them converge to 0.01. In fact, the MAP estimates
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(a). #16 (b). #66 (c). #88 (d). #90 (e). #102 (f). #184

Figure 6.2. Results with flow measurement: the red, green, and yellow color
denote false, normal and missing measurements, respectively.

(a). LK #90 (b). Holistic PF #108

Figure 6.3. Typical tracking failure (a). LK tracking frame #90. (b). Particle
filtering with holistic appearance model frame #108.

are [2.89, 2.94]T for all xi. We can see z3 has been counted far less than the other two

measurements and the bias has largely been rectified in the estimates.

Last we simulate the easiest case where all the measurements are reliable and consistent,

e.g., z3 = [1.9, 1.8]T with Σ3 = [2.0, 1.0; 1.0, 2.0]. The change of σ2
ij is presented in the third

row of Fig. 6.1. Again, they all converge to 0.01 as expected. The final MAP estimates are

[2.07, 2.03]T for all xi. We have extensively run the simulations with different settings. The

results are coherent with what are presented.

6.6.2. Robust part based ensemble tracking

6.6.2.1. Part based tracking with LK tracker. We first present the results using LK

tracker [102] to obtain the part measurements. The test video clip is from the comedy

cartoon “Tom and Jerry”. The target is the poor cat Tom’s face. Those “good features” [102]
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in Tom’s face region are detected to be the node of the Markov network. The face region is

manually cropped as a rectangle in the first frame.

Each node is associated with a 7 × 7 image patch (the appearance model) centering at

the feature point, and it is connected with the three nearest nodes. The xi is the 2D position

of the ith good feature. At the current frame, we set Aij = I2 and set µij to be the relative

position of part i and j in the previous frame. Each zi is obtained by the flow based LK

tracker. The Σi is obtained by evaluating the response distribution using SSD similar to

that in [141].

We show some sample results in Fig. 6.21. Our algorithm successfully identifies the false,

missing and normal measurements, as shown in red, yellow and green, respectively. The

video has 187 frames and our algorithm obtains robust results. With 50 parts, it runs at 10

frames/second without code optimization.

The pure LK tracker and the particle filtering (PF) with a holistic appearance model are

easy to fail in this video clip. We show the typical failure cases in Fig. 6.3. The failures are

due to the dramatic expression change (Fig. 6.3(a)), the sudden view changes and abrupt

motion of Tom (Fig. 6.3(b)). The number of particles for holistic PF is 200 and all algorithms

are initialized with the same rectangle.

6.6.2.2. Part based tracking with particle filtering. In this section, we present the

tracking results using particle filtering [52] to obtain the part measurement. The xi is

four dimensional (two for translations and two for scalings). The target parts are selected

manually and a fully connected Markov network is adopted. The Aij and µij are estimated

from some manually annotated images by least square fitting. There is a residue error σ2
ij0

from the least square fitting. It is used as the σ2
ij in the robust integration step, i.e., after

1All video results are available upon request
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(a). #8 (b). #86 (c). #128 (d). #303 (e). #710 (f). #808

(a). #116 (b). #128 (c). #138 (d). #144 (e). #148 (f). #154

Figure 6.4. Comparison of robust integration by the proposed approach and
blind integration without inconsistency detection and false elimination – First
row: Proposed integrating approach (green-normal, red-false, yellow-missing).
Second row: Blind integrating.

(a). #100 (b). #188 (c). #629 (d). #718 (e). #740 (f). #968

(a). #8 (b). #54 (c). #88 (d). #249 (e). #256 (f). #290

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #399

Figure 6.5. Results with PF measurement: Results in the first and second row
are enlarged for better visual quality (green-normal, red-false, yellow-missing).

removing the false measurements, we fix σ2
ij = σ2

ij0 and perform the Bayesian inference using

Eq. 6.6. Note each component has a template image patch to build the appearance based

likelihood model φi(xi, zi). The mean estimates and the covariances of the posterior particle

sets are adopted as the part measurements {zi,Σi}s.
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Figure 6.6. Root square errors of the results on the car sequences in the first
row of Fig. 6.5.

We present sample results on different video sequences in Fig. 6.4 and Fig. 6.5. These

test videos are typical, where the targets present large appearance variations due to the

significant view, scale, lighting changes and the presence of occlusions. Fig. 6.4 shows the

results of tracking the face of a kid. The first row of Fig. 6.4 shows the results of the

proposed approach, where inconsistent measurements are detected and those false ones are

eliminated. For comparison, the second row of Fig. 6.4 shows the results of blind integration

without inconsistency detection and false elimination. Note how the tracking results have

been distracted due to the integration of those false measurements during occlusion. The

video has 820 frames.

In Fig. 6.5, we present sample image results on three other video sequences both including

tracking faces and cars. From top to bottom, The videos have 1121, 348 and 399 frames,

respectively. We also test the accuracy of the results shown in the second row of Fig. 6.5 on

the two translation parameters. 300 frames are labeled and the centroid points of the labeled

rectangle is adopted as the ground truth. For the tracking results, the centroid point of all

the part rectangles is used as the overall translation parameters. We then calculate the root
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(a). #208 (b). #317 (c). #430 (d). #466 (e). #588 (f). #673

(a). #280 (b). #306 (c). #310 (d). #316 (e). #318 (f). #322

Figure 6.7. Tracking a group of persons: First row: Our integrating approach
(green-normal, red-false, yellow-missing). Second row: Blind integration.
The results are enlarged for better visual quality.

(a). #8 (b). #28 (c). #88 (d). #168 (e). #188 (f). #228

Figure 6.8. Tracking a group of three cars by the proposed approach.

square error at each frame, as shown in Fig. 6.6. The root mean square error is 2.36 pixels

with stand deviation 0.78 on 320 × 240 images. This shows the accuracy of the proposed

approach.

6.6.2.3. Tracking a group of objects. A direct generalization of part based tracking is

to track several objects moving in a group. We test the robust integration on part of a

video sequence2 where three persons walking in a corridor of a shopping mall. Again, a fully

connected Markov network is adopted and the measurement of each person is obtained by

particle filter. Some sample results are presented in the first row of Fig. 6.7. In Fig. 6.7(b)

(first row), frame #317, the left person has been occluded by another person and the mea-

surement is false. Our algorithm clearly identifies and corrects it. For comparison, we also

2From the EC Funded CAVIAR project/IST 2001 37540, URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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present the results by blind integration in the second row of Fig. 6.7. Note how it fails

due to occlusion. We also present the tracking results by the proposed approach on a video

sequence of three cars in Fig. 6.8. The video sequence of the three persons has 697 frames,

and video sequence of the three cars has 237 frames.

6.7. Conclusions and future work

We propose a novel distributed framework for detecting and integrating of inconsistent

measurements. The modeling is based on Markov networks. The Bayesian EM inference

reveals the iterative integration of the measurements, from which principled criteria are

developed to detect inconsistency. We regard measurements which are inconsistent with

the majority of their neighbors as false. They will be eliminated and the integration is

performed again, i.e., the estimates in those nodes with false measurements will only rely on

the measurements from its neighbors. We apply the proposed robust integration framework

for part based ensemble tracking and promising results are obtained.

Future work may include the automatic part selection, and better means to handle the

integration in unbalanced Markov networks. We are also interested in exploiting the inte-

gration framework to other computer vision applications.
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CHAPTER 7

Conclusion and future research

The rapid development of image and video sensors (e.g., cheap CCD cameras) and com-

puter hardware (e.g., high speed CPU and huge memory) make it very convenient to acquire,

store and process huge amount of visual data, either in the form of images, or in the form

of videos. With such huge amount of visual data, it is an emerging need to endow the com-

puters the capability to intelligently perceive and manipulate them automatically. However,

although we have observed the boom of the research on computer vision in recent years, it is

still in its infancy to build a visually intelligent computer. Among all the challenging com-

puter vision problems, to build a computer to visually analyze complex motion from videos

is one of the most basic problems, since it is the fundamental elements for different levels

of machine intelligence such as gesture recognition, action recognition and even for behavior

analysis. All of these are in turn fundamental elements of many emerging computer vision

applications such as intelligent video surveillance, video events analysis, robotics, vision for

graphics, etc., to name a few.

Targeting on the fundamental challenges of complex motion analysis, we propose a novel

distributed probabilistic approach to complex motion analysis, which clearly demonstrates

that a set of interactive motion analyzers working collaboratively to obtain the solution.

In answering the first question in Sec. 1.1.1, “what characterizes the optimal integration of

the set of motion analyzers?”. Under our distributed probabilistic representation based on

Markov networks, the optimal integration is characterized by either the fixed-point of the
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mean field fixed-point equations [43, 45, 126, 133] or the convergent results of the belief

propagation algorithm [41, 47]. In answering the second question in Sec. 1.1.1, both the

mean field variational method and the belief propagation algorithm are iterative local “mes-

sage” passing algorithms, which are all quite efficient computational diagrams to obtain the

optimal integration of the set of motion analyzers. We summarize the work presented in this

dissertation followed by the discussions of some of the future work.

7.1. Summary

In summary, we have developed a novel collaborative approach to complex motion analy-

sis from video. The theoretical foundation is based on probabilistic variational analysis on

graphical models. Compared to previous work, the new approach is scalable to the increase

of the degrees of freedom of complex motions. It reveals a distributed probabilistic infor-

mation integration framework, which is able to effectively handle measurement uncertainty,

measurement multi-modality, and measurement inconsistency, i.e.,

• The measurement uncertainties are captured very well by the probabilistic reasoning

on graphical models.

• For measurement multi-modality, we can either keep multiple hypothesis using par-

ticle filters when performing the Bayesian inference, or identify the optimal mode

of the integrated measurement (e.g., using the proposed VMAP [43]).

• For measurement inconsistency, we have proposed rigorous quantitative conditions

to decide measurement consistency and inconsistency in the distributed information

integration framework based on graphical models. They greatly facilitate to exclude

the false measurements from the integration process.
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We have also contributed several novel and practical variational Bayesian inference algo-

rithms on graphical models, namely the MFMC algorithm [45, 46, 126], the VMAP algo-

rithm [40], and the DDBP algorithm [41], which are able to either obtain the posterior

distributions or obtain the MAP estimates on graphical models very efficiently. By incorpo-

rating the data driven importance sampling technique into the Monte Carlo implementation

of both the mean field fixed-point iterations and the belief propagation updating, we also

achieve a principled parallel framework to combine top-down and bottom-up reasoning to-

gether. Extensive experimental results on different types of complex motions under various

scenarios demonstrate the effectiveness, efficiency and robustness of the proposed collabora-

tive approach.

7.2. Future research

Besides what we have presented in this dissertation, we are quite interested in extending

our current work in the following directions:

• As we have mentioned, the methodology of the collaborative approach we proposed

is indeed very general and may be applied to solve other computer vision problems

besides complex motion analysis. We intend to apply the proposed approach to other

emerging applications such as biomedical image analysis [141], stereo vision [112,

113], joint audio-visual recognition [87], and large-scale sensor networks, with both

video and non-video sensors [62].

• According to the taxonomy in Chapter 2, we have investigated and demonstrated

the powerfulness of exploiting latent variable inference on graphical models to solve

computer vision problems. Further research is necessary to investigate the capability
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of exploiting parameter learning and structure learning techniques to address some

other fundamental issues in computer vision problems.

• The proposed algorithms all exchange “messages” in a local neighborhood. In large

scale graphical models, such a local neighborhood message passing strategy may still

be slow. We are interested in developing more efficient collaborative and distributed

message passing schemes which could speed up the probabilistic inference process.

Multi-scale message passing in the model level could be a potential solution, at the

highlight of [26].

• Exploit the output from the proposed approach to complex motion analysis, we may

further develop real systems for other emerging applications such as intelligent video

surveillance, perceptual human computer interface, motion capturing for animation,

and even for applications based on mobile phone cameras (see an example of business

card scanning [39]).

We expect future research on these directions to be far-reaching, since we are targeting on ei-

ther addressing some of the fundamental issues that commonly exist in many computer vision

problems, or realizing emerging computer vision applications using the proposed approach.
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APPENDIX A

Lemmas of Theorem 4.3.1

Define, for σ > 0, the quantity

ϕσ(µ̃) = Eq{log p(µ̃+ σx)} =

∫

x

q(x) log p(µ̃+ σx)dx. (A.1)

Note that Eq. 4.2 ensures that ϕσ(µ̃) is finite provided that σ is small enough, as we will

show in the proof of Lemma 2. We propose the following lemmas for Theorem 4.3.1.

Lemma 1. Under the same conditions of Theorem 4.3.1, we have

KL(qµ̃σ(x)‖p(x)) = Cσ − ϕσ(µ̃), (A.2)

where Cσ is a constant relied only on σ.

Proof.

KL(qµ̃σ(x)‖p(x)) =

∫

x

qµ̃σ(x) log
qµ̃σ(x)

p(x)
dx (A.3)

=

∫

x

qµ̃σ(x) log qµ̃σ(x)dx−
∫

x

qµ̃σ(x) log p(x)dx (A.4)

= − log{(2πe)nσn} −
∫

x

qµ̃σ(x) log p(x)dx (A.5)

= Cσ −
∫

x

qµ̃σ(x) log p(x)dx (A.6)

= Cσ −
∫

x

σnqµ̃σ (µ̃+ σx) log p(µ̃+ σx)dx (A.7)
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= Cσ −
∫

x

q(x) log p(µ̃+ σx)dx (A.8)

= Cσ − Eq{log(p(µ̃+ σx))} (A.9)

= Cσ − ϕσ(µ̃) (A.10)

� �

Lemma 2. Under the same conditions of Theorem 4.3.1, we have that for any µ ∈ Rn,

lim
σ→0

ϕσ(µ̃) = log p(µ̃), (A.11)

Proof. Eq. 4.2 guarantees that, for σ sufficiently small, ϕσ(µ̃) is finite for all µ̃ ∈ Rn,

i.e., if σ <
√

2
2

, note by parallelogram law −(x− µ̃)T (x− µ̃) ≤ µ̃T µ̃− xT x
2

, we have

|ϕσ(µ̃)| =

∣∣∣∣
∫

x

q(x) log p(µ̃+ σx)dx

∣∣∣∣ (A.12)

=

∣∣∣∣
∫

x

1

(2π)
n
2

exp

(
−xTx

2

)
log p(µ̃+ σx)dx

∣∣∣∣ (A.13)

≤
∫

x

1

(2π)
n
2

exp

(
−xTx

2

)
|log p(µ̃+ σx)| dx (A.14)

=

∫

x

1

(2π)
n
2 σn

exp

(
−(x− µ̃)T (x− µ̃)

2σ2

)
|log p(x)| dx (A.15)

≤
∫

x

1

(2π)
n
2 σn

exp
(
−(x− µ̃)T (x− µ̃)

)
|log p(x)| dx (A.16)

≤
∫

x

1

(2π)
n
2 σn

exp

(
µ̃T µ̃− xTx

2

)
|log p(x)| dx (A.17)

=
1

(2π)
n
2 σn

exp
(
µ̃T µ̃

) ∫

x

exp

(
−xTx

2

)
|log p(x)| dx (A.18)

< +∞ (A.19)
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By the continuity of p(x), for any ǫ > 0, there exists δ = δ(µ̃) > 0 such that |x − µ̃| < δ

implies | log p(x)− log p(µ̃)| < ǫ, we have

|ϕσ(µ̃)− log p(µ̃)|

=

∣∣∣∣
∫

x

q(x) log p(µ̃+ σx)dx− log p(µ̃)

∣∣∣∣ (A.20)

=

∣∣∣∣
∫

x

q(x) (log p(µ̃+ σx)− log p(µ̃)) dx

∣∣∣∣ (A.21)

=

∣∣∣∣∣

∫

|x|< δ
σ

q(x) (log p(µ̃+ σx)− log p(µ̃)) dx (A.22)

+

∫

|x|> δ
σ

q(x) (log p(µ̃+ σx)− log p(µ̃)) dx

∣∣∣∣∣

≤
∣∣∣∣∣ǫ
∫

|x|< δ
σ

q(x)dx

∣∣∣∣∣+
∣∣∣∣∣

∫

|x|> δ
σ

q(x) (log p(µ̃+ σx)− log p(µ̃)) dx

∣∣∣∣∣ (A.23)

= ǫP

(
|xq| <

δ

σ

)
+

∣∣∣∣∣

∫

|x|> δ
σ

q(x) (log p(µ̃+ σx)− log p(µ̃)) dx

∣∣∣∣∣ (A.24)

< ǫ+

∫

|x|>δ
σ−nq

(x

σ

)
|log p(µ̃+ x)− log p(µ̃)| dx (A.25)

For the second term in Eq. A.25, we have shown from Eq. A.12 to Eq. A.19 that it is

integrable. Moreover, for σ small enough and for any fixed |x| > δ, it is easy to show that

lim
σ→0

σ−nq
(x

σ

)
= 0. (A.26)

Therefore, for any fixed |x| > δ and for σ small enough, we have

σ−nq
(x

σ

)
< exp

(
−xTx

2

)
, (A.27)
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thus it follows that

σ−nq
(x

σ

)
|log p(µ̃+ x)− log p(µ̃)| < exp

(
−xTx

2

)
|log p(µ̃+ x)− log p(µ̃)| . (A.28)

From the integrability condition in Eq. 4.2 and the properness of p(x), it is easy to figure out

that the right hand side of Eq. A.28 is also integrable. With Eq. A.26, applying Lebesgue’s

dominated convergence theorem, we have that the second term in Eq. A.25 goes to zero as

σ → 0, i.e., for the given ǫ > 0, there exists a σ1 = σ(ǫ) > 0 such that when σ < σ1,

|ϕσ(µ̃)− log p(µ̃)| < ǫ+ ǫ = 2ǫ. (A.29)

Then we have

lim
σ→0
|ϕσ(µ̃)− log p(µ̃)| = 0. (A.30)

Therefore, Eq. A.11 holds. � �

Lemma 3. Under the same condition of Theorem 4.3.1, if a sequence {µ̃σ} is such that

lim
σ→0

ϕσ(µ̃σ) = sup
x

log p(x), (A.31)

then

lim
σ→0

µ̃σ = x∗ (A.32)

Proof. We need to prove that if ϕσ(µ̃σ) → log p(x∗) as σ → 0, it is impossible that

there exists δ > 0 such that infinitely often |µ̃σ − x∗| ≥ 2δ. Let us firstly assume that

such a δ exists, then according to the continuity of log p(x), there exists a ǫ > 0 such that
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log p(x) < log p(x∗)− ǫ for |x− x∗| ≥ δ. For σ small enough, e.g., σ < 1
3
δ, we then have

ϕσ(µ̃σ) =

∫

x

q(x) log p(µ̃σ + σx)dx (A.33)

=

∫

|x|< δ
σ

q(x) log p(µ̃σ + σx)dx +

∫

|x|> δ
σ

q(x) log p(µ̃σ + σx)dx (A.34)

≤ (log p(x∗)− ǫ)P
(
|xq| <

δ

σ

)
+ log p(x∗)P

(
|xq| ≥

δ

σ

)
(A.35)

= log p(x∗)− ǫP
(
|xq| <

δ

σ

)
(A.36)

≤ log p(x∗)− 1

2
ǫ (A.37)

=⇒

|ϕσ(µ̃σ)− log p(x∗)| ≥ 1

2
ǫ, (A.38)

where the Eq. A.35 holds because for |x| < δ
σ
, we have |µ̃σ + σx− x∗| ≥ δ which implies

that log p(µ̃σ + σx) < log p(x∗)− ǫ.

Eq. A.38 immediately contradicts with Eq. A.31. Therefore, Eq. A.32 holds given that

Eq. A.31 holds. � �
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APPENDIX B

Proof of Theorem 4.3.1

Proof. We firstly proceed to prove

lim
σ→0

sup
µ̃

ϕσ(µ̃) = sup
x

log p(x). (B.1)

Note that from Lemma 1, the series {µ̃σ} in Theorem 4.3.1 is also such that

ϕσ(µ̃σ) = sup
µ̃

ϕσ(µ̃) (B.2)

First of all, we have log p(x) < log p(x∗) + ǫ for any ǫ > 0. Thus for any σ > 0, we have

ϕσ(µ̃σ) =

∫

x

q(x) log p(µ̃σ + σx)dx (B.3)

< (log p(x∗) + ǫ)

∫

x

q(x)dx (B.4)

= log p(x∗) + ǫ. (B.5)

Moreover, from Lemma 2, we have, for any ǫ > 0, there exists a σ1 > 0, for σ < σ1, we

have

|ϕσ(x∗)− log p(x∗)| < ǫ (B.6)

Then, from Eq. B.5 and Eq. B.6, we easily obtain that for σ < σ1,

log p(x∗)− ǫ < ϕσ(x
∗) < ϕσ(µ̃σ) < log p(x∗) + ǫ. (B.7)
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Thus, for any ǫ > 0, there exists a σ1 > 0, for σ < σ1, we have

|ϕσ(µ̃σ)− log p(x∗)| =
∣∣∣∣sup
µ̃

ϕσ(µ̃)− sup
x

log p(x)

∣∣∣∣ < ǫ (B.8)

This immediately proves Eq. B.1. Then we can directly conclude that Eq. 4.3 holds by

applying Lemma 3. � �
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APPENDIX C

Proof of Theorem 6.3.3

Proof. Fixing σ2
12, Eq. 6.6 guarantees to iteratively obtain the exact MAP estimate on

the joint posterior Gaussian. We denote x̂2 = A12x2 +µ12 and S = P+σ2
12I. The convergent

results in the E-Step in Eq. 6.6 is the same as,




x1

x̂2


 =




(σ2
12I + Σ̂2)S

−1z1 + Σ1S
−1ẑ2

Σ̂2S
−1z1 + (σ2

12I + Σ1)S
−1ẑ2


 . (C.1)

Embedding it to the M-Step in Eq. 6.7, we have

σ2
12 =

1

n
σ2

12σ
2
12(z1 − ẑ2)

TS−1S−1(z1 − ẑ2). (C.2)

Since zero is a solution of σ2
12 for Eq. C.2, we only need to analyze the existence of non-zero

solutions of σ2
12 for

1

n
σ2

12(z1 − ẑ2)
TS−1S−1(z1 − ẑ2)− 1 = 0. (C.3)

Since P is real positive definite, there exists an orthonormal matrix Q such that P = QDpQ
T

where Dp = diag[σ2
1, . . . , σ

2
n] and σ2

1 ≥ . . . ≥ σ2
n > 0. Let Cp =

σ2
1

σ2
n
. We then have

S = QDsQ
T and S−1 = QTD−1

s Q, where Ds = diag[σ2
1 + σ2

12, . . . , σ
2
n + σ2

12] and D−1
s =

diag[ 1
σ2
1+σ2

12
, . . . , 1

σ2
n+σ2

12
]. Denote z̃ = Q(z1 − ẑ2) = [z̃1, . . . , z̃n]

T , we have

1

n
σ2

12(z1 − ẑ2)
TS−2(z1 − ẑ2) =

1

n

n∑

i=1

σ2
12z̃

2
i

(σ2
i + σ2

12)
2

(C.4)
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1

n
(z1 − ẑ2)

TP−1(z1 − ẑ2) =
1

n

n∑

i=1

z̃2
i

σ2
i

. (C.5)

From Eq C.4, we only need to analyze the solution of σ2
12 for

F (σ2
12) =

1

n

n∑

i=1

z̃2
i

σ2
i

· 1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

− 1 = 0. (C.6)

We proceed to prove the three cases in Theorem 6.3.3.

(a). Eq. 6.8 means d = 1
n

∑n
i=1

z̃2i
σ2

i

> 2 +
√

σ2
1

σ2
n

+
√

σ2
n

σ2
1
≥ 4. When σ2

12 = k1 = (d− 2)σ2
1,

for any i, we have 1

2+
σ2

i

σ2
12

+
σ2
12

σ2
i

< 1
2+0+d−2

= 1
d
. Thus F (k1) <

1
n

∑n
i=1

z̃2i
σ2

i

· 1
d
− 1 = 0. When

σ2
12 = k2 =

√
σ2

1σ
2
n, for any i, 1

2+
σ2

i

σ2
12

+
σ2
12

σ2
i

≥ 1

2+
σ2

n
k2

+
k2
σ2
1

= 1

2+

r
σ2
1

σ2
n

+

r
σ2

n

σ2
1

≥ 1
d
, thus F (k2) ≥

1
n

∑n
i=1

z̃2i
σ2

i

· 1
d
− 1 = 0. Since 0 < k2 < k1 and F (·) is continuous, there exists a k3 where

k2 ≤ k3 < k1 and F (k3) = 0. This proves Theorem 6.3.3(a).

(b). Eq. 6.9 means d = 1
n

∑n

i=1
z̃2i
σ2

i

< 4, then F (σ2
12) ≤ 1

n

∑n

i=1
z̃2i
σ2

i

· 1
4
− 1 = d

4
− 1 < 0 for

all σ2
12 > 0. Thus Eq. C.6 has no non-zero solution. Theorem 6.3.3(b) is proven.

(c). Let F (σ2
M) = maxF (σ2

12), we show that it must be such that σ2
n ≤ σ2

M ≤ σ2
1 .

Define Fi(σ
2
12) = 1

n

z̃2i
σ2

i

1

2+
σ2

i

σ2
12

+
σ2
12

σ2
i

thus F (σ2
12) =

∑
i Fi(σ

2
12)− 1. Each Fi(σ

2
12) is monotonically

increasing for 0 < σ2
12 ≤ σ2

i and monotonically decreasing for σ2
12 ≥ σ2

i . Therefore F (σ2
12)

must be monotonically increasing for 0 < σ2
12 ≤ σ2

n and monotonically decreasing for σ2
12 ≥

σ2
1. This tells us that the global maximum of F (σ2

12) can only be taken in σ2
n ≤ σ2

12 ≤ σ2
1 ,

thus σ2
n ≤ σ2

M ≤ σ2
1. The existence of a non-zero convergent value of σ2

12 implies a non-zero

solution for Eq. C.6. We have F (σ2
M) ≥ 0 otherwise F (σ2

12) < 0 for all σ2
12 and there is no

solution for Eq. C.6. Since F (0)→ −1 and F (σ2
12) is continuous, there must exist a k4 such

that 0 < k4 ≤ σ2
M ≤ σ2

1 and F (k4) = 0. This immediately proves Theorem 6.3.3(c). � �
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APPENDIX D

Proof of Corollary 6.3.4

Proof. The Bayesian EM constitutes a fixed-point iteration of σ2
12 in Eq. C.2. From

Theorem 6.3.3(c), when non-zero fixed-points exist, at least one of them, σ̂2
12, is such that

0 < σ̂2
12 ≤ σ2

Pmax < T (P). Then, if the fixed-point iteration is initialized at σ2
pmax or T (P),

it can never surpass σ̂2
12 to converge to zero since they are scalars. This indicates that σ2

pmax

and T (p) are proper initialization for σ2
12. � �
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