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ABSTRACT

The emergence of new display and computing technologies have brought attention to new par-

adigms of human-computer interactions that are fundamentally different from using traditional

mechanical input devices. Communication through visual gesture interface is a potential alterna-

tive that could provide multidimensional interactions. Though rich information is embedded in

video input, so is a large amount of noise and uncertainties. Extracting correct and useful infor-

mation from a video is a challenging problem, and this makes capturing the human hand motion

an extremely difficult task.

This dissertation presents novel techniques to effectively and efficiently track articulate hand

motion in a video sequence. Since tracking articulate hand motion is equivalent to a search in a

high-dimensional space, an analysis of the feasible configuration space is given, and semiparametric

and nonparametric representations are proposed to model the motion constraint. For each of the

representations, a corresponding efficient tracking algorithm is proposed. Experiments have shown

the effectiveness of these approaches. To fully automate the tracking system, this dissertation also

presents an algorithm for automatic initialization which can be done in real time. Based on this

result, several vision-based gesture interfaces are built.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Human-computer interaction

As computers play an increasingly important role in our lives due to the rapid advancement in

technologies, more efforts have been devoted into studying and developing natural human-computer

interaction (HCI) techniques. Current means of reliably interacting with the computer still rely

on mechanical devices. Examples of primary devices include keyboards, mice, and joysticks, which

are essential to communicate with the computer. While these devices provide accurate and reliable

information flow, it is not how humans naturally communicate in daily life. The devices require

direct contact from the user in order to operate them. This limitation might appear minimal when

used with a PC. But as the computers become more powerful and affordable, new functions of

computers have emerged that do not restrict the user to sit in front of the computer and commu-

nicate using traditional I/O devices such as monitors and keyboards. This can be best seen with

the examples in virtual reality (VR) environments, wearable computers, and augmented reality

(AR). For another instance, during a presentation, it would be desirable if a user could operate

the computer from an arbitrary location, rather than having to walk back and forth to update the

slide or having to carry a remote control in the hand all the time.

In the case of VR environments, the attempt is to simulate the reality through computer graphics

synthesis. It would be desirable to allow the user to carry minimal equipment and at the same time

communicate with the environment in a natural manner. Common devices for VR are the wand

and magnetic sensors for retrieving motion parameters of the user. Users must carry a wand in the
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hand and have the magnetic sensors attached to the body at all times. Though improvements can

be made to use wireless transmission to remove the physical connections with the controllers, such

devices are still cumbersome to use. Also, these devices are not capable of providing complicated

commands due to the number of degrees of freedom (DOF) of the inputs. Furthermore, they cannot

achieve immersions.

1.1.2 Vision-based systems

Visual input allows the computer to mimic natural human sensing mechanism using the eye.

Natural human interactions do not require the information flow through the use of keyboard and

mouse because eyes and ears are capable of collecting rich information from the environment. The

computer, in principle, should be able to interpret and understand human motion through video

input, which provides a rich information of the environment.

Some factors must be considered when designing and implementing vision-based algorithms:

• Robustness and accuracy. Video inputs are often noisy due to sensor noise and changes

in environment variables such as lighting, background composition, and occlusions. The

algorithms should be able to robustly extract the relevant information and infer the correct

model state.

• Speed. To have a working system, it is necessary to have a real-time processing rate or at

least close to the video-frame rate.

• Implementation. The algorithms should be conceptually straightforward, and the implemen-

tation should be easy to adapt to other scenarios.

Many earlier algorithms proposed using markers to aid in processing. While this offers a strong

cue for visual processing, it could be prohibitive and cumbersome for users to attach markers to their

hand, face, or body every time they use a computer. Recent research focuses more on markerless

algorithm and use markers only to help collecting training data.

There are several advantages associated with vision-based algorithms:

• Nonintrusiveness: The main advantage of using vision-based techniques is its nonintrusive-

ness. The user can operate the computer at a distance without requiring the physical contact

2



with any device, sensors, or markers. This provides a more natural interaction with the

computer and a more immersive experience in the virtual environment.

• Rich information: Compared to the data input through keyboard and mouse, a camera

is capable of delivering much richer information from the two-dimensional (2D) arrays of

color signals. Furthermore, in addition to receiving the discrete digital data directly, higher-

level semantics can be inferred from the video sequences. This offers a much more versatile

input compare to traditional mechanical devices which are limited for their specific functions.

Vision-based algorithms also allow for a wide varieties of applications such as teleconferencing

and biometrics.

• Low cost : Digital cameras and camcorders are becoming more affordable and the video quali-

ties are becoming better. Many PC vendors now include an option for the customers to choose

a digital camera when ordering the PC. A USB webcam can now be bought for about $100

whith video resolutions up to 640 × 480 pixels. A rapidly increasing number of cellphones

nowadays are also equpped with camera as a standard option. It is not difficult to foresee that

cameras will be the standard equipment for many electronics such as PCs, TVs, projectors,

and cellphones.

1.1.3 Visual gesture interfaces

A significant amount of research has been devoted in making a real-time and robust gesture

interface realizable [1, 2, 3, 4]. Among the different modalities humans utilize in natural commu-

nication, the use of hand gestures plays a major role, largely due to the dexterity of the human

hand. The dexterity of the hand is reflected among the numerous mechanical devices that exploits

accurate hand control such as the mouse, keyboard, wand, trackball, touch pad, touch screen, joy-

stick, and pen-enabled devices. Using hand gestures to communicate not only is intuitive but also

provides a multidimensional input [5].

To reliably capture the hand motion, many current systems employed glove-based devices. Joint

angles and hand shape is measured by mechanical or optical sensors. The position of the hand can

be determined by using an additional magnetic sensors attached to the wrist of the glove. This

approach can determine hand postures with high speed and accuracy, and many gesture recognition
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algorithm has been reported to work with it. However, the use of such a device is cumbersome and

does not allow an immersive feeling for HCI. The cable connecting the glove and controller limits the

user motion and using wireless transmitting devices increases the already high costs that prohibits

widespread use. Vision-based algorithms, on the other hand, provide a promising alternative for

capturing hand motion.

1.2 Motivation

Among different modalities involved in natural HCI, the human hand provides an extremely

expressive tool that is capable of transmitting complex information. However, this powerful feature

in expressive signing also makes it very difficult for computers to infer the true hand state from a

sequence of 2D images. To accurately capture the hand motion involves interdisciplinary research

including computer vision, computer graphics, statistical learning, and pattern recognition. A

complete visual hand motion capturing system would consist of several building blocks. Here we

explore a few of the issues that motivate our research.

1.2.1 Tracking in high-dimensional space

A hand is a highly articulate object having roughly 27 DOF. Recovering the shape of such a

complex 3D structure from a 2D image is a difficult problem. To accurately estimate the hand

state at any time instant requires a search in the high dimensional space. Current computing

technology is still prohibitive to allow a full range exhaustive search in R20. Although performing

tracking rather than frame-by-frame recognition helps to greatly reduce the search space, it is still

a formidable task without the use of any prior knowledge.

Fortunately, the hand motion is highly constrained. By incorporating the constraints in the

tracking, we could greatly reduce the search complexity. In particular, we must address two key

issues:

• Modeling the feasible space. We would like to identify a compact motion constraint represen-

tation to effectively model the feasible configuration space. Clearly, feasible hand shapes do

not occupy a filled region in R20. There are holes due to the impossible hand shapes and
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there are sets of configurations that are more naturally and frequently performed in everyday

tasks.

• Design a corresponding search algorithm. Given a motion constraint model, we would like

to design an appropriate tracking algorithm that can track efficiently using this structure.

Though many existing tracking algorithms can handle generic tracking tasks, improvements

can be made for different class of scenarios if prior knowledge can be incorporated.

1.2.2 Automatic initialization

To complete a fully automated hand tracking system, the computer must be able to automati-

cally initialize by acquiring the hand geometry and initial motion parameter. With the complexities

involved in hand tracking alone, the initialization has often been treated as a sperate problem and

has been done manually. This is partly because most of the tracking algorithms still cannot be

done in real time and are tested only on recorded sequences. Consequently, the initialization can

be made as accurately as possible to ensure the quality of subsequent tracking phase. However,

as the computers become more powerful and better algorithms are designed and proposed, it will

soon be common to have high-speed articulation tracking algorithm, and manual initialization will

be the a cumbersome bottleneck whenever a tracking must be performed.

1.3 Applications

The hand motion recovered from video sequences can be used to interact with computers in a

more natural way. There are several scenarios in which hand tracking can provides a promising

new alternatives. Replacement of the wand by bare hand for communications in VR environments

provides the users with a more immersive experience. Furthermore, the complexity of hand motion

allows for a large variety of controls while the mouse can only provide two DOF. Similarly, the user

can interact with virtual objects in an AR environment in which the perception of the real world

is enhanced with additional virtual objects.

The tracked results can also be used for synthesizing realistic hand motion animation. Be-

sides glove-based techniques, commercial products are also available that make use of vision-based

5



techniques to capture human motion such as Vicon Motion Systems, Motion Lab Systems, Mo-

tion Analysis Corporation, etc. Though reliable tracking results can be obtained, these systems

requires the use of markers with careful design in the their positions on human body every time is

collected. A markerless algorithm is certainly a more attractive alternative that can provide a less

cumbersome method.

From the recovered motion parameters, gesture recognition can be applied and the results could

be used directly in controlling a remote device, teleconferencing, and American Sign Language

(ASL) encoding.

Last but not the least, with a robust detection and tracking algorithm, the input source can

rely on camera rather than keyboards and mice. This results in less peripheral units that must be

equipped with a computer. Consequently, the computer no longer needs to be in the vicinity of the

user in order to be operated. It could be integrated with any equipment. Also, a camera is much

smaller than a keyboard and a mouse.

1.4 Organization

This dissertation will present novel work in several aspects that will help to make model-based

hand tracking possible by attempting to reduce the computational complexity and proposing more

efficient algorithm for tracking. To complete the study of the system, a real-time automatic model

initialization algorithm will be presented. Based on the results of the hand detection algorithm,

several gesture interface systems will be described. The remainder of this dissertation is organized

as follows:

• Chapter 2 provides an overview of the vision-based hand tracking system and the state-of-

the-art research in this area. Techniques for hand localization and segmentation is presented

in Section 2.2. The model-based and appearance-based approaches are discussed in Section

2.5.

• Chapter 3 presents the analysis of the hand motion constraints and how they can be used

to help reduce the computation complexities in tracking. An overview of the constraints is

introduced in Section 3.2. Section 3.3 describes the approach to learn the constraints from
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real hand motion data and two representations of the learned constraint model are given in

Section 3.4 and 3.5.

• Chapter 4 focuses on the tracking algorithm. The sequential Monte Carlo (SMC) method

is introduced in Section 4.2. Section 4.3 described how semiparametric representation can

be incorporated in SMC tracking for capturing finger articulation. The local and global

parameters are combined in an iterative procedure described in Section 4.4. Tracking results

and analysis are shown in Section 4.6.

• Chapter 5 extends the original formulation of the SMC tracking by incorporating the Nelder-

Mead (NM) simplex search. Details of the NM algorithm is presented in Section 5.3. In

Section 5.4, an adaptation of the NM is given to incorporate the nonparametric representation

of hand motion model for efficient hand motion tracking. The new algorithm, called stochastic

Nelder-Mead (SNM) search, is given in Section 5.5. Results of using SNM for tracking is shown

in Section 5.6.

• Chapter 6 describes an automatic initialization algorithm that can be used to automate the

model-based tracking system. The steps for identifying the palm and fingertips and the in-

termediate detection results are shown in Section 6.4 and 6.5. In Section 6.6, an algorithm is

presented for identifying the Thumb. Section 6.7 combines all detection results to automati-

cally construct a hand model.

• Chapter 7 presents several applications using the vision-based gestural interface for natural

HCI. In particular, the following systems are described in Sections 7.2 - 7.5: virtual object

manipulation, virtual terrain navigation, finger drawing, and static gesture recognition.

• Chapter 8 concludes the dissertation with the discussions of natural hand motion constraints,

the tracking algorithms, and the automatic initialization algorithm. Proposals for future

research topics are given in Section 8.2.
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1.5 Contribution

In this dissertation several contributions are made to address the issues involved in an automated

real time visual hand tracking. Specifically, the following topics are addressed in this work:

• A novel nonparametric representation is proposed to model the feasible hand configuration

space learned from real hand motion data.

• A novel tracking algorithm, SNM search, is proposed to efficiently track human hand motions

using the new configuration representation. The algorithm can also be applied to other general

tracking scenarios.

• An extremely fast and robust hand detection and initialization algorithm is proposed. The

algorithm can be used to fully automate the hand tracking system.

• Several vision-based HCI interfaces using the hand detection results are developed. Depending

on the application scenario, different sets of gesture grammar are designed to provide a natural

interface while simultaneously ease the user learning and adaption.

The motion constraint analysis and associated tracking algorithms presented in this dissertation

are by no means limited to hand tracking. The proposed algorithms can be generalized to tackle

other tracking algorithms involving high dimensional state space such as body tracking. The SNM

is especially suitable for the cases when the objective function to be minimized is highly nonlinear.

While the proposed gesture interface applications are more task specific, the design of the systems

can be continued to be improved independent of hand detection and tracking algorithms.
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CHAPTER 2

VISION-BASED HAND TRACKING

2.1 Introduction

Developing a fully functional gesture recognition system involves research in image processing,

computer vision, machine learning, pattern recognition, statistical learning, and biomechanics. A

complete description of a gesture consists of the temporal and spatial information of the arm and

body motion. One crucial component in extracting the gestures from video input is to estimate the

hand configurations. The hand motion generally consists of 27 DOF, 6 DOF for the global motion

and 21 DOF for the finger articulation.

In this chapter we give an overview of the visual gesture tracking system (Figure 2.1). In

the following chapters we describe the function of some of the key modules including various skin

segmentation algorithms, a survey of different features and hand models used, and two approaches

to recover hand motion.

2.2 Hand Localization

The first preprocessing step in the hand-tracking system is the hand localization. The perfor-

mance of subsequent processes greatly depends on the result of segmentation. Object segmentation

is a challenging problem especially when the video consist of complex background, changing lighting

environment, occlusions, and complex motion. Many different features such as edge, motion, color,

and texture can be used to segment a hand object and provide a bounding box for that region. It is

common to combine several cues to improve the robustness of segmentation [6, 7, 8, 9, 10]. However,
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how to effectively fuse information provided by different types of features remains a challenging

problem. Depending on the application scenario, sometimes one single feature would be sufficient,

and among the low-level features, color provides a strong cue in segmenting the foreground objects

[11].

The skin color is often used in the preprocessing stage to provide initial hand location and

segmentation [12, 13, 14, 15, 16]. Two problems must be addressed when using skin color as the

segmentation cue. First, the lighting is often nonstationary and the foreground color distribution

is constantly changing. Second, to achieve user-independence, the skin color model must identify

invariance across different users. For the second problem [17] gives an analysis by collecting a large

amount of skin data and shows that skin color distribution tends to cluster in the hue-saturation-

intensity (HSI) space regardless of the race. An example of a hand image with its histogram

distribution in color space is shown in Figure 2.2. As such, many HCI systems rely on the use of

skin detection to locate human hands and faces as a preprocessing step, followed by tracking and

recognition of the segmented object.

To model the image representations in color space, different approaches were proposed. The

goal is to learn a compact and representative structure to model the color space such that it is
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Figure 2.2 (a) A hand image. (b) Color histogram in Hue-Saturation plane.

most efficient for segmentation and tracking. As observed in previous work, pixels tend to cluster

in color space due to the similarity of appearance for the same object. One approach to model

the color space is to use Gaussian mixture models[18]. The model order can be learned from a

fixed set of data and the model parameters are updated online to cope with nonstationary lighting

conditions. However, the new training data obtained from the new frame is not reliable since the

new frame is not segmented.

The other alternative is to use a nonparametric model to characterize the color content. In [17],

a color histogram is learned from a large amount of database, and Bayes rule is used to classify the

foreground region. Although this model is learned in order to capture the invariance across different

users, it is not able to handle change in lighting conditions. In [15], an algorithm is proposed to

adapt the histogram distribution from frame to frame to handle nonstationary lighting conditions.

2.2.1 Self-organizing map

Though histograms provide an easy way to model the color distribution, a proper quantization

level needs to be defined for optimal segmentation. Furthermore, an unnecessarily large data

structure is created and maintained when the foreground pixel might only cluster within one small

region. One alternative is to use a self-organizing map (SOM) [19]. The principal goal of the SOM

is to transform an incoming signal pattern of arbitrary dimension into a lower dimensional space.

In this case, the input consist of a vector of all pixels in HSI space. Detail description of an adaptive

version of the SOM algorithm can be found in [20].

Some images of the skin segmentation are shown in Figure 2.3. Because no texture or spatial

correlation information is used, the results are noisy. The top row shows the original image, and
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the bottom row shows the segmented image. It can be seen that the hand can be segmented under

different orientation with variations in skin colors. The algorithm also detects the skin region of

the face, and can be used in a face detector.

Figure 2.3 Skin segmentation using SOM.

2.2.2 CAMSHIFT

Another nonparametric approach is the Continuously Adaptive Mean Shift (CAMSHIFT) algo-

rithm [21], which is derived from Mean Shift [16]. The basic idea of the Mean Shift algorithm is to

climb the gradient of a probability distribution to find the nearest dominant mode. First, choose a

search window size and initial location. Then compute the mean location inside the search window

and update the location of the search window to center on the mean. For the case of discrete 2D

image probability distributions, the mean is determined by

xc =
M10

M00
, yc =

M01

M00
,

where

Mij =
∑

x

∑
y

xiyjI(x, y)
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and I(x, y) is the probability value at location (x, y). The original Mean Shift algorithm is designed

for static distributions. The CAMSHIFT algorithm modifies this algorithm to work for dynamically

changing distributions. In the tracking scenario, an object is constantly moving, and the compo-

sition of the image content is constantly changing. The hand could be closer to or further away

from the camera and occupy a different size area in the frame. Therefore, a fixed window approach

cannot be sufficient for the tracking task. The CAMSHIFT extends the Mean Shift algorithm by

including an additional step that would dynamically update the size of the search window based on

the zeroth moment information in the current search window. The color probability distribution

is also computed within a 2D region centered at the search window location and slightly larger

than the window size. By doing so, computation can be saved by not having to evaluate the color

probability distribution over the entire image.

When brightness is low, saturation is also low, hue then becomes noisy, since there are not

enough number of discrete hue pixels to adequately represent slight changes in red-green-blue

(RGB) color. This then leads to large fluctuations in the values. To overcome this problem,

the hue pixels are simply ignored if they have very low corresponding brightness values. Some

segmentation results using CAMSHIFT is shown in Figure 2.4.

Figure 2.4 Results of segmentation using CAMSHIFT. The top row shows some frames with the
hand skin region correctly segmented. The second row shows frames from another sequence in
which the bounding region is modified at each frame to include proper area of the foreground.
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2.3 Feature Extraction

After the hand region is identified, the next step is to extract meaningful features for tracking

and recognition. Many low-level image features are commonly used in recognition, such as Ga-

bor wavelet filter coefficients, Fourier descriptors, moments, silhouettes, contours, and eigenvalues

extracted using PCA [22]. For model-based hand tracking, geometric features play an important

role in inferring the exact hand shape. The detection of fingertips has shown to be sufficient for

recognizing many gestures when motion constraints are considered [23, 24]. Earlier work use color

markers to help correctly locate fingertip positions [23, 25]. When the application requires the

knowledge of fingertip locations only when fingers are extended, the task for searching fingertips

is simplified and reliable markerless algorithms can be implemented using template matching tech-

niques. [26, 27]. The finger edges can also serve as additional cues for gesture recognition and

model fitting [28, 29]. In [30, 31, 32, 33], contours of the hand are used to distinguish different

hand shapes. Range data is also used in addition to color information in [10]. In [9], optical flow

is computed from the image gradient in order to recover the hand motion. For view-independent

gesture classification, [34] proposes to use the seven Hu moment invariants [35] extracted directly

from silhouettes. The advantage of using Hu moments is its ease of implementation and the in-

variance to translation, rotation, and scaling. However, these invariants also limit the ability to

recover the global hand pose.

2.4 Hand Model

The high dexterity of the hand makes it an important instrument in a wide range of fields.

Depending on their specific functions, different disciplines employ a variety of hand models with

different levels of details (LOD). In most cases, a kinematical model, abstracted as a stick figure,

is sufficient to serve the purpose of understanding and synthesizing the articulated hand motion.

In many medical studies, the main concern is the exact measurements of the hand skeleton such

as locations of bone segments and joints, and length of each finger segment. The majority of the

data collected are intended for the hand biomechanics studies, and exact appearance of the hand

is not modeled. On the other hand, the goal in computer graphics is to achieve not only lifelike
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motions, but also synthesis of realistic appearance. In this respect, details such as skin texture,

skin deformation, and muscle deformations are important in modeling accurate hand structure and

movements.

In computer vision, where models are used to help analyze the hand motions in a video sequence,

a kinematical model for motion analysis and a shape model for the appearance are both needed.

Unlike the high LOD required in the computer graphics, the model should have only sufficient details

to mimic the appearance observed in a video sequence, yet general enough to be easily adapted to

a different user. In a typical video sequence, only the general shape of the hand can be extracted

reliably and the exact appearance of the skin surface and detailed structure are not available due

to sensor noise, complicated image composition, and low image resolution. Therefore, employing

high LOD in this scenario is overfitting the model and prohibits real time processing. Furthermore,

additional information could also mean a more complicated and cumbersome initialization for every

user. In a natural HCI environment, the new user should be able to start using the system as quickly

and naturally as possible.

2.4.1 Kinematical model

We model the kinematical structure of the hand to facilitate the analysis of hand motions. In

our research, the skeleton of a hand is abstracted as a stick figure in which each finger is represented

by a kinematical chain with base frame at the palm and each fingertip as the end-effector. Figure

2.5 shows such a stick figure of the palm-side view of a right hand. This kinematics model has

roughly 27 DOF based on anatomical studies.

The motion of the finger flexions, extensions, abductions, and adductions determine the finger

articulation. In this hand model, there are 21 DOF, i.e., 21 joint angle parameters, that specify

the shape of the hand. Each of the four fingers contributes 4 DOF. The distal interphalangeal

(DIP) and proximal interphalangeal (PIP) joints each have 1 DOF, and the metacarpo-phalangeal

(MCP) joint has 2 DOF, due to flexion and abduction. The thumb has a different structure from

the other four fingers and is associated with 5 DOF: one for the interphalangeal (IP) joint, two for

the thumb MCP, and two for the trapeziometacarpal (TM) joints, due to flexion and abduction.

The hand has six additional DOF from the rotational and translational motion of the palm, with
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Figure 2.5 The kinematical model.

3 DOF each. When the finger lengths are given, the inverse kinematics is computed to recover the

joint angles. In [28], a gradient-based method is given that derives the kinematical Jacobian.

2.4.2 Shape model

Different models have been reported to be implemented for tracking. One choice is the 2D patch

model (Figure 2.6 (a)) which is easy to implement and sufficient for the task when most of the global

motion occurs parallel to the image plane. However, it is not capable of handling large out-of-plane

rotations [36]. On the other hand, a 3D model (Figure 2.6 (b)) is capable of handling arbitrary

views of the hand, but it requires more computation to generate the corresponding projection when

used in the model-based tracking [37]. For the class of 3D models, many choices have been proposed

depending on the LOD desired. Previous work has employed models constructed using cubic B-

spline [38], polygonal mesh [9, 29, 34], and quadric surfaces[37, 39, 40]. Though a more detailed

model allows for better matching, it severely limits the generality. With more details encoded,

longer time and more effort is also required when the tracking is performed for a new user. A more

detailed model also increases the computation when a projection is generated. For instance, to

determine whether a projected edge point generated from one finger is occluded by another finger,

every segment of the other fingers has to be checked. An example of the pieces that are used
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to model a hand is shown in Figure 2.7. The phalanx of each finger is modeled by a truncated

cylinder and they are connected by spheres at the joint locations. The palm is constructed using

two planar patches with cylinders and spheres enclosing the sides and corners. There are a total of

40 components that make up this model.

(a) (b)

Figure 2.6 (a) An example of a 2D patch model. (b) An example of a 3D quadric model.

2.5 Estimating the Hand Motion

To estimate the hand motion from video sequences, both the local finger articulation and global

hand motion should be determined. Because of the high DOF involved, it is a very difficult task in

addition to the problems and uncertainties introduced by image noise, self-occlusions, and complex

background.

2.5.1 3D model-based approach

One approach to track the hand motion is the 3D model-based approach [2, 9, 23, 28, 38, 39,

40, 41, 42]. The idea is to compare image features between 3D hand model projections and real

hand images. The shape of the 3D hand model is controlled by specifying the joint angles. The real

hand state is recovered from the configurations that generate the best match. An illustration is

shown in Figure 2.8 where instances of silhouette and edge of the projection is shown. With a well

initialized hand model, this approach can generate a very accurate estimate. However, model-based

tracking involves the estimation of parameters in high-dimensional space, which is 27 parameters

17



Figure 2.7 The composition of a 3D hand model.

(a) (b)

Figure 2.8 (a) An example of the 3D model and corresponding silhouette of the projections. (b)
An example of the edge of the projections that fits a real hand image.

in the case of the hand. Wu and Huang [43] showed that the problem complexity can be reduced

by a divide-and-conquer approach which estimates the global and local motion separately. Another

problem is the generation of the projection image. Since the articulated object consists of many

segments, the computations involved in determining edge pixel visibility could be very large. In
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this dissertation, we will focus on algorithms for tracking the finger articulation, that are made

feasible by considering the motion constraints. Most of the previous work on model-based hand

tracking differs only in terms of the tracking algorithm and the model used. We will approach the

more fundamental problem by modeling the feasible configuration space to reduce the search space.

2.5.2 Appearance-based approach

Another strategy for recovering the hand state is to use the appearance-based approach [22, 29,

30, 34, 37, 44, 45], which attempts to estimate the hand states directly from the image features.

Contrary to the model-based approach, this method is most suitable for recognizing a finite set

of gestures. For some applications, only a few distinct gesture classes will be sufficient to control

the interaction, and an accurate hand motion tracking is not necessary. Since this approach is

performed independently at each frame, it could be used to automatically initialize hand postures

or recover the correct hand shape when model-based approach lost tracks.

The appearance-based approach basically involves a learning and classification problem. A

nonlinear mapping is learned from a large number of training images. This approach can quickly

estimate the hand configuration once the mapping is learned. However, it is difficult to determine

the structure of the mapping function, the appropriate feature space, and the optimal training data

set. Further, because it is a classification problem, gestures with similar pose and shape will be

difficult to be differentiated.
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CHAPTER 3

HAND MOTION CONSTRAINTS

3.1 Introduction

The difficulties of tracking the human hand arises mainly from the large DOF involved in the

motion. As a result, estimating the correct hand motion and configuration parameters is equivalent

to a search problem in the high-dimensional space. Other difficulties include the self-occlusions of

different fingers, and clutters from the image background which introduce additional uncertainties

for the estimation.

Hand and finger motions are constrained so that the hand cannot make arbitrary gestures.

There are many examples of such constraints. For instance, fingers can only bend backward so

much, and for many people, the little finger cannot be bent without bending the ring finger. The

natural movements of human hands are implicitly restricted by such motion constraints.

Some motion constraints may have closed-form representations, which are often employed in

the current research on animation and visual motion capturing [23, 38, 46]. However, many motion

constraints are very difficult to express in closed forms. How to model such constraints still requires

further investigation. To begin the constraints analysis, we will first summarize in Section 3.2 some

of the constraints that have been adopted in previous work. We describe three types of motion

constraints and explain how we are able to initially reduce the number of parameters required to

represent the hand motion to 15 from 21. Then we describe our approach to learn the intrinsic

representation of the human hand motion from real hand motion data in Section 3.3. To compactly

model the feasible configuration space, a semiparametric representation is proposed in Section 3.4.

In Section 3.5, we propose a more flexible model using a nonparametric representation.
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3.2 Natural Constraints

Natural hand motion constraints can be roughly divided into three types. The first type of

constraint, usually referred to as static constraints, defines the maximum ranges of finger motions

constrained by hand anatomy. The second type of constraint is usually referred to as dynamic

constraints in previous work. These constraints describe the motion correlations due to the limits

imposed on joints during motion. The third type of constraint is applied in performing natural

motion and has not yet been fully explored. Below we will describe each type in more detail.

3.2.1 Anatomical constraints

These constraints are the limits of the range of finger motions as a result of hand anatomy. Such

constraints determine the boundaries of feasible states in the feasible configuration space. They

are usually called static constraints in previous work. We will only consider the range of motion of

each finger that can be achieved without applying external forces. With an applied external force,

such as bending the fingers backward using the other hand, a hand is able to achieve greater range

of motion. However, this is outside the scope of current study. Anatomical constraints are usually

represented by the following inequalities:

0o ≤ θMCP−F ≤ 90o

0o ≤ θPIP ≤ 110o

0o ≤ θDIP ≤ 90o, and

−15o ≤ θMCP−AA ≤ 15o (3.1)

The maximum and minimum values of the joint angles are different for different people, but they

generally fall within ranges of Equation (3.1). Another commonly applied anatomical constraint

states that the middle finger displays little abduction/adduction motion. The following approxi-

mation is made for middle finger:

θMCP−AA = 0 (3.2)
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This will subtract 1 DOF from the 21 DOF model.

Similarly, the TM joint also displays limited abduction motion and will be approximated by 0

as well:

θTM−AA = 0 (3.3)

As a result, the thumb motion will be characterized by four parameters instead of five. Finally, the

index, middle, ring, and little fingers are planar manipulators, i.e., the DIP, PIP, and MCP joints

of each finger move in one plane since DIP and PIP joints only have 1 DOF for flexion.

3.2.2 Motion correlations

These constraints are the limits imposed on joints during finger motions. They depict the

feasible trajectories of state transitions in the configuration space. Motion correlation constraints

are often referred to as dynamic constraints and can be subdivided into intrafinger and interfinger

constraints. The intrafinger constraints are the constraints between joints of the same finger. A

commonly applied intrafinger constraint [23, 38] based on hand anatomy states that for the index,

middle, ring and little fingers, in order to bend the DIP joints, the PIP joints must also be bent.

Their relations can be approximated as follows:

θDIP =
2
3
θPIP (3.4)

The relation shown in Equation (3.4) is only an approximation of the finger motion since people are

able to bend the PIP joints while keeping DIP joints still. Furthermore, as θDIP increases beyond

roughly 60o, this relationship ceases to hold. However, this range is sufficient for posture estimation.

A 22-sensor glove will be needed in order to learn the more accurate relationship between these

two joints.

By combining Equations. (3.1)-(3.4), we are able to reduce the 21 DOF model to one that is

approximated by 15 DOF. Experiments in previous work have shown that hand postures can be

estimated using these constraints without severe degradation in performance.

Another weak constraint that is also sometimes used in previous work relates DIP and MCP
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Table 3.1 Values of σ and σ′ for each finger.

Finger σ σ′

Index −54o 25o

Middle −45o 20o

Ring −44o 48o

motion of the four fingers as follows:

θMCP = kθPIP , k ≥ 0 (3.5)

However, such a constraint is not very accurate and often requires the adjustment of k, which is

usually set to 1/2 to begin with. As a result, this constraint is not sufficient to reduce the overall

DOF of the hand model. In our approach, we will learn such constraints through empirical data.

Interfinger constraints are those imposed on joints between adjacent fingers. For instance, when an

index MCP joint is bent, the middle MCP joint is forced to bend as well. Lee and Kunii [23] have

performed measurements on several people and obtained a set of inequalities that approximates the

limits of adjacent MCP joints. Chang and Tsai [46] give a simpler representation based on results

from [23]:

θL,MCP−F + σR ≤ θR,MCP−F ≤ θL,MCP−F + σ′R

θR,MCP−F + σM ≤ θM,MCP−F ≤ θR,MCP−F + σ′M

θM,MCP−F + σI ≤ θI,MCP−F ≤ θM,MCP−F + σ′I (3.6)

where the subscripts I, M, R, and P denote the index, middle, ring, and little fingers, respectively.

The values of σ and σ′ are listed in Table 3.1. Note that their representations are no longer as

simple as those in Equations (3.4) and (3.5).

There are a few more constraints regarding the thumb and finger abduction angles, and details

can be found in [23, 38] on how these constraints were used to facilitate tracking. However, more

motion correlation constraints exist that cannot be explicitly represented by equations.

23



3.2.3 Natural motions

The third class of constraints is imposed by the naturalness of hand motions and are subtler to

detect and quantify. Almost nothing has been done to account for these constraints in simulating

a natural hand motion. The other two classes of constraints are the results of hand bone structure,

ligaments, tendons, and muscles acting upon each other that produce the feasible configuration. In

contrast, the natural motion constraints differ from the other two types of constraints in that they

have nothing to do with limitations imposed by hand anatomy, but rather are results of common

and natural movements. For instance, the most natural way for every person to open a hand from

a closed fist would be to extend all the fingers at the same time instead of curling one finger at a

time. Another instance is when we curl multiple fingers together; we tend to move them together

rather than one by one. Even though the naturalness of hand motions differs from person to person,

it is broadly similar for everybody. This type of constraint also cannot be explicitly represented

by equations in terms of joint angles. Some guesses, such as energy minimization, have been made

regarding the explanations of such behaviors, but further investigation is still required.

3.3 Learning Constraints in High-Dimensional Space

It is generally difficult to explicitly represent all the constraints of natural hand motions in

closed forms. However, they can be learned from a large and representative set of training samples;

therefore we propose to learn the constraints by modelling a compact representation of the feasible

configuration space.

3.3.1 Data collection

The articulate local hand motions, e.g., finger motions, can be represented by a set of joint

angles Θ = (θ1, . . . , θn), where n is the number of joint angle measurements. In order to capture

the hand states and motion, a glove-based device is a natural choice since it has sensors attached

over hand joints and directly measures each joint angle. In our study, we employ a right-handed

18-sensor CyberGlove developed by Virtual Technologies Inc. Although the goal of vision-based

hand motion analysis is to be able to recognize hand configurations without the use of attached
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external devices, a glove-based device will help in collecting ground truth data, which enable the

modeling and learning process in visual analysis.

The glove we are using [47] has four sensors for the thumb, a MCP and a PIP sensor for the

MCP(θMCP−F ) and PIP(θPIP ) flexion angles for each of the four fingers, and three more abduction

sensors for the abduction/adduction angles (θMCPAA) between these four fingers. There are total

of 15 sensor readings of the finger joint angles (Figure 3.1); therefore, we are able to characterize

the local finger motion by 15 parameters. The remaining three sensors are used to model the palm

arch and to measure wrist pitch and yaw angles. However, in our current research, we are assuming

that the palm is a rigid object and that we are only interested in the local finger motions; therefore,

these three sensors for the palm and wrist angle measurements are not being used. The glove can

be calibrated to measure the joint angles to within 5o, which is acceptable for gesture recognition.

Finger postures that differ by 5o would still appear to be the same posture. Finally, the glove is

capable of recording approximately 100 sets of 18-sensor records per second, which will enable us to

accurately record the motions with a dense data set. We have collected a set of more than 30 000

joint angle measurements by performing various natural finger motions.
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Figure 3.1 The sensor locations.

3.3.2 Initial data analysis

It would be ideal to determine a compact parametric representation of the state space, which

would greatly enhance the tracking performance by easily avoiding the infeasible region and focus
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on the more probable states. Due to the complex motion and the high DOF, it is not possible

to come up with a simple parametric representation. However, we can still learn a more compact

representation by eliminating the obvious redundancies and observing motion trajectories in Ξ.

Instead of searching in the 20-dimensional space, we would like to use various constraints to

reduce the dimensionality of the joint angle space and find a smaller feasible space, which we

will call the configuration space Ξ. Several commonly known constraints due to the anatomy of

the hand can be used to initially reduce the dimensionality to roughly 15. To further reduce the

dimensionality, we have collected more than 30 000 joint angle measurements from various hand

motions using CyberGlove. Then PCA is applied to eliminate the redundancy. We can project

Θ ∈ R20 into a 7-dimensional subspace while maintaining 95% of the information. Therefore, the

configuration space Ξ is defined in R7.

3.3.3 Related work

Learning the true manifold structure in a high-dimensional space is a challenging problem [48].

Previous work such as ISOMAP [49], locally linear embedding [50], and multidimensional scaling

[51] generally represents the manifold using piecewise linear assumption. A clustering algorithm is

first applied to identify locally similar patches, which is then approximated by a linear manifold in a

lower dimensional space determined by principal components analysis (PCA) or other dimensional-

ity reduction techniques. For the case of object recognition, an affinity measure is defined between

manifolds that would maximize the class separability [52, 53, 54]. For tracking, a transition proba-

bility table is constructed to model the motion dynamics [55, 56]. It is generally a difficult problem

in determining a suitable clustering algorithm and to construct an accurate manifold assumption.

3.4 Semiparametric Representation

3.4.1 Basis states

After the initial dimensionality reduction procedure, we continue to investigate the structure of

the embedded manifold that characterize the hand motion in Ξ. Let us define 28 basis configurations

as follows. For each basis state bi, each finger is either fully extended or fully curled. A subset of

26



the basis states is shown in Figure 3.2(a). The intuition is that each finger moves between these

two extremal states, and these two configurations can be used to help identify the boundary of

feasible motions. Empirical study shows that feasible hand configurations are roughly bounded by

the convex hull defined by these basis states. Besides collecting static hand hand posture data,

we also collected sequences of configurations during hand motion in order to study the temporal

pattern. We are especially interested in the motion trajectories between the basis states.

3.4.2 Observations in lower dimensional space

Since it is impossible for us to visualize data in high dimensional space such as R7, we take

a subset of the basis states and the corresponding hand motion trajectories, and performed the

same analysis as described earlier in order to visualize the result. A lower-dimensional illustration

is shown in Figure 3.2(b), in which each point represents a real hand configuration in Ξ. In this

example, the movements involving index, middle, and ring fingers are chosen. Since only three

fingers are moving, we could reduce the dimensionality down to three without much degradation in

data representation. The corresponding basis states are also shown in Figure 3.2(a), and they lie

roughly at the corner of the cube whose edge is formed by a collection of the motion trajectories

between the basis states. Though the interior of the cube is shown to be empty in this picture due

to staged performance, if other random motion involving the three fingers are included, they will

appear in the inside of the cube. This verifies the conjecture that the convex hull defined by the

basis states roughly covers the entire range of feasible configuration space.

3.4.3 Semiparametric model

Our observations of the motion trajectories between basis states in Ξ show that they are roughly

linear and that natural hand articulation can be characterized by these linear manifold Lij spanned

by bi and bj , with i 6= j:

Ξ ≈
⋃

i,j

Lij , where Lij = span(bi,bj) (3.7)
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(a) a subset of basis configurations
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Figure 3.2 Hand articulation in the configuration space, which is characterized by a set of basis
configurations and linear manifolds.

3.5 Nonparametric Representation

Although the previous representation gives a compact description of the motion trajectories, it is

generally difficult to obtain a correct manifold parametrization. Furthermore, for more complicated

finger motions, the linear assumption might not hold. In addition, PCA can only model the

global characteristics. It is not capable of identifying the local manifold structures and their true

dimensionality.

We propose an alternative that adopts a nonparametric representation and models the entire

feasible space directly from the set of NC collected Cyberglove data. We denote this discrete space

representation by Ψ to differentiate from the semiparametric representation Ξ. The entire feasible

space Ψ is defined by the set of θi, i = 1 . . . NC , where each θ ∈ R20 represents one sampled config-

uration. Then a Kd-tree structure is constructed so that given any point θ ∈ R20, we can quickly
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locate an approximated nearest neighbor θ′ ∈ Ψ. One of the benefits of using this representation

is that no learning is required to find a closed form of the manifold representation of Ψ. Therefore,

this approach avoids the error induced by incorrect approximations of the representation. Further-

more, the motion constraints are automatically embedded in this discrete model. The model can

be better refined when more samples are collected. This advantage is gained as a trade off for the

cost of the computer memory, which is inexpensive nowadays.
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CHAPTER 4

TRACKING HUMAN HAND MOTION

4.1 Introduction

In Chapter 3 we described two motion constraint representations. The first one uses a semi-

parametric representation to model the motion trajectories between different basis states. The

second one uses a discrete representation of the feasible configuration space modeled directly from

collected motion data. In this chapter we first describe the general tracking framework using the

sequential Monte Carlo (SMC) approach, and then present a tracking algorithm for the semipara-

metric constraint representation in the subsequent sections. In Chapter 5 we will give a modified

SMC tracker that is suitable for tracking in the discrete feasible configuration space.

4.2 Sequential Monte Carlo

4.2.1 Formulation

To formulate the problem of visual tracking, define xt to be the target state, and zt the image

observations at time t. The state xt is modeled as a Markov process with transition density

p(xt|xt−1). The image observations zt are assumed to be conditionally independent given the

process xt, t ≥ 0. In practical applications, xt could denote any object state such as an articulate

model configuration, a set of body joint angles or motion parameters, or a shape configuration, and

zt corresponds to any extracted image features.

The objective is to estimate the true state xt given the set of available measurements z0:t from

time 0 to t. From the Bayes formulation, we obtain the following recursive relation for the posterior
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distribution [57]:

p(xt|z0:t) =
p(zt|xt)p(xt|z0:t−1)

p(zt|z0:t−1)
(4.1)

p(zt|z0:t−1) =
∫

p(zt|xt)p(xt|z0:t−1)dxt (4.2)

In this recursive updating rule, the prior p(xt|z0:t−1) is obtained through a prediction stage via the

Chapman-Kolmogorov equation:

p(xt|z0:t−1) =
∫

p(xt|xt−1)p(xt−1|z0:t−1)dxt−1 (4.3)

assuming that the initial probability density function (pdf) p(x0|z0) is known.

This recursive propagation of the pdf cannot be determined analytically except for a few re-

stricted cases such as the Kalman Filter. It serves mainly as a conceptual tool for solving general

tracking problems. One popular approach to implement the recursive filter (Equation (4.1)) is the

extended Kalman filter (EKF) [58]. This linearization technique could be applicable to nonlinear

models with additive Gaussian noise. Another technique, known as the Unscented Kalman Filter

(UKF), uses the unscented transform in an EKF framework [59, 60]. Using UKF, p(xt|z0:t) is also

approximated by a Gaussian model. A set of points are deterministically selected from this approx-

imation and propagated through the nonlinearity filter. The Gaussian approximation parameters

are then re-estimated. The main limitation with these approaches is that p(xt|z0:t) is always ap-

proximated to be Gaussian and such a description will not be sufficient for non-Gaussian density.

In many real applications, such as visual tracking in noisy and complex backgrounds, multimodal

densities are not uncommon.

One practical implementation of the recursive framework depicted by Equation (4.1) is the SMC

algorithm, also known variously as bootstrap filtering [61], the Condensation algorithm [62, 63],

and particle filtering [64]. The key idea is to represent the posterior distribution by a set of N

random samples si, i = 1 . . . N with associated weights πi and to determine state estimates based

on {si, πi}.
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4.2.2 Exponential increase in computational complexity

One problem with the particle filters is the exponential increase in the number of particles to

represent the pdf as the number of the dimensions increases. A common solution to reduce this

computation complexity is by identifying a more compact subspace manifold representation of the

pdf or equivalently, by finding a importance function that is easier to sample from [65]. Thus, in-

stead of sampling from p(xt−1|z0:t−1), the particles are sampled from another auxiliary distribution

q(xt−1|z0:t−1). After imposing the dynamical model p(xt|xt−1), the particles now approximates the

distribution q(xt|z0:t−1) and the weights for p(xt|z0:t) are obtained from a compensated term:

πi
t =

p(xi
t|z0:t−1)

q(xi
t|z0:t−1)

p(zt|xi
t) (4.4)

In Section 4.3 we present an algorithm that improves the tracker performance by using an auxiliary

sampling function with applications in tracking finger articulations.

4.2.3 Degeneracy problem

Another problem with the particle filter is the degeneracy phenomenon, which occurs when

most of the samples have negligible weights. It has been shown that this is impossible to avoid

as the variance of the importance weights can only increase over time [66]. As a result, a large

computation effort is wasted in maintaining these particles. In [67], a measure of the degeneracy is

given by computing the effective sample size Neff :

Neff =
Ns

1 + Var(w∗it )
(4.5)

where w∗it = p(xi
t|z0:t)/q(xi

t|xi
t−1, zt) is referred to as the true weight. However, Equation (4.5)

cannot be evaluated exactly, and an estimate N̂eff is computed instead:

N̂eff =
1∑Ns

i=1(w
i
t)2

(4.6)

where wi
t is the normalized sample weight. We notice that Neff ≤ Ns, and severe degeneracy is

observed when Neff is small.
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To reduce the effects of degeneracy, one popular algorithm is to include a resampling stage when

significant degeneracy is observed. Examples include stratified sampling, residual sampling [67],

and systematic resampling [68]. The resampling has the advantage that the importance weights

are easily evaluated and the importance density can be easily sampled.

However, even with resampling, the prediction stage combined with the use of importance

sampling does not guarantee the newly generated set of samples will have significant weights. This

leads us to consider the use of descent algorithms that drives the samples toward the peak of the

pdf. In Chapter 5, we present another tracker which introduces an additional stage of descent

search embedded in the modified particle filter.

4.3 SMC Tracking with Importance Sampling

Because the finger articulation involves a high DOF, any SMC algorithm will require a large

number of samples for representing the density propagation, and an intensive computation will

be unavoidable. Fortunately, we may reduce the complexity by making use of the finger motion

constraints as an outside prior for the importance sampling technique. One suitable choice of the

constraint is the semiparametric constraint representation described in Section 3.4. Let ft(x
(n)
t ) =

p(xt = x(n)
t |z0:t−1) be the tracking prior. To approximate the posterior p(xt|z), we draw random

samples from another distribution gt(xt), instead of the prior density ft(xt). Below we will give a

brief description of this method. The details can be found in [42].

For natural hand motion, each hand configuration x should be either around a basis state

bk, k = 1, . . . , M , or on the manifold Lij , where i 6= j, i, j = 1, . . . , M . Suppose at time frame t,

the hand configuration is xt, and it is not near any basis states. We find the projection x̄t of xt

onto the nearest manifold L∗ij , and obtain

st = 1− (xt − bi)T (bj − bi)
||(bj − bi)||
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Then, random samples are drawn from the manifold Lij according to the density pij , i.e.,

s
(n)
t+1 ∼ pij = N(st, σ) (4.7)

x̃(n)
t+1 = s

(n)
t+1bi + (1− s

(n)
t+1)bj (4.8)

Next, perform random walk on x̃(n)
t+1 to obtain hypothesis x(n)

t+1, i.e.,

x(n)
t+1 ∼ N(x̃(n)

t+1,Σt+1) (4.9)

Define the importance function to be gt+1(x
(n)
t+1) = p(s(n)

t+1|st)p(x(n)
t+1|x̃(n)

t+1), and we have

gt+1(x
(n)
t+1) ∼ 1

σ|Σ|1/2
exp{−(s(n)

t+1 − st)2

2σ2

− 1
2
(x(n)

t+1 − x̃(n)
t+1)Σ

−1(x(n)
t+1 − x̃(n)

t+1)}

Finally, the weights must be properly compensated:

π
(n)
t+1 =

ft+1(x
(n)
t+1)

gt+1(x
(n)
t+1)

p(zt+1|xt+1 = x(n)
t+1) (4.10)

If the previous hand configuration is at one of the basis configurations, say xt = bk, it is

reasonable to assume that it selects any one of the manifolds of {Lkj , j = 1, . . . , M} with the same

probability. Consequently, random samples are drawn from a mixture density pk. The process of

generating hypotheses is illustrated in Figure 4.1 The results of using this tracking algorithm is

shown in Section 4.6.
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Figure 4.1 An illustration of hypotheses generation. (a) xt is nearby a basis state and (b) xt takes
on a manifold.
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4.4 Divide and Conquer

In [43], Wu and Huang propose to simultaneously estimate both global and local hand mo-

tions by a divide-and-conquer approach. Rather than estimating the optimal state parameters

altogether, the global motion and local motion parameters are estimated separately and combined

in an iterative manner. Different algorithms can be used to independently estimate each set of

parameters, such as the algorithm based on genetic algorithm (GA) used in [43]. For the tracker

presented in Section 4.3, we employed the iterative closed point algorithm [36]. The algorithm finds

point correspondences between model projections and edge observation which helps to recover the

global motion parameters. These global and local motion estimation steps are repeated until they

converge to a local stationary point that minimizes the discrepancies between the image observation

and model projection. Our experiments have shown that this approach reduces the computational

complexity while effectively estimates the hand motion.

4.5 Likelihood Evaluation

We employ edge and silhouette observations to measure the likelihood of hypothesis as in [36]

(see Figure 4.2). The hand model is first projected onto the image plane to obtain the edge points

that define the projected shape. If K projected model samples are generated, edge detection is

performed on the points along the normal of this sample. Assuming that M edge points {zm,m =

1, . . . , M} are observed, and the clutter is a Poisson process with density λ, then,

pe
k(z|xk) ∝ 1 +

1√
2πσeqλ

M∑

m=1

exp−(zm − xk)2

2σ2
e

(4.11)

We noticed that edge points alone could not provide a good likelihood estimation; therefore,

we also consider the silhouette measurement. The segmented foreground pixels are XORed with

the projected silhouette image, and the likelihood is computed as ps ∝ exp− (AI−AM )2

2σ2
s

. Since a

well-matched projection contributes lower cost, we define the objective function at time t to be the

35



negative of the likelihood function:

f(x, z) = −p(z|x) ∝ −ps
K∏

k=1

pe
k (4.12)

Shape
Model

Normal
Line

Edges

(a) (b)

Figure 4.2 Shape measurements.

4.6 Experiments

The algorithm proposed in this chapter is tested on synthetic hand motion in order to obtain a

quantified analysis for evaluation. We also applied the algorithm to track real hand motion.

4.6.1 Simulation

It is generally difficult to obtain the ground truth of hand motions from a real video sequence.

Therefore, we have produced a synthetic sequence of 200 frames containing typical hand movements.

This synthetic sequence will facilitate the quantitative evaluations of our algorithm. Some examples

of the synthetic motion is shown in Figure 4.3.

(a) (b)

Figure 4.3 An example of the results from tracking the synthetic hand motion sequences. (a) A
synthetic hand image and (b) the image with model projection aligned.

Some of the motion parameters are shown in Figure 4.4 for comparison. The solid curves are
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our estimates and the dash curves are the ground truth. The figure plot the x translation with

average error of 3.98 pixels, the rotation with average error of 3.42o, the PIP joint of the index

finger with average error of 8.46o, the MCP flexion of the middle finger with average error of 4.96o,

the PIP joint of the ring finger with average error of 5.79o, and the MCP abduction of the ring

finger with average error of 1.52o.
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Figure 4.4 The comparison of our results and the ground truth for tracking a synthetic hand
motion sequence. The blue dash curves are the ground truth, and the solid green curves are our
estimates.

4.6.2 Real sequences

We also perform experiments on real hand motion sequence for local motion capturing(Figure 4.5).

The first set of experiments focuses on the finger articulation tracking and comparisons with other

algorithms. The results show that our algorithm outperforms others with a significantly less num-

ber of particles used. In the second set of experiments (Figure 4.6), global motion is included in
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(b) Random search 5000 points in R20.

(a) Random search 5000 points in R7.

(c) Condensation with 5000 points in R20.

(d) Condensation with 3000 points in R7.

(e) Our approach with 100 samples.

Figure 4.5 Comparisons of different methods on real hand sequences. In this sequence only finger
articulation is considered. Our method is more accurate than the other two methods.

the testing sequences and comparisons are also made with other algorithms.

In both experiments, we first compare with the random search scheme in theR7 space with 5000

random samples. Since it makes use of no constraints, the performance is poor for local motion

estimation and also degrades the global pose estimation. The second scheme uses Condensation

with 3000 samples in R7. It performs better than the first method, but it is still not robust enough.

The third scheme is the proposed method, and it works accurately and robustly. The articulation

model makes the computation more efficient and the local motion estimation enhances the accuracy

of hand pose determination. In these experiments, a 2D patch model in the 3D space is used to

generate the model projection. The implementation is done in MATLAB which takes roughly 1 min

to process each frame. Although the hand state estimate is accurate, and significant computation is
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(a) Random search 5000 points in R7.

(b) Condensation with 3000 samples in R7.

(c) Our approach with 100 samples.

Figure 4.6 Comparisons of different methods on real hand sequences. In this sequence the hand
undergoes both local finger articulations and global rotations and translations. Our method is more
accurate than the other two methods.

reduced, the processing time is still too long. Also, the patch model can not handle global motions

with large out-of-plane rotation.
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CHAPTER 5

STOCHASTIC NELDER-MEAD SIMPLEX
SEARCH

5.1 Introduction

The particle filter is a top-down approach that has the advantage of providing multiple hypothe-

ses which help to resolve the ambiguities encountered in tracking. But depending on the resampling

scheme and the importance function chosen, many of the generated particles might become insignif-

icant. On the other hand, the bottom-up approach performs a sequential search for the current

estimate x∗ in the vicinity of the previous estimate x∗t−1. Algorithms in this class are termed direct

search methods and are described in Section 5.2. In Section 5.3 the Nelder-Mead (NM) simplex

search is introduced which works for arbitrary objective function and state space. We describe in

Section 5.4 how it can be adapted to work in the discrete feasible configuration space. Then a new

algorithm that combines the strength of both top-down and bottom-up approaches is presented in

Section 5.5. Several experiments are performed for the algorithm proposed and results are shown

in Section 5.6.

5.2 Direct Search Method

Given the object state x∗t−1 at time t − 1, the goal is to identify x∗t which minimizes certain

objective function f(x) through an iterative descent method. When the objective function is
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differentiable, a recursive procedure to estimate x∗ proceeds as follows:

xk+1 = xk − αkDk∇f(xk) (5.1)

where α is a positive scalar that determines the step size, D is a positive definite symmetric

matrix, and ∇f(x) is the gradient of the objective function. Df(x) together determines the descent

direction. With appropriate assumptions, the iteration will converge to a local minimum. However,

in many real applications, the gradients are not readily accessible or are computationally expensive

to evaluate. In many cases, the objective function itself is nonlinear and the closed form is difficult

to obtain; therefore, we must consider the nongradient descent algorithms. For instance, in visual

tracking, the objective function is often defined in terms of the matching function, such as the

negative of the likelihood function −p(z|x) (Section 4.5). Although we can always compute a

matching score given any model configuration and the current input image, the function itself is

highly nonlinear.

5.3 Nelder-Mead Simplex Search

Having only the access to the function values f(x), we propose to implement the NM search

method [69, 70], which belongs to the class of direct search methods. This algorithm is ideal

for searching in the discrete space Ψ since the objective function defined over this space is also

discontinuous. The NM method attempts to minimize a scalar-value nonlinear function of n real

variables using only function values, without any knowledge of the gradient information, whether

explicit or implicit. The NM method maintains at each iteration a nondegenerate simplex S, which

is a geometric object defined by a convex hull of n + 1 points {x0, . . . ,xn} in Rn.

Through a sequence of geometric transformations, the initial simplex moves, expands, or con-

tracts towards the minimum. At each step, the worst vertex with highest cost xmax = arg max
x∈S

f(x)

is replaced by a new vertex xnew which has a smaller function value. The basic form of NM method

is outlined in Figure 5.1.

The iteration for NM-method typically terminates when a maximum number of iteration is
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Iteration of the Simplex Method
Compute the centroid

x̂ =
1
n

(
n∑

i=0

xi − xmax) (5.2)

Step 1: (Reflection Step) Compute

xr = (1 + α)x̂− αxmax (5.3)

Then compute xnew according to the following three cases:

1. (xr has min cost) If f(xmin) > f(xr), go to Step 2.

2. (xr has intermediate cost) If max {f(xi)|xi 6= xmax} > f(xr) ≥ f(xmin), go to Step
3.

3. (xr has max cost) If f(xr) ≥ max {f(xi)|xi 6= xmax}, go to Step 4.

Step 2: (Attempt Expansion) Compute

xnew = γxr + (1− γ)x̂. (5.4)

Define

xnew =
{

xexp if f(xexp) ≤ f(xr),
xr otherwise,

(5.5)

and form the new simplex by replacing the vertex xmax with xnew.

Step 3: (Use Reflection) Define xnew = xr. and form the
new simplex by replacing the vertex xmax with xnew.

Step 4: (Perform Contraction) Define

xnew =
{

xnew = βxmax + (1− β)x̂ if f(xmax) ≤ f(xr),
xnew = βxr + (1− β)x̂ otherwise,

(5.6)

and form the new simplex by replacing the vertex xmax with xnew.

Figure 5.1 The Nelder-Mead simplex search algorithm.
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reached or the simplex becomes sufficiently small:

n∑

j=0

‖ xk
j − xk+1

j ‖2< ε (5.7)

where xk
j ∈ Sk and Sk is the simplex generated at the kth iteration.

5.4 Two-Stage Nelder-Mead Search

Given the hand state θt, the NM method begins by generating an initial simplex S0
t around

θt, and the iterative procedure guides the search towards a minimum. Although NM method is

suitable for searching when the gradient is not easily accessible, the basic form of NM does not

take advantage of the motion constraints embedded in the feasible space representation Ψ. Instead

of performing the unconstrained simplex search in the continuous domain, we restrict the simplex

vertices θi to be one of the samples θj ∈ Ψ. At the kth iteration, a new vertex θnew is generated as

described in Section 5.3, and a nearby configuration θ′ is located to replace θmax ∈ Sk+1
t :

θ′ = [θnew]+ = arg min
θ∈Ψ

‖ θnew − θ ‖ (5.8)

There are many algorithms and data structures designed for locating a nearest sample point in a

set from any given location, such as Voronoi diagram [71], Kd-tree [72], and Approximate Near-

est Neighbors [73]. In our experiment, we implemented the Kd-tree structure. Since the NM

method will converge towards a minimum, the nearest neighbor does not need to be very exact. By

constraining the searching to the discrete space Ψ, we enforce the prediction to be feasible states.

Since the data we collected cannot possibly cover the entire feasible space, there exist gaps

and discontinuities in Ψ. Searching only in the discrete domain will not guarantee an optimal

convergence; therefore, we propose to perform a two stage hierarchical simplex search. The first

stage conducts the search in the discrete domain starting with a large simplex. Once the simplex

terminates with a set of vertices in a smaller region, we then continue the iteration in the continuous

domain with a more strict termination condition.
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5.5 Stochastic Nelder-Mead

Like all bottom-up search algorithm, the NM search algorithm presented in Section 5.3 fails

when the cost function has multiple minima. Because of the noise presented in image feature

extraction and the nontrivial definition of the cost function, f(x) can not be convex. Furthermore,

the result of the NM algorithm outputs only the maximum likelihood estimate x∗t = arg max
x

p(zt|x)

when the cost function is defined as f(x) = −p(zt|x).

To tackle the problems of particle degeneracy in top-down approach and the nonconvex objective

function for bottom-up approach, we propose a stochastic NM search algorithm by incorporating

the NM algorithm within the SMC tracking framework. Rather than using a set of random samples

to model the pdf evolution, we use a set of simplices, each generated from a mode of the pdf to

locate the new modes through NM search. The new algorithm shares the advantages of both

approaches to reduce the limitations induced by employing the NM search or particle filtering

alone. From the bottom-up approach perspective, the implementation of multiple hypotheses and

resampling greatly increases the chances of reaching global minima. And by considering the prior

p(xt|z0:t−1) (Equation. (4.1)) a more accurate hand state estimation can be achieved. From the

top-down approach perspective, each particle will be close to a mode and have a significant weight.

Cham and Rehg [74] also employed an iterative Gauss-Newton method to produce the modes of

the likelihood p(zt|xt). In our case, NM method is employed to handle the more general cases. The

additional stage of the NM descent algorithm is similar to the propagation depicted in p(xt|z0:t−1) =
∫

p(xt|xt−1)p(xt−1|z0:t−1)dxt−1, where the dynamics p(xt|xt−1) is often modeled as a Gaussian. In

the case of NM search, the iterative procedures automatically drives the simplex towards a new

mode. One concern with this algorithm is the loss of diversity in particles as most of the particles

will be forced to converge to a few peaks. This effect, known as sample impoverishment, can be

reduced by having a larger perturbation when generating the initial simplex from each node. The

complete algorithm is shown in Figure 5.2.
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At frame t
FOR i = 1 to N

• Sequential Importance Sampling

– Draw samples x̃i
t from q(xt−1|z0:t−1).

• NM Simplex Search

– Generate one initial simplex for each particle: Si0 = {x0
j = x̃i

t + ∆j , j = 1 . . . n}
where ∆j is a random perturbation vector.

– Perform NM search until termination criteria is met to reach Si∗.

• Parameter Update

– Obtain the new particle from the centroid of the final simplex:

xi
t =

1
n + 1

∑

xj∈Si∗
xj

– IF the simplex converged according to Equation. (5.7), then compute the im-
portance weight as

πi
t =

p(xi
t|z0:t−1)

q(xi
t|z0:t−1)

p(zt|xi
t)

ELSE assigned 0 to πi
t.

END

• Resampling

– Mutiply/discard particles using the systematic resampling scheme [68] to obtain
a new set of N particles.

Figure 5.2 The stochastic Nelder-Mead search algorithm.

5.6 Experiments

Though inspired by the hand tracking problem, the SNM algorithm itself can be applied to

other general tracking problems. Some results of applying SNM in a general template tracking

scenario are shown in Section 5.6.1, and the hand tracking results are shown in Sections 5.6.2 and

5.6.3.
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5.6.1 2D object tracking

The 2D templates are initialized in the first frame. The object state has 3 DOF, namely,

{Tx, Ty, θ}. Two tracking sequences are shown. Both trackers use normalized cross-correlation as

the matching function to determine p(z|x). In Fig. 5.3, we track a person walking in the hallway.

This sequence was motivated by the surveillance and security applications in which it is critical

to be able to track human movements in a scene. In Fig. 5.4, the finger motion is accurately

tracked. The results can be used for HCI applications that require pointing interfaces, such as a

virtual mouse. In both sequences, five simplices are used to search in each frame. The results show

that the algorithm can effectively track objects in cluttered background. The tracker operates at

real-time on a 2-GHz Pentium PC for both sequences.

Figure 5.3 Tracking a person walking in the hallway.

Figure 5.4 Tracking one finger pointing motion.
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5.6.2 Capturing global hand motion

This section shows the results of testing the SNM method on real hand motions. We use a 3D

hand model and each finger phalanx is represented using a truncated cylinder. Hand projection

is generated as described in [39] and is superimposed on the real hand image. All experiments

are performed in a cluttered background. The first sequence demonstrates the robustness of the

3D model-based tracking in which the hand undergoes both translation and rotations (Figure 5.5).

The sequence shows that the 3D model can handle significant occlusions. The fingers are assumed

rigid in this case. We used 10 simplex search for each frame.

Figure 5.5 Tracking global hand motions involving translation and out-of-plane rotation. The
projected model edge points are superimposed with the real hand image.

5.6.3 Capturing articulated hand motion

In this video sequence, the fingers bend and extend while the hand moves simultaneously (Fig-

ure 5.6). This experiment shows the robustness of our articulation tracking algorithm. We used 30

simplices for finger articulation tracking and 10 simplices for global motion. We have also tested the

sequence using Condensation algorithm with 5000 samples, and the algorithm fails after about 10

frames. In addition to the superimposed model projection, a reconstructed 3D hand model is shown

below each corresponding image for better visualizations. The experiment results show that our

algorithm is robust and successful in tracking complex hand motions in a cluttered environment.

However, the current implementation still takes about 2-3s to process each frame on a Pentium

2-GHz PC.
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Figure 5.6 Simultaneously tracking finger articulation and global hand motion. The projected edge
points are superimposed with the real hand image. Below each real hand image, a corresponding
reconstructed 3D hand model is shown for better visualization.
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CHAPTER 6

AUTOMATIC MODEL INITIALIZATION

6.1 Introduction

One of the crucial step in the articulate hand motion tracking is the initialization step. Given

the complexity of the tracking algorithm itself, most of the existing tracking methods view the

initialization as a separate problem and perform manual initialization. With careful maneuvers,

one could obtain fairly accurate hand geometry and initial motion parameters. One automatic

registration algorithm was proposed in [33] using shape context by assuming open hand gesture

and frontal view. Assuming proper hand shape, their approach could give a good estimate of global

orientation and location. However, this approach still requires the knowledge of the user’s hand

geometry beforehand. If only motion parameters are sufficient, one approach is to use appearance-

based approach by incorporating the global motion parameters as part of the estimating parameters

in the database and also training process. The user-dependence depends on the features used. Little

past research work addresses the issues for fully automatic model acquisition and initialization. An

ad hoc method was given in [75] which takes the estimated the center of the palm using the center

of the mass of segmented hand region. The result of this estimation would depend largely on

the finger abduction angles and outliers, which should not be included when inferring the palm

geometry. Another approach [76] proposes identifying and connecting links of an articulated model

from a sequence of frames.

To achieve true automatic initialization and user-independence, it will be beneficial to derive

an algorithm that could automatically determine hand geometry parameters and simultaneously

determine the global motion parameters, including position and orientation with as few assumptions
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as possible. In this chapter, we present an algorithm for accomplishing this task using palm and

fingertip detection. The process of initialization in this chapter refers not only the estimation of

initial global motion parameters but also the estimation of hand geometry.

One potential application of our detection algorithm can is to use the result to perform hand

geometry recognition in biometrics. The current verification systems [77, 78, 79] require the user to

place the hand at certain locations defined by a few rigid pegs in order to register the hand images

for verification. This limitation can be relieved if an algorithm is available that can automatically

register the images and compute the abduction angles.

6.1.1 Assumptions

In the following we list a few assumptions made and the justifications. In order to automatically

measure hand geometry, the system must be presented with a clear view of the hand. Contrary to

the appearance-based approach in which a hand shape can be determined regardless of the hand

pose and the hand geometry, all relevant parameters should be presented in the view in order to

construct the model. This limits the number of possible views we could accept.

• To facilitate the process, our system requires the user to show a frontal view of an open palm

that is relatively parallel to the image plane, regardless of left and right hand. This constraint

permits a good estimate of the finger width and the size of the palm and the location of each

finger.

• All five fingers must be extended and visible. This will ensure the correctness in the estimation

of finger length. The assumption can be relaxed to allow 0 abduction angles if and only if

a good edge map is present in order to provide sufficient cue. In most cases, however, the

quality of the image obtained from a generic pc camera is usually low and noisy, and edge

segmentation result is not reliable. Therefore, we rely on the silhouette to perform the task,

and in this case, it is desirable to have the fingers open with sufficient abduction angle. Also,

the effect of color bleeding and smearing is most amplified in the region between fingers when

they are close together resulting in inaccurate segmentation results.

• Middle finger abduction is insignificant. This assumption comes from Equation (3.2), which
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was also used in tracking. This assumption will be used to help determine the initial orien-

tation of the hand and as a calibration step.

• The fingers are expected to point upwards in a setting shown in Figure 6.1. This is a reasonable

assumption as it is most natural to raise one’s hand in a setting like this when the interaction

happens in front of the computer and the camera.

Though these constraints must be enforced, we try to limit the number of constraints necessary

in order to relax the learning and burden from the user side. On the other hand, the user still has

the freedom to place the hand in arbitrary orientation and position.

Figure 6.1 System setup.

6.1.2 Top-down versus bottom-up

To estimate the hand geometry parameters in order to construct a hand model automatically

from the top-down approach, one generates several possible hand model candidates in different

poses in order to approximate the model from the best match. This approach can be robust when

the segmentation is noisy. However, the main drawback comes from the large number of parameters

that we have to estimate. These include hand location and orientation, palm size, finger length,

width and abduction angle for each finger, choice of left or right hand, and the location of the base

of the fingers. These consists of at least 20 parameters. Random and exhaustive search for the best

estimate is impossible with current computing technology.
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On the other hand, by constructing the hand model from the bottom-up approach, we could

exploit the physical and anatomical constraints provided by the hand model and the estimation

involved in computation can be broken down into smaller problems. Rather than estimate in R20,

we would be looking at several estimations inR3, which is a much easier problem. And by exploiting

the kinematical model knowledge, we could refine the estimates of each module through co-inference

process. Therefore, in our approach, we choose to build and infer the hand model from bottom-up

and divide the problem into smaller modules. Basically, we break it into the following smaller

problems: palm detection, fingertip detection, thumb detection, finger fitting and abduction angle

estimate. The hand orientation is determined by the middle finger orientation. Once the thumb is

identified, we could also determine whether it is a left or right hand.

6.2 System Overview

Figure 6.2 shows an overview of the automatic initialization system. The system can be roughly

divided into the following modules: hand localization, palm detection, fingertip detection, and

estimation of the remaining parameters for initial model construction. As can be seen, at each step,

the output of each module can also be used as input for stand alone applications. For instance,

the orientation and location of the segmented hand blob can be used for navigation controlling

purposes [80] and the detected fingertip can be used for interactions that requires fine pinpoint

input such as drawing [81]. In fact, we implement some of the gesture interface based on these cues

and the systems are presented in Chapter 7.

Figure 6.3 shows a captured screenshot of the user interface. The video input is segmented and

displayed using the CAMSHIFT application built by OpenCV. An OpenGL window is also shown

to provide additional graphical feedback which can render 3D contents, which can be used for

applications such as virtual environment navigation. A third window is displayed for text output.

6.3 Hand Localization

An initial segmentation is performed to detect skin regions. In [26], an infrared camera is

employed to obtain clean segmentation based on the range of temperature. We choose to use an
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Figure 6.2 System overview.

off-the-shelf PC camera and decided to use CAMSHIFT [21] to perform this task. Our algorithm

can work for somewhat noisy segmentation results and the performance can be improved by using

cameras with higher qualities or infrared camera. Our subsequent algorithms are built on top of the

application layer provided in OpenCV by Intel. The user is free to conveniently select foreground

regions for training online. As the remaining algorithms rely heavily on the segmented silhouette,

it is essential to have a robust segmentation algorithm.
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Figure 6.3 A screenshot of the user interface.

6.4 Palm Detection

In this section an algorithm is proposed for fast palm detection using top-down circle fitting

approach.

6.4.1 The detection algorithm

The palm can be approximated using a circular object when the hand is facing the camera.

We use a template to approximate the palm with a square and a smaller circle inside. Using

straightforward template matching techniques, one can identify the location and scale of the palm

by scanning through all possible ranges. Though the region outside of the circle should be filled

with background pixels, because of the extended fingers, it is inevitable to have foreground pixels

in the region outside the circle. The goal is to determine the largest circle fitting the palm and the

following score is used to determine the proper dimension.

f(x) =
∑

(x,y)∈F

Iforeground(x, y)/Area(F) +
∑

(x,y)∈B

Ibackground(x, y)/Area(B) (6.1)

where x denotes the set of location and scaling parameters x, y, s. A hypothesis is considered valid

if f(x) > T for some threshold T .

In our implementation, the final palm estimation is determined using the average of the quali-

54



B

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

(B)(A)

F

Figure 6.4 (a) Template for palm detection. (b) Shaded region denotes the feature for fast false
hypothesis elimination using integral image.

fying candidates with a tight threshold set. Occasionally, due to noisy segmentation, a solid circle

might not be present and no candidate will have a score above T . In this case the threshold is

reduced. By assuming small motion, the one with highest score is kept provided that it is in the

proximity of the previous estimate with similar size. Similarly, to cope with the noisy image input,

a temporal smoothing is enforced. The parameters at current frame are only updated if the new

estimate differs from the previous estimate with a significant amount:

dist(xt,xt−1) > ε1, and dist(rt, rt−1) > ε2

However, by checking every pixel for every template matching for every scale and location will

take up too much computation power. We propose implementing several methods to speed up the

process and to maintain the robustness and stability of the detection: integral image, dynamic

search region, and adaptive subsampling.

6.4.1.1 Integral image

The matching procedure can be sped up by approximating the circle using a square and elimi-

nating false hypothesis quickly using integral images. A false hypothesis can be easily determined if

the interior of the circle is not filled with enough foreground pixels. In our implementation we check

the area inside the shaded square within the circle (Figure 6.4) and by using this feature, integral

image representation can be used to help speed up the process. Integral image [82] (see Figure 6.5),

also known as summed-area tables [83], is an intermediate image representation that facilitates the

computation of arbitrary rectangular area of a grey scale image. The value at location (x, y) of the
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integral image Ii stores the sum of the pixel values in image Io the left and above of (x, y):

Ii(x, y) =
∑

x≤x′,y≤y′
Io(x′, y′)

The integral image is constructed recursively, which can be done in one pass:

Ii(x, y) = Ii(x, y − 1) + Ii(x− 1, y) + Io(x, y)− Ii(x− 1, y − 1)

Ii(−1, y) = 0, Ii(x,−1) = 0
(6.2)

Using this intermediate representation, the sum of an arbitrary rectangle can be computed easily

using only four references:

S(x, y, w, h) = Ii(x, y) + Ii(x + w, y + h)− I(x, y + h)− I(x + w, y)

where x, y denotes the the position of the upper left corner of the rectangle, and w and h are the

width and height, respectively.

Ii(x,y−1)

�
�
�
�

�
�
�
�

�
�
�
�

Ii(x,y)Ii(x−1,y)

Ii(x−1,y−1)
�
�
�
�

Figure 6.5 Integral image. The value at location (x, y) stores the sum of the pixel values to the
left and above (x, y) from the original image. The construction of integral image can be done in
one pass (Equation (6.2)).

The advantage of using a square inside the circle with width 2
√

2r rather than using a square

bounding the circle with width 2r is that, for the former case, we can set the threshold high and

be certain that it is a filled square that fills the interior of the circle. On the other hand, the latter

case includes background region so that even if the interior area is above the threshold, there is a
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possibility that the interior foreground pixel might not be distributed evenly and compactly within

the circle.

6.4.1.2 Dynamic search region

Based on the bounding box provided by CAMSHIFT, a tracking window, which is slightly larger

than the CAMSHIFT window is computed to focus the search in the relevant area. The size of the

template is also dependent on the size of the tracking window and is empirically determined to be

0.2 ∗min(W,H) ≤ w ≤ 0.4 ∗min(W,H) where W,H denotes the width and height of the tracking

window and w is the width of the template window.

6.4.1.3 Adaptive sampling

Another resource allocation scheme is implemented by adopting adaptive subsampling. It is

computationally expensive to check every pixel, especially when the hand region is large. Therefore,

the algorithm subsamples the image with the decimation factor s, which is automatically determined

based on the size of the template window. Thus, when the hand is close to the camera, the tracking

window is enlarged, and a larger template is required to perform detection. A larger s is used

in this case in order to speed up the matching while maintaining the accuracy. When the search

window is small, a more detailed search is required and a smaller s is used. Using a fixed s would

lead to oversampling for large search window and undersampling for small search window.

6.4.2 Results

In this section we show some results of the palm detection. As can be seen, the detection is

fairly robust to noisy segmentation results (Figure 6.6) and also to different number of extended

fingers. The estimated location and radius parameters are plotted for a sequence of 1500 frames

(Figure 6.7). In this sequence, the hand moves around in the image plane and with different depths.

We select a segment of the sequence and zoom in to show that the detection result is quite smooth

within small windows (Figure 6.8). In Figure 6.9 a comparison is also shown for the case with and

without temporal smoothing. The dash line in red is the original estimate and the solid line in blue

is the smoothed result which shows a more stable output.
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Figure 6.6 Palm detection results. The corresponding frame number is also shown under each
image.
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Figure 6.7 Plot of palm position and size parameters x, y, r. (a) x. (b) y. (c) r.
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Figure 6.8 Plot of palm position and size parameters x, y, r. (a) x. (b) y. (c) r. In this figure,
a zoomed-in section of the plot shown in Figure 6.7 is displayed. The results shows that the
parameters estimated are quite smooth and stable over a small window and are suitable for gesture
interfaces.
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Figure 6.9 Comparison of palm parameter estimation. The noisy red dash line corresponds to
estimation without temporal smoothing. The more stable blue solid line represents the estimation
with temporal smoothing.

6.5 Fingertip Detection

In this section an algorithm is proposed for fast fingertip detection once the palm is detected.

Based on the palm location and size, we are able to constrain the search space for possible fingertip

candidates. Learning algorithm can also be used such as in [84].

6.5.1 Fingertip representation

The fingertip detection algorithm proposed in this section is inspired from the work of [26,

27]. Rather than using a hand model to identify fingertip locations, the algorithm uses template
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matching technique that can be efficiently implemented to run in real time.

Figures 6.10 and 6.11 show some examples of typical fingertip images. One can observe that a

fingertip can be well represented using simple geometrical templates shown in Figure 6.12. Basically,

the shape of the fingertip in 2D images resembles a circle attached to one end of a truncated

cylinder. This originates from the observation that a finger can be approximated by a cylinder

with a hemispherical cap. Two observations were pointed out in [27]. First, a filled circle can be

used to match the fingertip and also estimate finger width. Second, the majority of the perimeter

pixels on the boundary of the box are nonskin pixels, and the skin pixels should be connected in

a continuous chain. This representation has been shown to work robustly and efficiently, and the

observations could be used to help classify fingertip hypotheses. A template like the one used for

palm (Figure 6.4(a))is used to search for fingertip candidates.

Figure 6.10 Example of fingertips from the original image.

Figure 6.11 Example of fingertips after color segmentation is performed to classify skin pixels.
The results shows that the output of the segmentation algorithm can be very noisy.

6.5.2 Fingertip detection

In the implementation proposed in [26], the distance between the hand and the camera is

relatively constant. In their setting the camera is fixed to view from the top of a desk and the

hands are expected to move right above the desk. Therefore, the search window has a fixed size

and a fixed-size template is used to detect all possible fingertip candidates. In [27], an extension

is made to differentiate the thumb and the pinky fingertips by assuming the ratio of diameters

between thumb and pinky fingertip is roughly 1.5.
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Figure 6.12 Approximation of finger shape.

In our approach, the palm is used to help to guide the search for the fingertips. Therefore, our

algorithm can work with arbitrary distance between the hand and the camera as long as the entire

hand is visible. Once a palm template is determined, the template is searched for different scales

determined by the palm size. We used 0.2rpalm < rfingertip < 0.4rpalm in our implementation. By

not fixing the search to a fixed ratio allows the algorithm to obtain finer estimations of each finger

width and also allows higher tolerance to the noise in palm parameter estimation.

Since the template used for fingertip is exactly the same as that of the palm, the same search

procedure is applied which maximize the matching score defined by Equation (6.1). A sufficient

number of foreground pixels must be present in the center of the circle as well as the background

pixels outside the circle. The same performance enhancement is also applied, including the use of

integral image, dynamic search range and adaptive subsampling. The search range is defined to be

within a circle with radius f(rpalm) centered at palm center. Two scores were used to reduce the

chance of missing a correct fingertip. Sometimes with noisy segmentation results, the fingertip does

not always resembles a circle. Therefore, we allow a candidate to be accepted for a lower threshold

if it is near a previously identified fingertip location. This ensures that at least one reasonable

estimate will remain in the hypothesis pool.
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However, using the method described in Section 6.4, the algorithm also picks up many false

positives, including noisy background and regions that belong to the interior of a finger. Additional

verifications must be performed to ensure the validity of a fingertip candidate by exploiting the

knowledge of the hand structure. In the following we enumerate some scenarios we encounter

(Figure 6.13) and the algorithms we propose to eliminate false alarms:

• Since the fingertip template is a much smaller one compared to the palm, it often picks up

noisy background objects. However, the fingertip must be part of the connected component to

the hand. By performing connected component analysis, we could easily determine whether

the detected candidate belong to a background object.

• Using only the criteria defined in Equation (6.1) is not sufficient, and often the regions on

the side of the fingers are also selected as valid candidates. To remove these kinds of false

candidates, we examine pixels surrounding the perimeter of the square template. At least

two adjacent sides of the square template must be completely filled with background pixels.

If multiple pixels in a diagonal direction on the boundary are foreground pixels, then the

candidates must be located within a finger.

• While the previous two methods effectively remove false candidates, several candidates still

remains that are close to the true fingertip locations. Contrary to the palm detection approach

in which we take the average of the top matches, here we choose to eliminate hypotheses that

are in the neighboring region of a candidate with the highest matching score. Figure 6.14

shows some results of the comparisons. Experiment results show that a better estimation

could be obtained by taking the best match. In [26], the top 20 candidates are selected

and the multiplicity is reduced by keeping the highest match in a neighboring region. While

this might be a sufficient number, there is still a chance of losing a true fingertip estimate,

and with noisy segmentation results, some fingertip hypothesis might not have a very high

matching score.

Finally, temporal smoothing is performed for each remaining fingertip candidate by searching

for the nearest previous estimate and compare the location and radius. Update is performed only

if sufficient change is detected. The threshold must be carefully tuned. If it is too tight, then the
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Figure 6.13 Examples of false fingertip detections. In particular, we try to eliminate three types
of false alarms: (1) hypotheses belonging to background object, (2) hypotheses near the edge or
the interior of a finger, and (3) hypotheses that are close approximation of the true candidate.

Figure 6.14 Comparisons.

noise will dominate and lead to unstable estimation. If it is too loose, then the estimation will be

insensitive to a smooth fingertip motion. A summary of the fingertip detection scheme is shown in

Figure 6.15.

• Determine proper dimension and scaling parameters.

• Template matching. Accept hypotheses with score f(x, s) > T

• Identify unconnected components as false detections.

• Remove hypotheses that belong to the interior region of a finger

• Suppress candidates with lower matching scores within the
same neighborhood.

Figure 6.15 Fingertip detection algorithm.
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6.5.3 Results

The fingertip detection algorithm, which runs in conjunction with the palm detection algorithm,

can run for up to 60 Hz on a Pentium 2.8-GHz PC. In Figure 6.14 we show some comparisons be-

tween estimating the fingertips using hypotheses averages and the hypothesis with highest matching

score. For each finger, the most likely hypothesis is drawn using a red circle. The detection results

using the algorithm outlined in Figure 6.15 is shown in Figure 6.16. Similar to the palm detection,

we are able to obtain robust and stable estimations. When more fingers are bent, the area of the

palm shown are generally smaller than the case when all five fingers are extended. However, since

we do not assume any fixed fingertip size, the algorithm can still robustly detect the fingertip loca-

tion with correct dimension estimation. In Figure 6.17 we show the result of number of fingertips

presented at every frame during a 600-frame sequence. Some glitches are observed due to motion

blur and the ambiguities resulted from finger motion. When a finger bend down or extend, the

joint angles are sometimes mistaken as a fingertip for a brief moment.

6.6 Thumb Identification

Once all the fingertips are detected, we would like to be able to determine whether the hand is a

left or a right hand given that the frontal view is observed. The fingertip location is first sorted in a

counterclockwise order with respect to the center of the palm starting from the −y axis. This step

is taken to facilitate subsequent process for constructing the hand model. With the assumptions

that palm is open and in the upright position, the sorting helps to identify the thumb and pinky

as the two fingertips at the beginning and the end of the sorted fingertip list.

Based on the detected fingertip location and dimension, the thumb can be determined using

several methods. Von Hardenberg and Bérard [27] proposed to use the size of the circle to dif-

ferentiate the thumb from pinky. However, this can be an unreliable estimate due to the noisy

estimation of the thumb. Though the location can be reliably identified, the size of the thumb

circle is often noisy. When the hand frontal view is present, the thumb is actually viewed from the

side most of the time, and the simple geometrical object approximation shown in Figure 6.12 would

not work very well with the thumb. Another method proposed in [75] first estimates the center of
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Figure 6.16 Results of fingertip detection. The corresponding frame number is shown under each
image.
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Figure 6.17 Number of detected fingertips.

the wrist, and then, using the fact that the thumb is closer to the center of the wrist, the thumb is

thus identified. However, the estimate of the wrist center can be unreliable.

One alternative is to use the contour information to help differentiating the thumb. An example

is shown in Figure 6.18 in which the red contour pixels correspond to the fingertips and the blue

pixels corresponds to the valleys between fingers. We can easily identify the peaks and valleys that

are associated with the fingertip and base of the finger using the distance profile computed from

the distance between each contour pixel and the palm center (Figure 6.19). The valley between the

thumb and the index finger is further away from the index fingertip than the valley between the

ring and the little finger to the ring fingertip. However, like edge segmentation, contour processing
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Figure 6.18 Hand contour processing. The red contour pixels correspond to the fingertip region,
and the blue pixels identify the valleys between two fingers.

can be very noisy, and making the decision using one single frame is unreliable, especially when the

hand region is small and resolution is low. We implement a voting scheme that accumulates the

decision outcome over a period of n frames. The majority vote determines the fingertip candidate

for thumb. Some results of the final decision is shown in Figure 6.20. Knowing the position of the

thumb with respect to other fingertip then immediately identifies whether a left or a right hand is

present.

6.7 Constructing the Hand Model

Based on the palm and fingertip detection results, we can infer and construct an initial hand

model by fitting thumb and finger models, and we can obtain the initial motion parameters of the

hand including location, orientation, and scale.

6.7.1 Finger fitting

Based on the observations shown in Figure 6.12, we can estimate the finger geometry by fitting

a rectangular template. The width of the finger is determined as the twice the radius of the

corresponding fingertip radius. Using the location of the fingertip as the constraint, one end of the

rectangle must coincide with the fingertip. To identify the best fitting candidate, the parameter

estimation can be formulated as an optimization problem with the finger orientation θ and the

unknown finger length l as the parameters. However, we could easily reduce false candidates by
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Figure 6.19 Contour pixels distance profile.

Figure 6.20 The result of detecting the thumb and identifying left and right hand.

exploiting prior model knowledge, knowing that a fingertip must be connected to a hand. Therefore,

we know the other end of the rectangular template must locate nearby the perimeter of the palm.

This knowledge simultaneously reduces the number of possible candidates both in terms of θ and
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l together. Further speed improvement can be made by using different levels of subsampling to

quickly eliminate the incorrect hypotheses. This method can also be used to determine whether a

fingertip is a valid candidate or a false alarm instead of performing connected component analysis.

One key concern is the estimated location of the finger base which directly affect the finger

length estimation. The MCP joint of a finger does not locate exactly at the edge of the palm. For

the ith fingertip with radius ri, we generate candidates of finger base location on the circle centered

at palm center with radius r = rpalm − 2 ∗ ri and have obtained a good estimate of the hand

geometry. Also, since the fingertips are ordered, we can use it to help avoid collisions in finding

the base of the fingers. When the length of each finger is determined, we could use anthropometric

data to obtain an averaged estimate of the length of each phalanx [85].

At this point we could use the three sets of estimated parameters from palm, fingertip, and

finger to refine the overall estimation result using algorithms like co-inferencing [8] or simply use an

iterative coordinate descent procedure. This is especially useful if the initial fingertip estimation is

noisy and incorrect. Even if the palm and fingertip size are estimated correctly and independently,

this refinement could still be used to obtain a better estimate of the motion parameters, including

position of each object and the abduction angle between each fingers.

6.7.2 Thumb fitting

Thumb fitting presents another difficult problem since the structure of the thumb is quite

different from the structure of the other four fingers. The three phalanges of the thumb do not

always align in a straight line when the user naturally opens his hand. Therefore, one can not simply

fit a single rectangular template and hope to obtain a good structure approximation. We propose

using two rectangular templates to estimate the thumb structure. The first template matches the

distal and proximal phalanges. The second template matches the metacarpal phalanx and the

width of the of this rectangle is slightly larger than the other template. An approach similar to

that described in Section 6.7.1 is used to reduce the search space.
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Figure 6.21 Constructing an initial 2D hand model.

6.7.3 Initial global motion parameters

The initial location and scale is determined using the location of the palm. Since a circle is used

to approximate the palm, it does not provide any orientation information, and additional cues must

be considered. Here we exploit the fact that middle finger abduction in the natural configuration

is often 0 (Equation (3.2)), especially when the middle finger is at its natural configuration. Since

the user is expected to open his or her hand naturally for the initialization, we can assume that the

middle abduction angle is almost zero. Consequently, the orientation of the middle finger is used

as the initial orientation of the hand.

6.7.4 Results

The results of constructing the initial 2D hand model from the palm and fingertip detection

are shown in Figure 6.21. The algorithm is tested for hands at different location, orientation, and

scale. Figure 6.22 shows the 3D model inferred from the 2D data. We use the model shown in

Figure 2.7 which consists of 40 quadrics components. The three images shown in the figure each has

different position, orientation, scaling, and finger abduction angle parameters. To verify the results

of constructing the 3D model, we use the learned model to perform model-based hand motion

tracking. Because of the large amount of computation involved in the 3D model-based approach,

we only track one DOF in order to achieve real time performance. Specifically, the out-of-plane

rotation is tracked to demonstrate the capability of using a 3D model in tracking and also the

accuracy of model parameter estimation from 2D data (see Figure 6.23).
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Figure 6.22 Results of inferring the 3D hand model from 2D data. Each image shows a hand with
different position, orientation, scaling, and finger abduction angles.

Figure 6.23 Results of using the learned 3D model to track out-of-plane rotation.
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CHAPTER 7

VISUAL GESTURE INTERFACES

7.1 Introduction

This chapter describes four vision-based gesture interface systems including virtual object ma-

nipulation, virtual terrain navigation, finger drawing and gesture recognition. The systems demon-

strates how user can interact with the computer in various scenarios through the use of the bare

hand as a natural means of communication. Through the use of different gestures, users are capable

of performing complicated actions and multidimensional control that are difficult to achieve using

just the mouse and the keyboard. Many of the systems presented in this section are based on the

hand detection results described in Chapter 6.

7.2 Virtual Object Manipulation

Object manipulation is a fundamental and important task in virtual reality, and augmented

or mixed reality environments. To provide the user a truly immersive experience in interacting

with the virtual object using gesture control, the system must be able to effectively interpret hand

motions while allowing user to control in a simple, intuitive and efficient manner. In this section

we describe an interactive system that allows the users to control the position and orientation of

several objects.
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7.2.1 System description

To simulate a simple AR environment, we define the image plane as the input plane and place

several artificially created 2D objects directly on the screen. The users can freely move these objects

around in this plane. Two examples are used. The first one places several colored balls on the image

plane which the users can control using just two fingers. The second example demonstrates the

advantage of using the hand over the mouse to perform multidimensional control. A box is used in

this example and the user can rotate and move it around at the same time. Using the mouse input,

only one of the button actions can be performed in conjunction of mouse movement. Consequently,

one can only perform rotation and translation separately.

7.2.2 Gesture interface

Three modes are defined for this system. When all five fingers are detected, a reset command is

issued. In this case, all the virtual objects are returned to their original locations and orientations.

When exactly two fingers are present, the system determines whether an object is selected and

appropriate motion update is performed. For all other hand configurations, the motion of the hand

does not trigger any visual feedback.

The criteria for triggering a select object action is based on the distance between two fin-

gertips. If the distance between the two fingertips are smaller than the diameter of an object,

and the midpoint of the line segment connecting the two fingertip centers are within the object

boundary, then the object is considered selected (Figure 7.1). In this case, the position of the

object is updated based on the midpoint between the two fingertips. Since the user can perceive

feedback only by moving the hand close to the object drawn on the screen, it is natural to use

absolute coordinates to update the object position. However, for the case of orientation update, a

more intuitive manipulation is to use relative motion. The difference between orientations of the

line segment L1 in consecutive frames is used to update the object orientation. A flow chart of the

interface design is shown in Figure 7.2
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Figure 7.1 The distance L1 between two fingertips is used to decide whether a virtual object is
selected. The midpoint between the centers of the fingertips determines the new location of the
object.
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Figure 7.2 The flowchart of the gesture interface.
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7.2.3 Results

The results of using this system is shown in this section. Figure 7.3 demonstrate that the

algorithm can work for any two fingers that the user finds convenient. The hand can operate from

any distance since only the distance between fingertips controls the object movement. In Figure 7.4,

an example of simultaneously controlling the object orientation and translation is shown. Figure

7.5 shows that the user can freely control several objects on the screen. When five fingers are

present as in the first frame, the object parameters are reset. The same set of objects can also be

manipulated by different user during the same session. Since we implemented a very robust and

stable fingertip detector, the control and manipulation can be done fairly smoothly and reliably.

Figure 7.3 The system can be controlled using any two arbitrary fingers that are convenient for
the users.

Figure 7.4 An example showing simultaneous control of object orientation and position.

7.3 Virtual Environment Navigation

Terrain rendering and navigation has found applications in many domains such as flight simu-

lator training, video games, virtual tourism, and urban planning. The army can use virtual terrain

navigation to help in training, mission planning and rehearsal, and simulations. Civil engineers can
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Figure 7.5 An example of reliable object manipulation involving several objects. Different users
can also interact with the same set of objects during the same session.
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benefit from virtual terrain walkthrough to visualize architectural design and conduct wide scale

planning.

To achieve an immersive control in navigation, the user should be allowed to update several

motion parameters simultaneously, including yaw, pitch, and roll angles in addition to spatial

position. In this scenario, input devices such as the mouse and keyboard will not provide sufficient

control. While a wand could achieve the goal, here we show an example that can provide the same

equivalence. In this section we describe an efficient implementation of a large terrain visualization

system and a navigation framework using gestural input.

7.3.1 Large-scale terrain visualization

With the advances in scanning technology and the constant decrease in the cost of memory,

large terrain data sets have become more widely available for researchers and engineers to use in

constructing detailed mesh visualization of landscapes. A mesh data set containing millions of

polygons is not uncommon nowadays. However, with the current video rendering power, it would

be difficult to perform a real-time fly-through of the terrain if every polygon is to be drawn at every

frame. Therefore, it is essential to perform fast and convincing approximations of the high resolution

mesh at every frame to accommodate the need for a fast display. We follow the approach proposed

by Lindstrom and Pascucci [86] which employs a top-down view-dependent refinement scheme to

approximate different levels of details. Though extensive work has been devoted to the problem of

terrain visualization and level-of-detail management, we choose Lindstrom and Pascucci’s algorithm

for its desirable features, including independence of error metric, computational efficiency, efficient

view culling and triangle stripping, and implementation simplicity. In this section we briefly describe

the algorithm.

The goal of the view-dependent refinement is to build a mesh, regardless of a given view, with

a small number of triangles that offer a good approximation of the original high-resolution mesh.

An alternative approach is the bottom-up simplification which recursively merges pairs of triangles

starting from the highest resolution. One main advantage of using top-down refinement is that the

refinement complexity is linear in the size of the approximating mesh, whereas the simplification

complexity depends on the size of the highest resolution mesh.
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The mesh is constructed from points that lie on a regular, rectilinear grid. Using a subdivision

algorithm based on longest edge bisection, a hierarchy of mesh structure is constructed. Starting

from a square with only four triangles on the most coarse level, each triangle continues to be

refined by bisecting the longest edge. Together with a nested error term constructed, a valid mesh

is generated at each frame that satisfy the following criteria:

j ∈ M =⇒ i ∈ M, j ∈ Ci (7.1)

where M is a mesh, i and j are the indices of mesh vertex, and Ci is the set of children of i in the

mesh hierarchy. While the error metric can be independent of this algorithm, one property must

be enforced:

ρ(δi,pi, e) ≥ ρ(δj ,pj , e), ∀j ∈ Ci (7.2)

in which pi is the position of mesh vertex i, ρ is the projected screen space error, δi is the object

(or world) space error term and e is the viewpoint.

In [86], a straightforward algorithm for top-down refinement and on-the-fly triangle strip con-

struction is given. The refinement procedure builds a triangle strip V = (v0, v1, v2, . . . vn), which

represents a sequence of vertices. When implemented using OpenGL [87], GL TRIANGLE STRIP

would speed up rendering as compare to GL TRIANGLE. Also, with this representation a repeated

call to glvertex is called once for every triangle during rendering.

Because of the hierarchical structure, view culling can be done simultaneously with the refine-

ment process. Using the six planes of the view frustum, we can determine whether a vertex i and

the meshes corresponding to the vertices that are descendants of i are visible by the visibility of

i. Child is visible only if its parents are due to the nested error terms defined. Consequently, a

continuous surface is always guaranteed.

An example of one view of the terrain is shown in Figure 7.6. The part of the terrain surface

that is closer to the viewpoint are rendered with more details. The polygons that constitute the

surface further away tend to be smaller and can be approximated with one large polygon without

much degradation in viewing quality.
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Figure 7.6 (a) A screenshot of the Grand Canyon terrain data set. (b) The corresponding mesh
structure.
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Figure 7.7 The flowchart of the gesture interface implemented for virtual terrain navigation.

7.3.2 Gesture interface

Four modes are defined depending on the number of extended fingers (Figure 7.7):

• Reset : Since the size of the terrain mesh is not infinitely large, the user might occasionally be

traveling out of boundary. Because of frustum culling, the user will sometimes lose a reference

point for returning to the terrain surface. Rather than restarting the program, the user can

reset the viewpoint simply by showing all five fingers.

• Move forward : When exactly one finger is detected, the viewpoint moves forward to simulate

the fly-through. Additionally the orientation of the finger is used to determine the degree of

roll angle. The user can conveniently make turns during the navigation simply by pointing

the finger in desired direction.

• Pause: When the number of fingers detected is between one and five exclusive, then the

forward motion is paused. However, the user can still turn left and right using depending on

the orientation of the longest finger extended. A convenient usage of such a feature would

be to use index finger to control normal fly-through and extend the thumb when a pause in

motion is desired to look around the neighboring area.

• Take no action: If no extended fingers were detected, then no action is taken. This usually

corresponds to the case when user removes his hand away from the camera view.
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For move forward and pause modes, the roll and pitch angles are computed. Each angle is

discretized into a few bins to produce a smoother state output. From our user studies, the exact

estimation of the angle value is not necessary to produce a smooth fly-through simulation. The key

is to have controls that provide sufficient states of turning left, right, up, and down.

The roll angle is determined by the orientation of the extended finger relative to the x-axis.

Each bin corresponds to a mode of rotating speed. When the finger points upward, corresponding

to the 90o bin, the roll angle is zero and only forward motion is triggered. As the finger rotates

closer to the x-axis, a larger turning angle is applied to change the viewing angle at each frame.

To provide the user with visual feedback of the gesture control, a circle is drawn with the center

located at the base of the finger and with radius equal to the length of the finger. The current

rotation angle is indicated with a yellow dot, while other available angles are drawn with orange

dots along the circle. Some examples of the finger navigation is shown in Figure 7.8

520 595 815

887 1225 1283

Figure 7.8 The gesture interface for virtual terrain navigation. The frame numbers are shown
under each image.

The pitch angle is determined by the size of the palm. When the palm moves closer to the

camera, a downward motion is simulated and when the the palm pulls back away from the camera,

an upward movement is triggered. This control scheme is similar to the use of joysticks in flight

simulator control in which a pull-back action causes the plane to pull up. A bar indicator is shown
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on the right of the screen to display the pitch angle (Figure 7.8). We estimated the radius of the

palm to be around 20 to 25 pixels for a normal distance a user generally place his hand from the

camera. For palm size in this range, the pitch angle is set to 0.

The users can have a more natural control by using the finger itself to estimate the orientation

rather than using the fingertip and palm center to determine the orientation. The pointing motion

is generally independent of the palm motion and depends on the abduction angle only. Otherwise,

using the palm center as a reference point will require a significantly more hand movement to

simulate a turning action.

Furthermore, estimating the two angles based on two different hand parts allows the orientation

estimation to be relatively insensitive to the palm estimation. One might consider using the fingertip

size directly to control the pitch angle, but since it is a much smaller object compared to the palm,

a small change in the estimation due to noise will result in a large percentage of change in the size,

thus producing unstable controls. For this reason, the palm, being the larger object, is chosen for

a more stable control.

Frame 1225 in Figure 7.8 shows an extreme case of a noisy estimation in which the estimated

palm size is obviously too small. However, the algorithm can still correctly identify the finger

orientation.

7.3.3 Results

A sequence of roughly 1000 frames is recorded and some plots of the estimated orientation angle

is shown in Figure 7.9. The pitch angle control is also plotted in Figure 7.10. Though the detection

result itself is somewhat noisy, the results show that the discretization produces smoothed control

parameter values, and it is sufficient for the purpose of a natural navigation control.

Note that as the size of the palm becomes smaller, it is expected to cause more error and noise

for the orientation estimation. This is due to the low resolution of the segmented foreground area

which is worsened by the sensor noise. This phenomenon can be observed between frames 1400 and

1600. We also observe most of the flickering in the control state occur near the threshold values

that separate two discrete angle values. This happens when the finger transitions from one discrete

state to another, and the momentary erratic behavior due to noise is therefore unavoidable.
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Figure 7.9 Estimated finger orientation and the discretized output.
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Figure 7.10 Estimated palm size and corresponding pitch angle.
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7.4 Finger Drawing

Once the hand and fingertips are reliably detected, one natural application is to simulate mouse

pointing and perform finger drawing using one fingertip. This section describes our implementation

of one such a system. This application has been implemented in previous work using different

fingertip detection algorithms [26, 81, 88]. In most cases, only one fingertip is expected to be present

in the scene. While this assumption allows for a more robust algorithm, it limits the possibility of

involving different number of gestures to control the application with a more interactive control.

Finger drawing application can be used for AR environments, such as highlighting or selecting

an object displayed on a display device. It can also be used for instant messaging in which drawings

are transmitted in addition to text messages. In this case, the users are not required to be quipped

with special input device for drawing. Any PC camera with reasonable resolution will work. Since

the drawing application also records the history of fingertip motion, it can provide an enhanced

communication mechanism that is superior than just the fingertip location in the current frame.

7.4.1 Gesture Interface

Four modes are defined for this interface (Figure 7.11):

• Clear : When all five fingers are extended and visible, it is interpreted as a reset and clear

command. All strokes will be cleared, and the current color is maintained.

• Draw : When exactly one finger is detected, the fingertip location at every frame is used to

construct a continuous stroke.

• Pause: When the number of fingers are between 1 and 5 exclusive, it signals a pause command

and the system stops drawing. A new stroke is started when Draw command is resumed. This

allows the user to start a new stroke at a different location.

• Take no action: If no extended finger is detected, then no action is taken.

To further enhance the naturalness in using the interface, when the user’s finger moves rapidly,

the stroke is automatically disconnected. This is used to avoid the trouble for having to alter

the number of fingers every time a new stroke is intended to be created. However, this is not a
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very reliable method since if two different strokes are too close to each other, then the distance

moved between them within a short time period will not be large enough to be considered for a

fast movement and a pause will not be signaled. This becomes especially apparent when the hand

is far away from the camera, and takes up a small region. Nevertheless, for a hand located at a

reasonable distance, this procedure provides an extra convenience for strokes that are sufficiently

far apart. A color palette is also provided on the top of the screen for user to select. The user

simply points his finger in the color region and the corresponding color is chosen regardless of the

current command state. As a visual feedback, the current color is shown on the upper righthand

corner, (Figure 7.12).

No

Hand Image

Determine # of
extended fingers

Pause DrawClear Take no
action

velocity > T

iSelect color
Update current 
stroke color

Draw all strokes

5
2,3,4 01

stroke
Begin a new

No

Yes

Yes

Figure 7.11 The flowchart of the gesture interface implemented for finger drawing.
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Figure 7.12 The interface for finger drawing. The color palette is located on the top of the screen
and the current color is displayed on the upper right hand corner

7.4.2 Results

Some results using this finger drawing interface are shown in this section. In Figure 7.13 we

show an instance of users signing their name. Other users also participate in the system testing and

they are able to master the interface within a matter of minutes. In Figure 7.14 a more complicated

task is shown for drawing a stick figure using different colors for different body parts. With a robust

segmentation and detection result, the drawing can be done quiet smoothly.
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280 350 427

484 530 570

737 772 856

973 996 2013

2437 3892 4120

Figure 7.13 Signing name. The corresponding frame number is shown under each image.
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166 244 342

363 408 488

558 648 744

817 881 965

1007 1067 1143

Figure 7.14 Drawing a stick figure. The corresponding frame number is also shown under each
image.
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7.5 Gesture Recognition

Gesture recognition plays an important role in immersive HCI experience. While there is no

known general algorithm that can achieve reliable recognition rate for an arbitrary set of gestures,

a small number of specific gesture vocabulary is often sufficient for many HCI tasks. In this section

we focus on the scenario of recognizing three gestures: rock, paper, and scissors, inspired from

the traditional children’s game. The computer can interpret the gesture the user specified through

the perceptual interface and a random gesture could be generated to play with the user. Two

approaches are experimented for this task. Since the set of gestures involved is relatively small,

both of them work quite successfully.

7.5.1 Model-based approach

A rock-paper-scissors recognition scheme can be easily devised by counting the number of fingers

detected. The three hand signs rock scissors and paper are each associated with 0-1 finger, 2-3

fingers, and 4-5 fingers, respectively. The performance of the recognition result largely depend on

the matching result. With robust finger detection scheme, it can work very reliably by fitting a

hand model to the image features to identify number of fingers extended. The recognition results

using the model-based approach are shown in Figure 7.15.

Figure 7.15 Correct recognition results for rock-paper-scissors using the model-based approach.
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7.5.2 Appearance-based approach

Yet another approach is to apply an appearance-based approach that could cover a large range

of input images and to assume no fingertip detection results. The approach simply trains a mapping

from the extracted image features to one of the gesture class which consists of rock, scissors, or paper

in this particular case. In this case, we first obtained the gray level image of the segmented hand

region and resize it to 100×100. Then PCA is performed, and the top n eigenvector and eigenvalues

are retained. Obviously, this is a highly nonlinear classification problem. We use nonlinear support

vector machine (SVM) [89] to construct a nonlinear classifier for the three gesture classes. The

Gaussian radial basis function is used as the kernel. The hand image is first segmented and resized

to 100× 100. Some examples of the training images are shown in Figure 7.16.

Figure 7.16 A sample set of training images for SVM.

Some of the successful results of using SVM to perform recognition is shown in Figure 7.17.

Since the number of gestures involved in this application is small, the method can work quite

reliably. Since the training is done off-line, fast recognition online rate can be achieved.
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Figure 7.17 Correct recognition results for rock-paper-scissors using the appearance-based ap-
proach.

7.6 Discussions

In this chapter we present several applications using the hand gestures as the control input

including gesture recognition, object manipulation in AR environment, virtual terrain navigation,

and finger drawing. The use of gestural input in place of mouse and keyboard input is shown to be

a more expressive method because of the high degrees of freedoms allowed. One key design issue

involved in all gesture interface is the definition of a gesture command set that is easy for users to

adapt to and intuitive to use. The commands we defined in our applications are rather intuitive

and most users can master them in a matter of minutes. The number of gestures we used are

quite small for each application, and they are all very natural to perform. However, further studies

should be devoted to the development of a set of grammar that is easy to learn and intuitive to

use. With a set of more complex grammar, we can perform a more immersive and complicated

motion. For instance, in the case of virtual environment navigation, we could perform additional

tasks such as manipulating objects at the same time by having a gesture to switch between menu

mode, navigation mode, or manipulation mode. Or we could have a set of gestures that directly

trigger commands in each mode without switching between them.

Another extension is to allow the presence of more than one hands. One appropriate setup would

be to have the camera looking down from the top with hands moving on a desk. This setup avoid

the confusion caused by the face, which would be a problem whether using color segmentation

or infrared segmentation. The segmentation can also be better controlled this way by selecting

a uniform color for the desktop. One such application is built in [90], which was intended for

augmented reality. In their application, the left hand is used for menu function, offering a more

93



variety of actions. A further extension of having multiple hands is to allow more than one user to

interact simultaneously on a desk such as for the case in military simulation and rehearsal or for

architects exchanging ideas on landscape design.

The graphics presentation can also be improved by exploiting other graphics libraries to make

better renderings. Currently, the virtual objects shown overlapping the video sequences are drawn

using OpenCV functions which are intended for 2D drawings. With a more powerful graphics

library like OpenGL, we could render 3D objects with proper lighting conditions to better visualize

the feedback.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

With the rapid advancement in computing technology, new functionalities of the computers

have emerged, changing the traditional communication and display technology that we have been

familiar with. Using a monitor, a mouse, and a keyboard is no longer the only way to interact with

the computer, and a more natural HCI interaction is desired. Visual gesture interface offers such

an alternative. In this dissertation we address several issues involved in making a real-time hand

tracking system realizable.

In Chapter 2 we give an overview of the hand tracking problem. The model-based hand tracking

approach could potentially provide an accurate estimate given a good initialization. However, to

estimate the current hand posture, the high DOF of the hand prohibits exhaustive search for

real-time processing. The LOD of the 3D hand model also affects the processing speed.

In Chapter 3 we discuss various motion constraints available for reducing the tracking com-

plexity. We propose two representations to model the feasible configuration space, and for each

representation, a corresponding tracking algorithm is designed in Chapters 4 and 5. The first

approach uses a semiparametric representation to compactly model many of the feasible natural

motions. Although it is sufficient for many common hand motions, it is difficult to be generalized

for arbitrary motion. A nonparametric model is proposed to address this issue. By using the

discrete configurations collected directly from the real motion data to represent the entire feasible

space, the tracker is capable of tracking arbitrary motions. To search in this discrete space, we

designed the SNM search algorithm, which can also be generalized to track other objects.
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Model-based hand tracking has been a difficult and computation-intensive problem. Most re-

search effort has been focused on the tracking itself and little research addresses the issue of ini-

tialization. To fully automate the system, we present a real-time algorithm for learning the initial

model geometry and motion parameter in Chapter 6. Based on the detection results, we are able

to build several robust and real-time visual gesture interfaces, as shown in Chapter 7.

8.2 Future Directions

A robust visual hand tracker can be utilized as an important input module in a natural HCI

interface. The advantage of having multidimensional input using the hand gestures is accompanied

by the problem of estimating the articulated hand with high DOF. It was common in previous

studies to reduce the problem complexities by introducing the hand motion constraints. While

many of the constraints are simple and effective in reducing the dimensionality of configuration

space, we are interested in identifying more constraints that does not have simple closed form

expressions.

In Chapter 3 we propose a discrete representation to model the feasible configuration space.

Currently this model does not incorporate any motion dynamics in the structure. We should study

how we can embed the motion dynamics in the searching to help improving tracker performance

while at the same time maintain the flexibility of using the model to allow capture of arbitrary

motions. Another issue we should look into is the study of the collected motion data itself. We

should design a method to identify the most representative data set, which should also be user-

independent.

The NM simplex search works well in practice for many optimization problems. Its features are

especially suitable for the case of visual tracking where the objective function is highly nonlinear.

However, it is known to have no theoretical analysis for its convergence. We should perform

additional experiments to study the performance of NM algorithm in tracking the hand motion

and other general tracking applications in different domain.

Another problem that plagues many visual tracking system is the definition of a discriminant

matching function that should output a distinctive peak at the exact match and result in as little

false alarms as possible. Using edge and silhouette along can result in ambiguities when the back-
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ground is cluttered. Using a combination of features have been reported to produce a more robust

discrimination power. More effort should be devoted to design a better set of features and a proper

matching function for hand tracking.

One extension can be made to improve the robustness of the tracker by combining model-based

and appearance-based approaches. Assuming the model geometry is known, the additional cue

provided by the appearance-based approach can be served in a re-initialization stage to recover the

system from losing track or to correct the tracker estimation in case of accumulating errors.

One simplified scenario for re-initialization is to require the user to show the frontal view of

the palm with all fingers extended. Based on this assumption, we propose an algorithm not only

for automatically initializing the motion parameters but also for simultaneously learning the model

geometry. A 3D model is learned based on the 2D information using a bottom-up approach.

Although the current approach is quite robust in determining the location of palm and fingertips,

it is somewhat noisy for estimating the fine dimension of model geometry such as the width and

length of the finger. One possible remedy is to combine top-down and bottom-up approaches in an

iterative manner to refine the estimation.

Finally, based on the fingertip and palm detection algorithms introduced in Chapter 6, we are

able to build many interesting applications using a visual gesture interface. Currently, we use a

small set of gestures for each application to allow the users to quickly master the interface. While

the robustness of the detection algorithm allows us to design a more complicated gesture grammar,

we need to be careful about selecting the proper subset that is simple for users to adapt to and

natural to perform.
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