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ABSTRACT

It was a dream to make computers see. The research in computer vision provides promising

technologies to capture, analyze, transmit, retrieve and interpret visual information. However,

due to the richness and large variations in the visual inputs, the practice of many statistical

learning techniques for visual motion capturing and recognition are confronted by some similar

problems, such that making intelligent and visually capable machines is still a challenging task.

This dissertation concentrates on two important problems: capturing and recognizing human

motion in video sequences, which are crucial for the research and applications of intelligent

human computer interaction, multimedia communication, and smart environments.

This dissertation presents three effective techniques for visual motion analysis tasks: non-

stationary color model adaptation for efficient localization, multiple visual cues integration for

robust tracking, and learning motion models for capturing articulated hand motion. Besides,

this dissertation describes a novel statistical learning method, the Discriminant-EM (D-EM)

algorithm, in the framework of self-supervised learning paradigm. D-EM employs both labeled

and unlabeled training data and converges supervised and unsupervised learning. Many topics

in the dissertation is unified by the four problems of self-supervised learning, i.e., transduction,

co-transduction, model transduction and co-inferencing. Extensive experiments and two pro-

totype systems have validated the proposed approaches in the domain of vision-based human

computer interaction.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Virtual environments

In recent years, virtual reality technologies have taken us into three-dimensional (3-D) vir-

tual worlds and pushed us to develop a new concept of human-computer interaction.

The Electronic Visualization Lab (EVL) at the University of Illinois at Chicago and the Na-

tional Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-

Champaign have developed a family of virtual environments (VEs), including CAVE, Infinity-

Wall, ImmersaDesk, HIVE, and PARIS. These VEs aim to give users the feeling of immersion,

allowing them to explore 3-D virtual worlds.

In the evolution of user interfaces, keyboards were the primary devices in text-based user

interfaces, and then the invention of the mouse brought us the graphical user interface. What

is the counterpart of the mouse when we are trying to explore 3-D virtual environments (VEs)?

In many current VE applications, keyboards, mice, wands, and joysticks are the common

controlling and navigating devices. However, to some extent, such mechanical devices are

inconvenient and unsuitable for natural and direct interaction, since it is difficult for these

devices to provide 3-D and high degrees of freedom inputs. In many CAVE-like VEs, 3-D inputs

are obtained from magnetic sensors, which are prone to magnetic interference and unable to

give the feeling of immersion due to cable connections, such that natural interaction could not

be achieved.
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1.1.2 Human-computer interaction

Traditionally, a main task in human-computer interaction (HCI) focused on designs of ma-

chineries for computers. However, although some simple controlling tasks could be fulfilled,

interacting with 3-D VEs through these machineries is not the most appropriate way. A more

intuitive concept for interaction is needed.

Obviously, a more intuitive and direct interaction could be achieved if computers could cap-

ture human movements and then recognize, even understand, the meanings of these movements.

For example, computers could estimate where the user is pointing, detect when the user claps

hands, interpret why the user waves hands, even understand when the user is happy, etc. This

concept would bring a revolution to human-computer interaction.

Early practice of this idea concentrated on the design of motion sensors, which are attached

to human body parts to measure their motions and transfer the measurements to electromag-

netic signals. There are some commercial products available in the market, such as MotionStar

and CyberGlove. Nowadays, wireless techniques are also embedded in these motion sensors

to get rid of the cable connections. These motion sensors are important for collecting human

motion data. However, these invasive sensors are still quite cumbersome for real interactions be-

cause people are often reluctant to wear them, forcing researchers to explore other noninvasive

ways for natural human-computer interaction.

1.1.3 Vision-based human-computer interaction

Instead of using electromagnetic sensors, vision-based interaction (VBI) aims to develop

more natural, intuitive, and convenient interfaces with computers by using live video inputs.

Computers are able to “see” and recognize a user’s physical actions. Furthermore, a user’s

psychological status can be estimated.

Early research on vision-based motion capturing usually needed the help of color markers.

In current state-of-the-art of vision-based interaction, research is focusing on tracking people

directly, recognizing faces, understanding facial expressions, interpreting gestures and body

motion, and so on.
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Vision-based interaction is a challenging interdisciplinary research area, which involves com-

puter vision and graphics, image processing, machine learning, bioinfomatics, and psychology.

To make a working system, there are some requirements:

• Robustness: In the real-world, visual information could be very rich, noisy, and incomplete,

due to changing illumination, clutter and dynamic backgrounds, occlusion, etc. VBI

should be able to automatically recover from the failure. VBI systems should be user-

independent.

• Computational efficiency: Generally, VBI often requires real-time systems. The vision

and learning techniques used in VBI should be effective as well as cost efficient.

• User’s tolerance: The malfunctions or mistakes of VBI should be tolerated. When a

mistake is made, it should not incur much loss. Users can be asked to repeat some

actions, instead of letting the computer make more wrong decisions.

• Scalability: The VBI system should be easily adapted to different scales of applications.

Fox example, the core of VBI should be the same for desktop environments and CAVE

environments.

1.1.4 Gesture interfaces

The use of hand gestures has become an important part of human-computer interaction in

recent years [1, 2, 3, 4, 5, 6]. To use human hands as a natural interface, some glove-based

devices have been employed to capture human hand motion by attaching sensors to measure the

joint angles and spatial positions of hands directly. Unfortunately, such devices are expensive

and cumbersome.

Since rich visual information provides a strong cue to infer the inner states of an object,

vision-based techniques provide some promising alternatives to capture human hand motion.

At the same time, vision systems could be very cost-efficient and noninvasive. These facts serve

as the motivating forces for research in the modeling, analysis, animation, and recognition of

hand gestures.
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Vision-based gesture interface is a promising direction in HCI [3, 4, 5, 7]. To achieve

a natural and intelligent interaction, there are several important research issues in gesture

interface:

• Gesture modeling: Gesture is a complicated phenomenon. Meaningful information ex-

pressed by gestures is embedded in both the static and temporal characteristics of ges-

tures. Gesture modeling is the basis of gesture interface. It involves gesture representation

studying, hand shape modeling, kinematic modeling, temporal modeling, and semantic

modeling.

• Gesture tracking: The hand is highly articulated, and the range of movement of the hand is

very large. Hand motion consists of global hand motion and local finger motion. Gesture

tracking involves hand localization and capturing articulated finger motion.

• Gesture recognition: Static gestures (or postures) could be used to represent static con-

cepts, and temporal gestures represent dynamic movements. Recognizing postures and

temporal gestures are challenging problems.

• Realistic animation: VBI has the ability to produce responses to human actions. One

such response can be an avatar, which should be realistically animated.

1.1.5 Visual learning

To achieve intelligent interaction between computers and humans, computers should have

the capacity to “learn”. Since the large variation of visual inputs makes it nearly impossible

to explicitly represent the rule of interaction, such knowledge must be obtained from a set of

examples by machine learning techniques.

Due to the richness of visual inputs and the gap between low-level visual features and

high-level concepts, it is often difficult to perform visual tracking, analysis, recognition, and

retrieval. Various learning techniques are employed to deal with the large variety of visual

content in many vision tasks such as face and gesture recognition, visual tracking, image and

video databases, etc. Learning offers a flexible and tractable means to address these problems,

since the training data implicitly represent the a priori knowledge of the domain that is hard

to model explicitly.
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1.2 Motivation

One of the core problems in vision-based human-computer interaction is human tracking

and motion capturing. It is the first step of human motion recognition and understanding.

Specifically, for vision-based gesture interfaces, we need to localize hands in video sequences

robustly, and capture global hand poses and local finger articulations accurately. We need to

develop effective methods for:

• Efficient localization: The efficiency of the localization system not only depends on de-

liberated implementation, but also on efficient techniques. Since many computationally

intensive processes will be carried out after locating the object of interest in videos, lo-

calization should use computational resource as economically as possible.

• Robust tracking: Visual tracking involves many fundamental problems in computer vision

such as matching and recognition. How to make tracking robust is the key to real systems

for vision-based interaction. Integration of multiple visual cues could be a powerful way

to achieve this goal.

• Accurate motion capturing: Human motion is quite complex. For example, the hand mo-

tion is highly articulated because the hand has roughly 27 degrees of freedom. Capturing

finger articulations is a challenging problem.

What motivates us to develop a new learning paradigm for visual learning in gesture interface

is that many learning approaches confront nearly the same difficulties in the practice of vision

applications.

• Few labeled samples: Although supervised learning techniques are widely used in visual

learning tasks, the insufficiency of labeled training data is often one of the problems in the

practice of supervised learning. At the current time, it is hard to deal with the uncertainty

in pure unsupervised learning due to the lack of supervised information.

• Feature extraction and selection: Due to the rich content of an image, feature extraction

finds a compact representation of an object or an scene in a lower-dimensional space.

Feature selection selects the features most relevant to the learning tasks. One of the

difficulties we often confront is how to automatically achieve such representation.
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• Learning in high dimensionality: Most visual leaning tasks are high dimensional, due

to the richness of visual inputs. How to perform effective and efficient learning in high

dimensional spaces is a challenging problem.

• Incremental or on-line learning: To achieve intelligent interaction, a machine should have

the capacity of incremental on-line learning [8], which is a process to learn new knowledge

based on already-learned knowledge.

We use several examples to illustrate these common problems in visual learning tasks. One

example is invariant object recognition that requires recognition of the object from any view

direction. Our task of view-independent hand posture recognition is even difficult because of

the variation among different users. Pure supervised techniques need a huge labeled training

database. However, to manually label a large data set will be very time-consuming and tedious.

Another example is the task of image retrieval which is to find the maximum possible

“similar” images to the query images in the given database [9, 10, 11]. For these information

retrieval problems, we are only given very few labeled training samples by queries.

A more interesting example comes from nonstationary color model adaptation. Many tech-

niques are plagued by the large variation in skin tone, unknown lighting conditions, and dynamic

scenes. If a color classifier is trained under a specific condition, it may not work well in other

scenarios. The learning task is to transduce an old color model to a new environment.

There has been much discussion about enhancing the generalization by looking into the

training algorithm, and many schemes have been proposed to avoid overfitting. However, there

are fewer concerns about the training data set. The drawbacks of pure supervised and pure

unsupervised learning paradigms motivate us to develop a new paradigm.

1.3 Organization

In this dissertation, three novel techniques for nonstationary color tracking, multiple cues

integration, and articulated hand motion capturing will be presented, which serve as the basis

for the development of vision-based gesture interfaces. This dissertation will also present a new

learning paradigm, self-supervised learning, by taking into account both labeled and unlabeled

training data. The development of two interesting gesture interface systems will be described.

The dissertation is organized as follows:

6



• Chapter 2 gives a comprehensive overview of the state-of-the-art of the research in vision-

based interface. The research on gesture representation is given in Section 2.2. Vari-

ous aspects of hand modeling are discussed in Section 2.3. We also discuss the feature

and data collection for gesture recognition in Sections 2.5.1 and 2.5.2, respectively. Sec-

tion 2.4.2 discusses some techniques for tracking hand global motion, and Section 2.4.4

reviews and compares the model-based and appearance-based approaches to capturing

articulated hand motion. Various methods for hand posture recognition and temporal

gesture recognition are given in Sections 2.6 and 2.7. Some of the research directions are

described in Section 2.9.

• Chapter 3 presents a nonparametric color model transduction method based on a self-

organizing map. An adaptive self-organizing map technique is proposed in Section 3.2.

A general technique for model transduction is given in Section 3.3. And the SOM-based

transduction technique is discussed in Section 3.4. Segmentation and tracking results are

presented in Section 3.5.

• Chapter 4 focuses on multiple cues integration for robust tracking. Based on the graphical

model described in Section 4.3, Section 4.5 presents a co-inferencing approach that makes

use of sequential Monte Carlo techniques in Section 4.4. Mathematical details of co-

inferencing are given in Appendix A, and the implementation of co-inferencing tracking

is given in Section 4.6. Section 4.7 describes many experimental results.

• Chapter 5 describes a 3-D model-based approach for capturing articulated hand motion.

An introduction of hand motion and a hand model is given in Section 5.2. The methods

of capturing global hand motion and local finger articulation are presented in Sections 5.3

and 5.4. Section 5.5 describes a two-step iteration approach to combine the global and

local motion estimation. Experiments are given in Section 5.6.

• Chapter 6 presents linear D-EM and kernel D-EM algorithms in self-supervised learn-

ing. We review the state-of-the-art of learning from hybrid data set in Section 6.2. The

EM algorithm is discussed in Section 6.4 and some problems of the EM-based approach

are addressed in Section 6.5. The linear D-EM algorithm and kernel D-EM algorithm

are proposed in Sections 6.6 and 6.7, respectively. Extensive experiments on invariant
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hand posture recognition and content-based image retrieval are given in Section 6.8. Sec-

tion 6.9 discusses the proposed self-supervised learning. Some fundamental questions of

this paradigm are raised in Section 6.9.2. The proposed self-supervised learning paradigm

is given in Section 6.9.3, which includes induction, transduction, and deduction.

• Chapter 7 describes the development of two interesting vision-based gesture interfaces.

The design of a vision-based system for the interactive game of “Paper-Rock-Scissors”

and the design of the “Visual Panel” system of remote display control are presented in

Sections 7.1 and 7.2, respectively.

• Chapter 8 summarizes the dissertation by four typical self-supervised learning problems,

i.e., transduction, co-transduction, model transduction and co-inferencing, which serve as

clues to glue different parts together. Some interesting future research topics are given at

the end.

1.4 Contributions

Original contributions presented in this dissertation span the areas of visual motion cap-

turing and learning techniques for vision-based human-computer interaction. In particular, the

following issues have been addressed.

• A novel nonparametric algorithm, SOM transduction, has been developed to conduct

model transduction in a dynamic learning environment. It has been used for non-

stationary color tracking tasks.

• A novel approach, the co-inferencing algorithm, has been proposed to integrate multiple

cues for robust visual tracking. The co-inferencing technique could be extended to many

other sensor fusion problems.

• An effective 3-D model-based approach of visual motion capturing has been developed

to analyze global hand motion and local finger articulation. The originality lies in the

employment of the finger motion model learned from motion data.

• A novel self-supervised algorithm, the D-EM algorithm, has been proposed by integrating

discriminant analysis and EM. This algorithm employs both labeled and unlabeled train-
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ing data. Both linear D-EM and nonlinear kernel D-EM have been investigated. D-EM has

been successfully applied to invariant hand posture recognition tasks and content-based

image retrieval tasks. Self-supervised learning techniques have potential applications for

many other learning tasks.

• Two interesting prototypes of vision-based gesture interfaces have been developed by

integrating algorithms presented in this dissertation.

This dissertation mainly concentrates on the issues in vision-based intelligent human-computer

interaction. However, many techniques developed in this work are easily extended to many

other tasks and areas. For example, the SOM transduction algorithm could be extended to

other distribution adaptation tasks, and the co-inferencing algorithm is ready for many other

sensor fusion tasks. The self-supervised learning is a new learning paradigm. It is not by any

means confined to this specific area. Actually, this dissertation has described its application to

the image retrieval task. The D-EM algorithm could be easily extended to many other infor-

mation retrieval applications. Although this work does not completely develop the theory of

self-supervised learning paradigm, it will motivate more investigation of this new research topic

in the near future.
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CHAPTER 2

VISION-BASED GESTURE INTERFACES: A REVIEW

2.1 Introduction

This chapter surveys recent studies of vision-based gesture recognition techniques. Sec-

tion 2.2 discusses several human gesture representation paradigms in psycholinguistic and cog-

nitive studies, since almost all high-level temporal gesture recognition tasks can be represented

by those paradigms which serve as a cognitive model for many complicated temporal hand ges-

tures. Since any recognition method needs feature extraction and data collection, Section 2.5.1

discusses the gesture features used in current studies, and Section 2.5.2 provides a brief overview

of tracking techniques which serve as the data collection process for vision-based gesture recog-

nition.

Since meaningful hand gestures can be classified as static hand postures and temporal

gestures, Sections 2.6 and 2.7 discuss various techniques for hand posture recognition and

temporal gesture recognition, respectively. Since sign language recognition is an important

task, Section 2.8 discusses several studies related to it.

2.2 Gesture Representation

There have been many psycholinguistic studies of human gestures. Stokoe [12] represents

gestures as four aspects: hand shape, position, orientation, and movement. Kendon [13] de-

scribes a philology of gesture, which consists of gesticulation, language-like gestures, pan-

tomimes, emblems, and sign language. Sign languages are characterized by a specific set of
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vocabulary and grammar. Emblems are informal gestural expressions in which the meaning

depends on convention, culture, and lexicon.

According to different application scenarios, hand gestures can be classified into several

categories such as conversational gestures, controlling gestures, manipulative gestures, and com-

municative gestures [4]. Sign language is an important case of communicative gestures. Since

sign languages are highly structural, they are very suitable as test-beds for vision algorithms.

At the same time, they can also be a good way to help the disabled to interact with com-

puters. Controlling gestures are the focus of current research in vision-based interface (VBI).

Virtual objects can be located by analyzing pointing gestures. Some display-control applica-

tions demonstrate the potential of pointing gestures in HCI. Another controlling gesture is the

navigating gesture. Instead of using wands, the orientation of hands can be captured as a 3-D

directional input to navigate the VEs. The manipulative gesture will serve as a natural way to

interact with virtual objects. Teleoperation and virtual assembly are good examples of appli-

cations. Communicative gestures are subtle in human interaction, which involves psychological

studies; however, vision-based motion capturing techniques can help those studies.

Communicative gestures can be decomposed into three motion phases: preparation, stroke,

and retraction [13]. Psycholinguistic studies show that stroke may be distinguished from other

gesture phases, since stroke contains the most information. This model is taken from Quek [14].

He also makes a distinction between presentation gestures and repetitive gestures.

Bobick [15] emphasizes the dynamical part of gestures. He represents gestures as movement,

activity, and action. Movements are typically atomic and are the most primitive form of motion

that can be interpreted semantically. Activity is a sequence of either movements or static

configurations. Dynamic models may be used to recognize activities. Actions are the high-level

entities that people typically use to describe what is happening. Time and context become

fundamental, though how much one has to reason about context is unclear.

2.3 Hand Modeling

Human hand motion is highly articulate because the hand consists of many connected parts,

leading to complex kinematics. At the same time, hand motion is also highly constrained,

which makes it difficult to model. Usually, the hand can be modeled in several aspects such as
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shape, kinematic structure, dynamics, and semantics. Hand models are not only used in hand

animation applications, but also are employed to analyze hand motion. Different models are

suitable for different HCI applications.

2.3.1 Modeling the shape

Hand shape models can be classified into several groups such as geometrical models, physical

models, and statistical models.

Geometrical models are suitable for 3-D rendering and hand animation applications. More-

over, they could be employed to analyze hand motion using the approach of analysis-by-

synthesis [16, 17, 18]. Both physical models and statistical models emphasize hand deformation.

The difference is that physical models aim for an explicit representation of deformation, while

statistical models characterize hand deformation implicitly by learning from a set of examples.

Spline-based geometrical surface models represent a surface with splines to approximate

arbitrarily complicated geometrical surfaces. These spline-based surface models can be made

as realistic as possible, but many parameters and control points need to be specified [17]. An

alternative is to approximate the homogeneous body parts by simpler parameterized geometric

shapes such as generalized cylinders or super-quadrics. The advantage of this method is that it

can achieve equally good surface approximation with less complexity [16, 18]. Other than para-

metric models, free-form hand models are defined on a set of 3-D points [19]. Polygon meshes

that are formed by those 3-D points approximate the hand shape, which is computationally

efficient. For computational efficiency, cardboard models could be used for visual motion cap-

turing. Each piece in a cardboard model is a two-dimensional (2-D) plane, but the joint angles

could be adjusted. Examples of different hand models are shown in Figure 2.1. Cyber Scanner,

MRI techniques, or other space digitizers may be used to obtain the range data directly [19].

Another way is to reconstruct the hand model from multiple images of different views.

Physical hand shape models emphasize the deformation of the hand shape under the action

of various forces [20]. The motion of the model is governed by Newtonian dynamics. The

internal forces are applied to hold the shape of the model, and the external forces are used to fit

the model to the image data. Examples are the simplex mesh model [19] and the finite element

method model [21].
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(a) (b) (c)

Figure 2.1 Various hand models. (a) Cardboard model, (b) wireframe model, (c) polygon-mesh
model.

Statistical hand shape models [19] learn the deformation of hand shape through a set of

training examples that can be 2-D images or range images. Mean shape and modes of variation

are found using principal component analysis (PCA). A hand shape is generated by adding a

linear combination of some significant modes of variation to the mean shape.

2.3.2 Modeling the kinematic structure

Figure 2.2 shows the skeleton of a hand. Each finger consists of three joints whose names

are indicated in the figure. Except for the thumb, there are 2 degrees of freedom (DOF)

for metacapophalangeal (MCP) joints, and 1 DOF for proximal interphalangeal (PIP) joints

and distal interphalangeal (DIP) joints. For simplicity, the thumb could be modeled by a 5

DOF kinematic chain, with 2 DOF for the trapeziometacarpal (TM) and MCP joint and 1 for

interphalangeal (IP) joint. Considering global hand poses, human hand motion has roughly

27 DOF. The challenge of hand motion analysis lies in the fact that hand motion is highly

articulated. Each finger can be modeled by a kinematic chain, in which the palm is its base

reference frame and the fingertip is the end-effector. We can write:

xb = Hb
0( θMCP AA)H0

1( θMCP )H1
2( θPIP )H2

3( θDIP )x3 (2.1)

where x3 is the fingertip in DIP frame, while xb is fingertip in the base frame. Hj
i is the

coordinate transformation which transforms the i frame to the j frame.

When fixing the joint length, hand kinematics can be characterized by its joint angles. The

inverse kinematics problem is often involved to calculate joint angles when analyzing finger

motion. Generally, gradient-based methods can be used to solve this problem by deriving
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Figure 2.2 Hand skeleton structure. Generally, we can assume 2 DOF for the MCP and TM
joint, and 1 DOF for all the other joints. Thus, the hand has roughly 21 DOF for its local
finger motion.

the kinematical Jacobian [22]. There are other alternatives in the literature such as genetic

algorithms [23]. However, such an inverse kinematics problem is ill-posed, such that a unique

solution cannot be guaranteed, which makes the analysis formidable.

Fortunately, natural hand motion is also highly constrained. One set of constraints, usually

referred to as static constraints, consists of the limits of the range of finger motions as a result

of hand anatomy, such as 00 ≤ θMCP ≤ 900. These constraints limit hand articulation within

a boundary. Another type of constraint describes the correlations among different joints, and

thus reduces the dimensionality of hand articulation. For example, the motions of the DIP joint

and PIP joint are generally not independent and they could be described as θDIP = (2/3)θPIP

from the study of biomechanics [17, 24]. Although this constraint could be intentionally made

invalid, it is a good approximation of natural finger motion.

Unfortunately, not all such constraints could be quantified in closed forms. There are

few studies of finger motion constraints in the literature. A preliminary investigation could be

found in [25], in which learning techniques are employed to model the hand configurations space

directly by collecting a large set of hand motion data [25]. The computational complexity of

finger motion analysis could be reduced significantly when considering such motion constraints.
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2.3.3 Modeling the dynamics

To capture complex hand motion and recognize continuous hand gestures, the dynamics

and semantics of hand motion should also be modeled.

Kalman filtering and extended Kalman filtering (EKF) techniques are widely adopted to

model the dynamics [18]. EKF works well for some tracking tasks. However, it is based on a

small motion assumption that often fails to hold for hand motion.

Simple hand gestures can be modeled by a finite state machine [26], but it is insufficient

to represent complex hand dynamics. Rule-based approaches can be applied to model complex

hand movements [14]. However, many heuristics are needed to construct the rules. Considering

the similarities between sign languages and spoken languages, the hidden Markov model (HMM)

and its variants are also used to model the hand dynamics [27, 28]. As a generalization of HMM,

dynamic Bayesian net [29] is another promising approach to model the hand dynamics. These

methods are essentially learning methods that learn the intrinsic dynamics from a set of training

data. The knowledge of dynamics and semantics is not explicitly expressed in these methods

but implicitly stored in the structures of the learning models.

The learning results of these methods depend on the training data set, structures of learning

models, and training methods. One of the common problems of the learning approaches is that

generalization of the learning results largely depends on the training data. However, obtaining

the training samples is not a trivial problem. Currently, the research of learning dynamics

(behaviors, semantics) of human motion has drawn much attention from researchers in HCI,

computer vision, computer graphics, and psychology.

2.4 Capturing Human Hand Motion

Hand motion capturing is finding the global and local motion of hand movements. Several

different model-based approaches will be discussed in this section.

2.4.1 Formulating hand motion

Highly articulated human hand motion consists of the global hand motion and local finger

motion, which can be expressed as M = [MG,ML], where M is the hand motion, MG is the

global motion, and ML is the local motion. Global hand motion that presents large rotation
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and translation can be written as MG = [R, t], where R and t are rotation and translation,

respectively. One important issue is how to reliably track the global motion in image sequences.

Local hand motion is articulated, and self-occlusion makes the detection and tracking local

hand motion challenging. Local hand motion can be parameterized with the set of joint angles

(or hand state) ML = [Θ] where Θ is the joint angle set. Consequently, hand motion can be

expressed as M = [R, t, Θ].

One possible way to analyze hand motion is the appearance-based approach, which empha-

sizes the analysis of hand shapes in images [3]. However, local hand motion is very hard to

estimate by this means. Another possible way is the model-based approach [16, 17, 18, 19, 20,

22, 23, 24]. With a single calibrated camera, local hand motion parameters can be estimated

by fitting the 3-D model to the observation images. Multiple camera settings are helpful to

deal with occlusion [20, 22, 24]. The use of a 3-D model can largely alleviate the problem of

depth ambiguity since the structure of the hand is included in the model.

2.4.2 Localizing hands in video sequences

Hand localization locates hand regions in image sequences. Skin color offers an effective

and efficient way to fulfill this goal. The core of color tracking is color-based segmentation.

According to the representation of color distribution in certain color spaces, current techniques

of color tracking can be classified into two general approaches: nonparametric [2, 30, 31] and

parametric [32, 33]. Figure 2.3 gives an example of segmentation-based hand localization,

in which the input image is segmented by color, and the hand blob is localized by grouping

skin-color pixels.

(a) (b) (c)

Figure 2.3 Hand localization. (a) Input image, (b) segmentation result, (c) hand blob located
by analyzing the segmented image pixels.
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One of the nonparametric approaches is based on color histograms [2, 30]. Because color

space is quantized by the structure of the histogram, this technique shares the same problem

with nonparametric density estimation, in which the level of quantization will affect the esti-

mation. How to select a good quantization level of the color histogram is not trivial. Although

nonuniform quantization would perform better than uniform quantization, it is much more

complicated. Another nonparametric approach is proposed in [31] based on the self-organizing

map, an unsupervised clustering algorithm to approximate color distribution. Generally, these

nonparametric approaches work effectively when the quantization level is properly set and there

are sufficient data.

Parametric approaches model the color density in parametric forms such as Gaussian dis-

tribution or Gaussian mixture models [32, 33]. Expectation-maximization (EM) offers a way

to fit probabilistic models to the observation data. The difficulty of model order selection could

be handled by heuristics [32] or cross-validation.

However, when we try to apply these techniques to track the human hand and face in some

virtual environment (VE) applications, this problem is still made challenging by some special

difficulties such as large variation in skin tone, unknown lighting conditions, and dynamic scenes.

In order to achieve user-independence, the tracking algorithm should be able to deal with

the large variation in skin color for different people. One possible solution is to make a generic

statistical model of skin color by collecting a huge training data set [30] so that the generic

color model works for every user. However, collecting and labeling such a huge database is not

trivial.

Even though such a good generic color model can be obtained, we have to face another

difficulty in color tracking: generic color models would be incapable to handle changing lighting

conditions unless some invariants could be found. Many color tracking techniques assume

controlled lighting. However, in many cases, the interested object may be shadowed by other

objects or by the object itself so that the color looks very different. What is more, we cannot

assume constant lighting sources, since the lighting directions, intensities, and tones might

change. In some VE applications, since the graphics rendered in the display keep changing, the

reflective lights would change the apparent color of objects. This color constancy problem is

not trivial in color tracking.
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Because of dynamic scenes and changing lighting conditions, the color distribution over

time is nonstationary, since the statistics of color distribution will change with time. If a color

classifier is trained under a specific condition, it may not work well in other scenarios.

There have been some researchers who have looked into the nonstationary color distribution

problem in color tracking. Several methods have been proposed to approach this problem. A

scheme of color model adaptation was addressed in [32], in which a Gaussian mixture model

was used to represent color distribution, and a linear extrapolation was employed to adjust the

parameters of the model by a set of labeled training data drawn from the new frame. However,

since the new image is not segmented, this labeled data set is not reliable.

In [31], the scheme of transduction of SOM was proposed to update the weights and structure

of the trained SOM to capture the new color distribution, according to a set of new training

data, which consists of both labeled and unlabeled samples. Since the transduction of SOM

combines unsupervised and supervised updating, a large amount of labeled training data is not

required.

To lead to a robust and efficient localization, besides the color cue, hand shape and motion

could also be employed for localization. One important research problem is the integration or

fusion of multiple cues [27, 34].

Besides color, the hand can be localized by other cues, such motion and shape. A scheme

of tracking the contours of hands is given in [35, 36]. Although color-based localization is

the most computationally efficient, integrating other cues would enhance the robustness of the

localization.

2.4.3 Selecting image features

To estimate the parameters of the model, some image features should be extracted and

tracked to serve as the observation of the estimators. Hand image features can be geometric

features such as points, lines, contours, and silhouettes [17]. The fingertip is one of the frequently

used features, because the positions of fingertips are almost sufficient to recognize some gestures

due to the highly constrained hand motion [24]. Color markers are often used to help track the

3-D positions of fingertips [16, 24]. Some researchers estimate the positions and orientations

of fingertips by fitting a 3-D cylinder to the images [16]. Line fitting is also a frequently used

technique to detect the fingertips [22].
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2.4.4 Capturing hand motion in full DOF

To capture articulated hand motion in full DOF, both global hand motion and local finger

motion should be determined from video sequences. It is a challenging problem to analyze and

capture hand motion, since the hand is highly articulated. Different methods have been used

to approach this problem. One possible method is the appearance-based approach, in which

2-D deformable hand shape templates are used to track a moving hand in 2-D. However, this

method is insufficient to recover full articulations, since it is difficult to infer finger joint angles

based on appearances only.

Another possible way is the 3-D model-based approach, which takes the advantages of a

priori knowledge built in the 3-D models. This approach aligns a 3-D model to images or even

range data by estimating the parameters of the model. In 3-D model-based methods, image

features could be looked at as the image evidence or image observation of a 3-D model that

is projected to the image plane. A 3-D model with different parameters will produce different

image evidence. Model-based methods recover the joint angles by minimizing the discrepancy

between the image feature observations and projected 3-D model hypotheses [16, 17, 18, 19,

22, 23, 24, 37], which is a challenging optimization problem. Two important tasks in the

model-based approach are determining the match and searching the hand joint angles space.

Some examples are shown in Figure 2.4, in which the parameters of a cardboard hand model

are adjusted to match three input images. Generally, due to the huge search space of hand

articulation, the optimization involved is difficult and computationally intensive.

Figure 2.4 Capturing articulate hand motion using a cardboard hand model. Hand pose and
finger joint angles could be recovered by fitting the model to the images. The fitting minimizes
the discrepancy between image feature observations and projected models.

Many methods tend to estimate the global and local hand motion simultaneously. In [22],

the hand was modeled as an articulated stick figure, and point and line image features were

used for the registration. Hand motion capturing was formulated as a constrained nonlinear
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programming problem. The drawback of this approach is that the optimization is often trapped

in local minima. Another idea is to model the surface of the hand [16, 17, 18], and then hand

configurations can be estimated using the analysis-by-synthesis approach, in which candidate

3-D models are projected to the image plane and the best match is found with respect to

some similarity measurements. If the surface model is very fine, an accurate estimation can

be obtained. However, those hand models are user-dependent. Rough models can only give

approximate estimations [18].

To ease the optimization, a decomposition method can be adopted to analyze articulate

hand motion by decoupling hand motion to its global motion and local finger motion. Global

motion is parameterized as the pose of the palm, and local motion is parameterized as the set

of joint angles. A two-step iterative algorithm could be used to find an accurate estimation [23].

Given an initial estimation, hand pose is estimated using least median of squares with joint

angles fixed. Then the joint angles are recovered by a genetic algorithm with the global hand

pose fixed. Those two steps are alternately iterated until the solution converges [23].

2.5 Data Preparation for Recognition

Selecting good features is crucial to gesture recognition because hand gestures are very rich

in shape variation, motion, and textures.

2.5.1 Features for gesture recognition

For static hand posture recognition, although it is possible to recognize hand posture by

extracting some geometric features such as fingertips, finger directions, and hand contours, such

features are not always available and reliable due to self-occlusion and lighting conditions. There

are also many other nongeometric features such as color, silhouette, and textures. However,

they are inadequate in recognition. Since it is not easy to specify features explicitly, the whole

image or transformed image is taken as the input, and features are selected implicitly and

automatically by the recognizer.

Cui and Weng [38] investigate the difference between the most discriminating features

(MDF) and the most expressive features (MEF). MEFs are extracted by K-L projection. How-

ever, MEFs may not be the best for classification because the features that describe some
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major variations in the class are typically irrelevant to how the subclasses are divided. MDFs

are selected by multiclass, multivariate discriminate analysis and have a significantly higher ca-

pability to catch major differences between classes. Their experiments also showed that MDFs

are superior to the MEFs in automatic feature selection for classification.

Recognizing temporal gestures not only needs spatial features, but also requires temporal

features. It is possible to recognize some gestures by 2-D locations of hands. However, it is

not general and view-dependent. The most fundamental feature is the 2-D location of the

interested blob. Wren et al. [39] use a multiclass statistical model of color and shape to obtain

a 2-D representation of the head and the hand in a wide range of viewing conditions in their

tracking system Pfinder.

In order to achieve spatial invariant recognition, 3-D features are necessary. Campbell et

al. [40] investigated the 3-D invariant features by comparing the recognition performance on

ten different feature vectors derived from a single set of 18 T’ai Chi gestures which are used

in the Staying Alive application developed by Becker and Pentland [41]. A hidden Markov

model (HMM) is used as the recognizer. They reported that (dr, dθ, dz) had the best overall

recognition rates. At the same time, their experiments highlight the fact that choosing the

right set of features can be crucial to the performance.

Features for temporally invariant gesture recognition are hard to specify since they depend

on the temporal representation of gestures. However, the features can be handled implicitly in

some recognition approaches such as finite state machine and HMM, which will be discussed in

Section 2.7.

2.5.2 Data collection for recognition

To collect data for temporal gesture recognition is not a trivial task. The hand has to

be localized in the image sequences and segmented from the background. Two-dimensional

tracking supplies the localized information such as hand bounding boxes and centroid of hand

blobs. Simple 2-D motion trajectories can be extracted from the image sequences. In some

cases, these 2-D features are sufficient for gesture recognition. There have been many 2-D

tracking algorithms such as color tracking, motion tracking, template matching, blob tracking,

and multiple cues integrating.
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Although 2-D tracking gives the position information of the hand, some recognition appli-

cations need still more features such as hand orientation and hand shape. Three-dimensional

tracking approaches try to locate the hand in 3-D space by giving the 3-D position and orien-

tation of the hand. However, since the hand cannot be treated as a rigid object, it is very hard

to estimate the hand orientation. Three-dimensional position of the hand can be achieved by

stereo camera or model-based approaches.

Since the hand is highly articulated and its shape depends on the viewpoint, hand shape

is hard to describe. Several studies try to recover the state of the hand which is represented

by the set of joint angles, which is full DOF tracking. If the hand configuration can be esti-

mated, recognizing finger spelling may be easier. However, how to estimate the configuration

of articulated objects needs more study.

2.6 Static Hand Posture Recognition

Although hand gestures are complicated to model since the meanings of hand gestures

depend on people and cultures, a specific hand gesture vocabulary can be always predefined in

many applications, such as Virtual Environment (VE) applications, so that ambiguity can be

limited. Generally, these hand gestures can be either static hand postures or temporal hand

gestures. Hand postures express some concepts by hand configurations and hand shapes, while

temporal hand gestures represent some actions by hand movements. Sometimes, hand postures

act as special transition states in temporal gestures and supply a cue to segment and recognize

temporal hand gestures. Some research results show that static hand signs and temporal hand

gestures seldom present simultaneously, which suggests that we study static hand gestures and

temporal gestures separately.

In contrast to sign languages, the gesture vocabulary in VE applications is structured and

disambiguated. In such scenarios, some simple controlling, commanding, and manipulative ges-

tures are defined to fulfill natural interaction such as pointing, navigating, moving, rotating,

stopping, starting, selecting, etc. These gesture commands can be simple in the sense of mo-

tion; however, many different hand postures are used to differentiate and switch among those

commanding modes. For example, it makes sense to estimate a gesture’s pointing direction

22



only if we know it is a pointing gesture. This problem is an empirical problem in most VE

applications.

Although this problem can be formulated as a classification problem of different predefined

static hand postures, there are still many difficulties. The first is view-independent hand posture

recognition [42, 43], which means hand postures must be recognized from any view direction.

This is a natural requirement in many VE applications. In most cases, since users do not know

where the cameras are, the naturalness and immersiveness will be ruined if users are obliged to

issue commands to an unknown direction. Another difficulty is that the human hand is highly

articulated and deformable; the large variation in hand postures should be handled to make a

user-independent system.

Since hand postures can express some concepts as well as act as special transition states

in temporal gestures, recognizing or estimating hand postures or human postures is one of the

main topics in gesture recognition. Some work has been done in this area.

2.6.1 3-D Model-based approaches

One approach is the 3-D model-based approach, in which the hand configuration is estimated

by taking advantage of 3-D hand models [16, 18, 19, 22, 23, 24, 44, 45]. Since hand configura-

tions are independent of view directions, these methods could directly achieve view-independent

recognition. Different models take different image features to construct feature-model corre-

spondences. Joint angles can be estimated by minimizing a projected surface model and some

image evidence such as silhouettes in the light of “analysis-by-synthesis” [16, 17, 24, 44]. How-

ever, this approach needs good surface models and the process of projection-and-comparison

is expensive. Alternatively, point and line features are employed in kinematical hand mod-

els to recover joint angles [18, 22, 23]. Hand postures could be estimated accurately if the

correspondences between the 3-D model and the observed image features are well established.

Physical models and statistical models [19] were also employed to estimate hand configurations.

However, the ill-posed problem of estimating hand configuration is not trivial. Many current

methods require reliable feature detection, which is plagued by self-occlusion. Another draw-

back is that it is not trivial to achieve user-independence, since 3-D models should be calibrated

for each user; otherwise the accuracy will be sacrificed.
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2.6.2 Appearance-based approaches

Although accurate estimation of hand configuration is important in some applications such

as manipulating virtual objects or multi-DOF input devices, a classification of hand postures is

often enough in many other applications such as commands switching. Since the appearances

are much different among different hand postures and these differences are not large among

different people, an alternative approach is an appearance-based approach [38, 42, 46, 47, 48, 49],

which aims to characterize the mapping from the image feature space to the possible hand

configuration space directly from a set of training data. This approach often involves learning

techniques. Images for different hand postures are shown in Figure 2.5.

Figure 2.5 Recognizing different hand postures.

Cui and Weng [38] use the most discriminating features to classify hand signs by partitioning

the MDF space. A manifold interpolation scheme is introduced to generalize to other variations

from a limited number of learned samples. Their algorithm can handle complex backgrounds.

Triesch and von de Malsburg [49] employ the elastic graph matching technique to classify

hand postures against complex backgrounds. Hand postures are represented by labeled graphs

with an underlying two-dimensional topology. Attached to the nodes are jets, which are a

sort of local image description based on Gabor filters. The recognition rate against complex

background is 86.2%. This approach can achieve scale-invariant and user-independent recogni-

tion, and it does not need hand segmentation. Since using one graph for one hand posture is

insufficient, this approach is not view-independent.

Quek and Zhao [47] introduced an inductive learning system which is able to derive rules of

disjunctive normal form formulate. Each DNF describes a hand pose, and each conjunct within

the DNF constitutes a single rule. Twenty-eight features such as the area of the bounding box,
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the compactness of the hand, and the normalized moments, served as the input feature vector

for their learning algorithm. They obtained a 94% recognition rate.

Nolker and Ritter [45] detected the 2-D location of fingertips by the local linear mapping

(LLN) neural network, and those 2-D locations are mapped to 3-D position by the parametric

self-organizing map (PSOM) neural network, since PSOM has the ability to perform an asso-

ciative completion of fragmentary input. By this means, their approach can recognize hand

pose under different views.

Although it is easier for the appearance-based approach to achieve user-independence than

the model-based approach, there are two major difficulties of this approach: automatic feature

selection and training data collection. Although there has been much discussion about feature

extraction [45, 47, 49] and selection [38, 46], little has been addressed on the training data. The

generalization of many current methods largely depends on their training data sets. In general,

good generalization requires a large and representative labeled training data set. However, to

manually label a large data set will be very time-consuming and tedious. Although unsupervised

schemes have been proposed to cluster the appearances of 3-D objects [50], it is hard for the

pure unsupervised approaches to achieve accurate classification without supervision. In [42], a

hybrid learning approach was proposed to employ a large set of unlabeled images in training.

2.7 Temporal Gesture Recognition

There are some similarities between temporal gestures and speech so that some techniques

such as HMM can be applied to gesture. However, temporal gesture is more complicated than

speech. Some low-level movements can be recognized using dynamic models. Some gesture

semantics can be exploited to recognize high-level activities. Example-based learning methods

can also be used. There are also many other techniques developed in recent years.

2.7.1 Recognizing low-level motion

Modeling the low-level dynamics of human motion is important not only for human track-

ing, but also for human motion recognition. It serves as a quantitative representation of simple

movements so that those simple movements can be recognized in a reduced space by the tra-

jectories of motion parameters. However, those low-level dynamics models are not sufficient
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to represent more complicated human motions. Some low-level motions can be represented by

simple dynamic processes, in which the Kalman filter technique is often employed to estimate,

interpolate, and predict the motion parameters. However, this simple dynamic model is not

sufficient to model most cases of human motion, and the Gaussian assumption of the Kalman

filtering is usually invalid.

Black and Jepson [51] extended the Condensation algorithm to recognize temporal tra-

jectories. Since a sampling technique is used to represent the probability density in the Con-

densation algorithm, their approach avoids some difficulties of Kalman filtering. Gesture

recognition is achieved by matching of input motion trajectories and model trajectories using

dynamic time warping (DTW).

Pentland and Liu [52] try to represent human behavior by a complex, multistate model.

They used several alternative models to represent human dynamics, one for each class of re-

sponse. Model switching is based on the observation of the state of the dynamics. This approach

produces a generalized maximum likelihood estimate of the current and future values of the

state variables. Recognition is achieved by determining which model best fits the observation.

Rittscher and Blake [53] push the technique of combining the idea of model switching and

Condensation. They use mixed discrete/continuous states to couple perception with clas-

sification, in which the continuous variable describes the motion parameters and the discrete

variable labels the class of the motion. An ARMA model is used to represent the dynamics.

This approach can achieve automatic temporal sequence segmentation.

There is also some work dealing with specific gestures. Cohen et al. [54] use a dynamic

model to represent circle and line gestures to generate and recognize basic oscillatory gestures

such as crane control gestures.

2.7.2 Recognizing high-level motion

Many applications need to recognize more complex gestures which include semantic meaning

in the movements. Modeling the dynamics alone is not sufficient in such tasks.

The finite state machine is a commonly employed technique to handle this situation. Davis

and Shah [16] use this technique to recognize simple hand gestures. Jo, Kuno, and Shirai [55]

take this approach to recognize manipulative hand gestures such as grasping, holding, and

extending. The task knowledge is represented by a state transition diagram, in which each state
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indicates possible gesture states at the next moment. By using a rest state, all unintentional

actions can be ignored. Pavlović and Berry [56] also take this approach.

Another approach is rule-based modeling. Quek [14] uses extended variable-valued logic

and a rule-based induction algorithm to build an inductive learning system to recognize 3-D

gestures. Cutler and Turk [57] build a set of simple rules to recognize gestures such as waving,

jumping, marching, etc.

Pinhanez and Bobick [58] develop a new representation for temporal gestures, a 3-valued

domain {past, now, fut}(PNF) network. The occurrence of an action is computed by minimizing

the domain of its PNF-network, under constraints imposed by the current state of the sensors

and the previous states of the network.

Other promising approaches to modeling the semantics of temporal gestures are the Bayesian

networks and the dynamic Bayesian networks. Pavlović [29] has pushed these ideas forward

recently.

2.7.3 Gesture recognition by HMM

Pentland and Liu [52] use HMM to model the state transitions among a set of dynamic

models. Bregler [59] takes the same approach. HMM has the capacity not only to model the

low-level dynamics, but also the semantics in some gestures. Stoll and Ohya [60] employ HMM

to model semantically meaningful human movements, in which one HMM is learned for each

motion class. The data used for modeling the human motions is an approximate pose derived

from an image sequence. Nam and Wohn [61] present a HMM-based method to recognize some

controlling gestures. Their approach takes into account not only hand movement, but also hand

postures and palm orientations.

There are also many variations of HMM. Yang et al. [62] model the gesture by employing

a multidimensional HMM, which contains more than one observation symbol at each time.

Their approach is able to model multipath gestures and provides a means to integrate multiple

modalities to increase the recognition rate.

Since the output probability of feature vectors of each state in HMM is unique, HMM

can handle only piecewise stationary processes which are not adequate in gesture modeling.

Kobayashi and Haruyama [63] introduce the partly-hidden Markov model (PHMM) for temporal

matching. Darrell and Pentland [64] introduce a hidden-state reinforcement learning paradigm
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based on the partially observable Markov decision process to gesture recognition by which an

active camera is guided.

When the Markov condition is violated, conventional HMMs fail. HMMs are ill-suited to

systems that have compositional states. Brand et al. [65] presented an algorithm for coupling

and training HMMs to model interactions between processes that may have different state

structures and degrees of influence on each other. These problems often occur in vision, speech,

or both. The coupled HMMs are well suited to applications requiring sensor fusion across

modalities.

Wilson and Bobick [28] extended the standard HMM method to include a global parametric

variation in the output probabilities of the HMM to handle parameterized movements such as

musical conducting and driving by the EM algorithm. They presented results on two different

movements, i.e., a size gesture and a point gesture, and show robustness with respect to noise

in the input features.

2.7.4 Other techniques

There are also many statistical learning techniques applied to gesture recognition. As we

described before, Cui and Weng [66] use the multiclass, multidimensional discriminant anal-

ysis to automatically select the most discriminating features for gesture recognition. Polana

and Nelson [67] attempt to recognize motion by low-level statistical features of image motion

information. A simple nearest centroid algorithm serves as the classifier. Their experiments

show their approach is suitable for repetitive gesture recognition. Watanabe and Yachida [68]

introduce an eigenspace which is constructed from multiple input image sequences to recognize

gestures. Since this eigenspace represents the approximate 3-D information for gestures, their

approach can handle self-occlusion.

Bobick and Ivanov [15] model the low-level temporal behaviors by HMM techniques. The

outputs of HMM serve as the input stream of a stochastic context-free grammar parsing system.

The grammar and parser provide longer range temporal constraints. The uncertainty of low-

level movement detection is disambiguated in the high-level parser, which includes a priori

knowledge about the structure of temporal actions.
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Yang and Ahuja [69] use time-delay neural networks (TDNN) to classify motion patterns.

TDNN is trained with a database of more than ASL signs. The input of the TDNN is the

motion trajectories extracted by multiscale motion segmentation.

2.8 Sign Language

Unlike general gestures, sign languages are highly structured so that they provide an ap-

pealing test bed for understanding more general principles. However, because there are no clear

boundaries between individual signs, recognition of sign languages is still very difficult. Speech

recognition and sign language recognition are parallels. Both are time-varying processes, which

show statistical variations, making HMMs a plausible choice for modeling the processes. And

both must devise ways to cope with context and coarticulation effects. HMMs provide a frame-

work for capturing the statistical variations in both position and duration of the movement. In

addition, they can segment the gesture stream implicitly.

There are two kinds of gestures to be recognized: one is isolated gesture, and the other is

continuous gesture. The presence of silence makes the boundaries of isolated gestures easy to

spot. Each sign can be extracted and presented to the trained HMMs individually. Continuous

sign recognition, on the other hand, is much harder since there is no silence between the signs.

Here HMMs offer the compelling advantage of being able to segment the streams of signs

automatically with the Viterbi algorithm. Coarticulation is difficult to handle in continuous

recognition, since it results in the insertion of an extra movement between the two signs.

Starner et al. [27] employ HMM to recognize American Sign Language (ASL). They as-

sume that detailed information about hand shape is not necessary for humans to interpret sign

language, so a coarse tracking system is used in their studies.

There are several possible approaches to deal with the coarticulation problem. One is to use

context-dependent HMMs, and the other is modeling the coarticulation. The idea of context-

dependent HMMs is to train bi-sign or even tri-sign context-dependent HMMs. However, this

method cannot work well. Vogler and Metaxas [70, 20] study the coarticulation in sign language

recognition. They propose an unsupervised clustering scheme to obtain the necessary classes of

“phonemes” for modeling the movements between signs. Recently, they use phonemes instead

of whole signs as the basic units so that the ASL signs can be broken into phonemes such as
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movements and holds, and HMMs are trained to recognize the phonemes [70]. Since the number

of phonemes is limited, it is possible to use HMMs to recognize large-scale vocabularies.

Liang and Ouhyoung [71] also take the HMM approach to the recognition of continuous Tai-

wanese Sign Language with a vocabulary of 250 signs. The temporal segmentation is performed

explicitly based on the discontinuity of the movements according to four gesture parameters

such as posture, position, orientation, and motion.

2.9 Research Directions

Although much progress has been made in recent years, there are still many issues related

to gesture analysis and recognition that need to be adequately addressed in the future.

2.9.1 Robust hand localization

Although the idea of localizing the hand by tracking skin color is straightforward, in practice,

there are some challenging problems with color tracking. Many color tracking techniques assume

controlled lighting. However, due to the dynamic scenes and changing lighting conditions, the

color distribution over time is nonstationary. If a color classifier is trained under a specific

condition, it may not work well in other scenarios. Besides the large variation in skin colors, in

some VE applications, since the graphics rendered in the display keep changing, the reflected

lights would probably change the skin color as well. This color consistency problem is not trivial

in tracking skin color.

Recently, some researchers have begun to look into the nonstationary color distribution

problem in color tracking. Several color model updating methods have been proposed to solve

this problem [31, 32, 72]. However, handling the nonstationary color is still an open research

problem. In the mean time, to achieve a robust hand localization system, multiple cues should

be integrated. Better approaches for integration should be studied in the future.

2.9.2 Modeling motion constraints

Although the hand is highly articulated, natural finger motion is also highly constrained.

These constraints largely reduce the possible hand configuration space. Consequently, the

search space would be significantly reduced in hand posture estimation, and the articulate
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motion capturing would be more efficient. Unfortunately, most such constraints are impossible

to represent explicitly, partly due to the large variation in finger motion.

However, to achieve robust and efficient estimation of hand configuration and realistic hand

animation, such constraints have to be modeled. Instead of explicit modeling, learning tech-

niques could be taken to characterize the hand configuration space. A more profound investi-

gation should be conducted.

2.9.3 Motion editing for animation

Realistic articulated hand animation should be considered in the future. The human an-

imation produced by many current animation systems looks very unrealistic and still looks

like robots, due to the fact that the current motion model is too simplified and largely depen-

dent on kinematics. To achieve realistic animation, the natural motion constraints should be

integrated with animation systems. Another research direction is to achieve personalized ani-

mation, in which different styles of motion can be produced with low cost. Schemes of avoiding

the violation of body constraints and collision detection should be built into animation systems.

2.9.4 Recognizing temporal patterns

Although HMM is widely used in speech recognition, and many researchers are applying

HMM to temporal gesture recognition, current examples of gesture recognition by HMM still

have very limited vocabularies. Compared to HMM in speech recognition, data collection for

HMM training in temporal gesture recognition is very difficult, which is part of the reason that

large vocabularies are prevented. A crucial issue of training data collection is motion capturing.

Due to its lower cost and noninvasive nature, vision-based motion capturing would be one of

the ideal approaches to collect motion training data. However, there are many challenging

and unsolved problems in vision-based motion capturing techniques. Another issue is gesture

coarticulation, which makes the extraction and segmentation of gesture commands even harder

in continuous hand movements.

In a word, a good representation of temporal gestures needs to be found in future research.

It could be a very different representation from speech signals. Motion interpretation is a quite

ill-posed problem, in which cognitive science and psychological studies may be combined. In
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the near future, it is very possible to develop task-specific gesture systems, but we are still far

from a general purpose temporal gesture recognition and understanding system.

2.9.5 Other open questions

To achieve an immersive interaction, multimodality by integrating hand gestures and speech

should also be adequately addressed in the future. Recent research shows that there is a

complementarity among different modalities such as hand gestures and speech [73]. More

profound research should be conducted.

Current research focuses on single hand gestures for simplicity. However, two-handed ges-

tures should also be studied in the future, since they are more expressive and allow more natural

interaction.
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CHAPTER 3

NONSTATIONARY COLOR TRACKING

3.1 Introduction

In most vision-based interaction systems, localizing and tracking targets in video sequences

are two important and related issues, since such steps will provide inputs to other processing

steps such as target recognition and action recognition. Generally, target localization could be

achieved by estimating the bounding box for the target in image sequences. Visual tracking

includes 2-D tracking which estimates 2-D motion parameters, 3-D tracking which gives the

positions and orientations of the target in 3-D space, and high DOF tracking which tracks the

deformation or articulation of the target. Some difficulties for visual tracking lie in complex

backgrounds, unknown lighting conditions, and complex target movements. When multiple

objects must be handled simultaneously, the problem becomes even more challenging since

different objects would cause occlusion. The robustness, accuracy, and speed are important to

evaluate tracking algorithms.

Different image features of the object supply different cues for tracking algorithms. Edge-

based approaches match edges in the images of the target against other images, and region-

based approaches use image templates for matching. Under the small motion assumption that

assumes there is little difference between two consecutive image frames, these approaches could

achieve accurate results. However, when this assumption does not hold, which could be very

likely in practice, these tracking algorithms will lose track, and the tracking recovery has to

depend on some other remedies. At the same time, edge-based and region-based tracking

methods generally need more computational resources, which makes real-time systems difficult

to achieve.
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An alternative is the blob-based approach, which does not use local image information such

as edge and region, but represents the target by its color and motion such that the target could

be segmented from the background for localization and thus tracking. For example, when we

need to localize the human hand in video sequences, it would be very difficult to represent the

hand only based on edges and image appearances because the hand is highly articulated due

to finger movements, and there are very large variations in hand appearances from different

viewpoints. When we notice that the skin color tones of different fingers are uniform, color-

based segmentation approaches will afford efficient and robust implementation of real-time

localization and tracking of the hand. Skin color is a strong cue in human tracking. Combining

these two approaches by integrating multiple visual cues would result in more robust tracking

results [74, 75].

Meanwhile, efficient segmentation is also desirable for tracking bootstrapping, in the cases

when small motion assumption does not hold, and in tracking reinitialization when it loses track.

Recently, some successful tracking systems have been built based on color segmentation [2, 31,

64, 76, 77]. A simple approach is to collect some skin color pixel samples from the user and

train a color classifier, such that skin color regions could be segmented from the background by

classifying and grouping similar color pixels. To approach the problem of the large variation

of skin color for different people, one of the solutions is to tune the color classifier through a

very large training data set collected from many people [30]. Unfortunately, in practice, there

are still some complications. One of them is that color distributions may change with lighting

conditions, in which case a fixed skin color model may not work well at the time. Another

difficulty is that collecting such a large labeled training data set is not trivial. We will discuss

such issues in more details in the sections.

In this paper, we will study a new representation for color distributions, the SASOM model,

for the tasks of adaptive color-based segmentation and nonstationary color tracking. An inter-

esting aspect of such a SASOM neural network is that its structure could be learned through

training. An analysis of the stationary status of a self-organizing map neural network will

also be given in that section. Based on the SASOM color model, we will present the SASOM

transduction algorithm. In contrast to the methods of constructing a specific skin color model,

our proposed approach tries to adapt the models to nonstationary color distributions by trans-
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ducing a learned color model through image sequences. Section 3.5 will report some of our

experiments on the proposed SASOM color model.

3.2 Nonparametric Density Representations

In contrast to parametric representation of density, nonparametric approaches does not

assume distribution models and so does not require parameter estimation. Consequently, it is

more flexible, since it is able to model complex data distributions. However, the sacrifice of

analyzability is the cost of flexibility. At the same time, nonparametric techniques often require

a large number of samples.

3.2.1 Histogram and vector quantization

Histogramming is a simple and widely used technique for nonparametric modeling of density.

The density of a particular point is represented by the number of samples falling into the volume

around this point. The Parzen Window method [78] can be looked at as a generalization of

histogramming.

Although histogramming is able to model any density, it is plagued by the curse of dimen-

sionality. In a d-dimensional space, the order of bins is O(nd), where n is the quantization level

for each dimension. For an example, we use 255 for each component in color histogram. Then

we have 2552 bins for HS histogramming, and 2553 for HSV histogramming. A huge data set

is in turn needed to obtain such histograms.

Vector quantization (VQ) is a technique to overcome this difficulty by tessellating the data

space. Each cell of the tessellation is represented by a code vector. Clustering techniques are

often used to achieve such vector quantization, and in turn the representation of data density

similar to histogramming.

One of the major factors in histogramming and VQ is the quantization level, or resolution.

If the quantization level is large (low resolution), density estimation will be rough but smooth.

On the other hand, if the quantization level is small (high resolution), density estimation will

be accurate but noisy. It is important to find a good quantization level, but it is difficult to

determine it in advance. Many methods have been proposed to deal with this difficulty, such

as multiresolution approaches [79, 80] and adaptive approaches.

35



3.2.2 Self-organizing map

Self-organizing map (SOM) [81] is mainly used for visualizing and interpreting large high-

dimensional data sets by mapping them to low-dimensional space based on a competitive learn-

ing scheme. SOM consists of an input layer and an output layer. Figure 3.1 shows the structure

of 1-D SOM. The number of nodes in the input layer is the same as the dimension of the input

vector, while the structure of the output layer can be 1-D or 2-D connected nodes that are

connected to each input node with some weights. Through competition, the index of the win-

ing node is taken as the output of SOM. The Hebbian learning rule adjusts the weights of the

winning node and its neighborhood nodes. SOM is highly related to vector quantization (VQ)

and k-mean clustering. One good characteristic of SOM is its partial data density preservation

if properly trained [82, 83, 84, 85].

x1

ξ 1

x2 x3

weights

inputs

outputs

ξ 2 ξ m-1 ξ m

Figure 3.1 1-D SOM structure.

3.2.3 Adaptive self-organizing map

One of the problems of many clustering algorithms is that the number of clusters should be

specified in advance. The success of the clustering algorithm depends on the specified number

of clusters. It is the same case in the basic SOM algorithm. The more output neurons, the

higher the resolution, since output neurons correspond to clusters. Different numbers of clusters

lead to different results of tessellation of the pattern space. If fewer neurons are used, data of
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lower density will be dominated by the patterns of higher density. On the other hand, if more

nodes are used, the ordered mapping is hard to obtain.

One possible approach to this problem is cross-validation. Although the structure of the

SOM, such as the number of output neurons, is fixed each time, a good structure can be

determined after validating several different structures. However, this approach does not offer

flexibility to find an appropriate structure of SOM, and it is not fast. An alternative is to embed

some heuristics to dynamically change the structure of SOM in training [86, 87, 88, 89]. Our

algorithm can automatically find an appropriate number of clusters by the schemes of growing,

pruning, and merging [43, 90].

Growing Scheme: Our algorithm is also a competitive learning scheme which deals with

the problem of how to find the competition winner. In the SOM algorithm, the output of a

node is the distance between the input vector and the weight vector of the node. The distance

measurement can be defined as

D(x−wi) = ||x−wi|| (3.1)

where D is a distance measurement between the input vector x and the weight vector wi of the

ith neuron of SOM. We call it the output value of an output neuron. The measurement here is

the Euclidean distance; however, other distance measurements could also be employed.

In standard SOM, the neuron with the smallest output value is taken as the winner c.

c = arg min
i
D(x−wi) (3.2)

In some cases, however, when the output values of all neurons become nearly the same,

determining the winner by finding the one with the smallest value is not suitable. In this

situation, the input vector may be too far from every weight vector or around the center of the

convex hull of the weight vectors. If the current input sample is drawn from the data cluster

represented by one of these output neurons, the weight vector of that neuron will be misplaced

unnecessarily in training by adjusting the weight. So, it is not a robust way to take the neuron

with the smallest output value as the winner. In this situation, a new neuron could be generated

by inserting it to the current structure and taking the input vector as its initial weight, which

is illustrated in Figure 3.2.

By comparing the mean value and the median value of the output values of all neurons, we

make a rule to detect the situation in which a new neuron should be created. The competition
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Figure 3.2 Growing scheme of SASOM. wi is the weight vector, and x is an input vector.
Left: when the input vector is too far from every weight vector so that the output value of
all neurons are nearly the same, if current input x is in the data cluster represented by one of
these neurons, say w2, the weight vector of that neuron will be misplaced unnecessarily to w′

2.
Right: in this situation, a new neuron is created and its weight will be set by w4 = x.

can be described as

vi = D(x−wi) ∀i ∈ {1, . . . , M} (3.3)

where vi is the output value of the ith neuron with weight vector wi, and M is the number of

neurons. The competition winner can be found by:

c =





NULL, if mean(v) ≈ median(v)

arg mini vi, otherwise
(3.4)

where v = {v1, v2, . . . , vM} and M is the current number of neurons.

Pruning Scheme: In the training process, when a neuron is rarely a winner, it means that

the data cluster represented by this neuron has very low density or might be taken as noise.

So, such a neuron can be pruned. In practice, a threshold is set to determine such neurons.

Merging Scheme: In the training process, the distances between any two weight vectors

of each two neurons are calculated. If any two weight vectors are near enough, we can merge

these two neurons by assigning the average of the two weights to the new one.

The algorithm of SASOM is summarized in Figure 3.3.

We perform color-based image segmentation based on the SASOM color model. In our

segmentation algorithm, the training data set is collected from one color image, and each data

vector is a weighted HSI vector, i.e., x = { αH, βS, γI}, where we set α = β = 1 and γ = 0.1.

Pixels with large and small intensities are not included in the training data set because hue

and saturation become unstable in this range. Once trained, the SASOM is used to label each

pixel by its HSI value. The pixel label is the index of the node in the SASOM.
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• Initially set the number of neurons M to 2, and randomly initialize the
weights wi = wi(0), i = {1, 2}, where wi(k) represents the weight vector of
the ith node at the kth iteration.

• Draw an input x from the training sample set randomly to the SASOM.

• Find the winner among the neurons using Equation 3.4.

• If(winner!=NULL), adjust the weights of the winner neuron c and its two
neighborhood neurons c− 1 and c + 1.

wc(k + 1) = wc(k) + η(k)(x−wc(k))
wc−1(k + 1) = wc−1(k) + η(k) α(k)(x−wc−1(k))
wc+1(k + 1) = wc+1(k) + η(k) α(k)(x−wc+1(k))

where η(k) is the step size of learning, α(k) is a neighborhood function, k
is the counter of iteration.

• If there is no winner, grow a new neuron m according to the growing scheme.
wm(k + 1) = x and set M = M + 1.

• If a neuron is rarely win, delete it according to pruning scheme, M = M −1.

• Calculate the distance between each two neurons and perform merging
scheme.

Figure 3.3 The training algorithm of the structure adaptive self-organizing map.

3.3 Model Transduction and Color Model Adaptation

It is a good practice to learn a generic color classifier for color-based segmentation by

collecting a large labeled data set [30]. If some color invariants could be found, learning such

a color classifier would suggest a direct and robust way of color tracking. However, when we

consider the nonstationary color distribution over time, we do not generally expect to find such

invariants.

The approach taken in [30] is an inductive learning approach, by which the color classifier

learned should be able to classify any pixel in any image. Generally, this color classifier would be

highly nonlinear, and a huge labeled training data set is required to achieve good generalization.

In fact, learning such a highly nonlinear color classifier for all lighting conditions and all images

may not be necessary because the requirement of the generalization could be relaxed to a subset

of the data space. In color tracking, a color classifier Mt at time frame t could only be used to

classify pixel xj in the current specific image feature data set It so that this specific classifier
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Mt could be simpler. When there is a new image It+1 at time t + 1, this specific classifier Mt

should be transduced to a new classifier Mt+1 which works just for the new image It+1 instead

of It. The classification can be described as

yi = arg max
j=1,...,C

p(yj |xi,Mt, It+1 : ∀xi ∈ It+1) (3.5)

where yi is the label of xi, and C is the number of classes. In this sense, we do not care about

the performance of the classifier Mt+1 outside It+1. We call the problem of transducing the

classifier Mt to Mt+1 given It+1 model transduction. Figure 3.4 shows the transduction of color

classifiers.

Figure 3.4 An illustration of transduction of classifiers.

This model transduction may not always be feasible unless we know the joint distribution

of It and It+1. Unfortunately, such joint probability is generally unknown since we may not

have enough a priori knowledge about the transition in a color space over time. One approach

is to assume a transition model, like the case in motion tracking by Kalman filter or Conden-

sation [35], so that we can explicitly model p(It+1|It). One of the difficulties of this approach

is that a fixed transition model is unable to capture much dynamics. Although the issue of

motion model switching by learning transition models has been addressed in [35], their scheme

is not general. Another difficulty is that it may not be easy to identify parameters of the tran-

sition models due to the insufficient labeled training data. The approach used in [32] assumes
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a linear transition model. However, the transition (updating) of color models is plagued since

the newest image has not been segmented yet.

However, our assumption is different from the transition model assumption. We assume

that the classifier Mt at time t can give “confident” labels to several samples in It+1, so that

the data in It+1 can be divided into two parts: labeled data set L = {(xj , yj), j = 1, . . . , N},
and unlabeled set U = {xj , j = 1, . . . , M}, where N and M are the size of the labeled set

and unlabeled set, respectively, xj is the color feature vector, and yj is its label (such as skin

or non-skin). Here, L and U are from the same distribution. Consequently, the transductive

classification can be written as

yi = arg max
j=1,...,C

p(yj |xi,L,U : ∀xi ∈ U) (3.6)

In this formulation, the specific classifier Mt is transduced to another classifier Mt+1 by com-

bining a large unlabeled data set from It+1.

At time t, we have a classifier model M t = pt(x, y), which is learned from a fully labeled data

set (X t,Yt) = {xt
k, y

t
k}, where k = 1, . . . , N t. The density pt(x) and the conditional density

pt(y|x) are known. And at time t + 1, we just have a set of unlabeled data X t+1 = {xt+1
k },

where k = 1, . . . , N t+1. At this point, we only know pt+1(x). The conditional density pt+1(y|x)

is given by transduction. And a new classifier model M t+1 = pt(x, y) should be learned from

M t and X t+1. We have

p(M t+1|X t+1,M t) =
p(X t+1|M t+1)p(M t+1|M t)

p(X t+1|M t)
(3.7)

∝ p(X t+1|M t+1)p(M t+1|M t) (3.8)

The term of p(X t+1|M t+1) can be calculated by the density estimation techniques. SOM

and LVQ can be easily applied. However, the term of p(M t+1|M t) is difficult to deal with

because it involves the dynamics from M t to M t+1, if we do not have an explicit model for such

transition. Without using any transition model, we have to at least make some assumptions

about the transition; otherwise, the transduction does not make sense, since such transition

can be arbitrary.

Here, we assume that M t can confidently give some true observations Ot+1 (or classify some

samples which consist of their true labels) at time t + 1. This assumption is reasonable, since

it means that the difference between M t and M t+1 should be small and the transition should
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not be large. So, we have

p(M t+1|M t) ∝ p(M t+1|Ot+1,X t+1) (3.9)

= p(M t+1|X t+1, Ot+1
y ) (3.10)

which means we should estimate p(M |X , Oy).

Since the labels Y for X are hidden variables, basically, an EM-like iteration can be taken

to fulfill such a transition.

• Step 1: At the kth iteration, find Y(k) = argmaxY p(Y|M(k − 1),X )

• Step 2: Learn M(k) = p(X ,Y(k))

3.4 SOM Transduction Algorithm

Our solution to this problem is called transduction of SOM, which is to update the weights

and structure of the trained SOM according to a set of new training data so that the transduced

SOM captures the new distribution. The new training data set in the transduction consists of

both labeled and unlabeled samples. The algorithm is described below.

• W(n−1) = {w(n−1)
i , i = 1, · · · , C(n−1)} are the weights of SOM at time frame n− 1. The

training data set X (n) = {x(n)
k , k = 1, · · · , N} is drawn randomly from the image at time

frame n. We use W(n) to represent SOM at time frame n.

• The training data set X (n) is classified by the SOM W(n−1) and is partitioned into two

parts: a labeled data set X (n)
l and an unlabeled data set X (n)

u . If a sample x(n)
k is

confidently classified by W(n−1), then put this sample to the set X (n)
l and label it with

the index of the winning neuron of W(n−1); otherwise, put it to X (n)
u and let it unlabeled.

• Unsupervised updating: The algorithm described in Section 3.2.2 is employed to up-

date W(n−1) by the unlabeled data set X (n)
u .

• Supervised updating: The labeled data set X (n)
l is used in this step. (xk, lk) is drawn

from X (n)
l , where lk is the label for xk. The winning neuron for the input xk is c.

w(n)
c =





w(n−1)
c + α(xk −w(n−1)

c ), if c = lk

w(n−1)
c − α(xk −w(n−1)

c ), if c 6= lk
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After several iterations, the SOM at time frame n− 1 is transduced to n.

3.5 Experiments Based on SASOM

Our color segmentation algorithm based on SASOM has been tested with a large variety

of pictures. And our localization system that integrates this color segmentation algorithm has

run under a wide range of operating conditions. Such a real-time system has been employed

in vision-based gesture analysis [23]. Extensive experiments show that our color segmentation

algorithm is fast, automatic, and accurate, and that the proposed localization system is ro-

bust, real-time, and reliable. This color segmentation algorithm can also be applied to other

segmentation tasks.

3.5.1 Performance of image segmentation

One parameter we should specify in SASOM is the maximum number of neurons. If the

scene is simple, we set the maximum number to 2 or 3. If the scene is complex, we set it to 10

or more. In between, we use 6.

Figure 3.5 Some results of color-based image segmentation using structural adaptive self-
organizing map. Left column: source color images; middle column: segmented images; right
column: interested color regions.

Figure 3.5 shows some segmentation results. In the left column are source color images, in

the middle column are segmented images, and in the right column are separated color regions.

The colors of segmented color regions are the average colors of these regions. Each pixel in the
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source images is assigned a label by the SASOM algorithm, and this label is used as a mask

to separate the corresponding color region. Our segmentation algorithm works well through

these experiments. When the background has less color distraction, this algorithm finds exact

color regions. Since texture is not used in the segmentation, segmentation results will be noisy

when there is color distracter texture in the background. Hand and face images are taken from

a cheap camera in the indoor environment in our labs. Our algorithm can also successfully

segment hand and face regions.

3.5.2 Performance of hand tracking

A typical hand-tracking scenario is controlling the display or simulating a 3-D mouse in

desktop environments. A camera mounted at the top of the desktop computer looks below at

the keyboard area to give an image sequence of moving a hand. Another typical application

is to track a human face. Our localization system is able to simultaneously localize multiple

objects, which is useful in tracking a moving human.

Since our localization system is essentially based on a global segmentation algorithm, it does

not largely rely on the tracking results of previous frames. Even if for some reason the tracker

gets lost in some frames, it can recover by itself without interfering with the subjects. In this

sense, the tracking algorithm is very robust.

Our proposed system can handle changing lighting condition to some extent because of the

transduction of the SASOM color classifier. At the same time, since the hue and saturation

are given more weight than intensity, our system is insensitive to changes in lighting intensity

such as when objects are shadowed or the intensity of the light source changes. However,

there are still some problems. Insufficient lighting, too strong lighting, or very dark or bright

backgrounds may cause trouble for the color segmentation algorithm, since hue and saturation

become unstable and the system does not give more weight to intensity. If the lighting condition

changes dramatically, the color segmentation algorithm may fail since the transduction cannot

be guaranteed.

Some hand tracking results in our experiments are given in Figure 3.6. In this experiment,

a hand is moving around with the interference of a moving book. The book is also shading the
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light so that the color of the skin is changing. The blue boxes are the bounding boxes of the

interested color region.1

Figure 3.6 Results of hand tracking with 18 frames taken from image sequences. A moving
hand with interference from a book is localized. The blue boxes are the bounding box of the
interested color region.

Our tracking system is very robust and efficient from this experiment in which the back-

ground of the scene is cluttered. Since a book is interfering with the hand by shading the light,

such a system can still find a correct bounding box. Sometimes, due to the sudden change

of lighting conditions, the tracker may be lost. However, it can quickly recover to continue

working. Different skin tones do not affect our system. The first image with the interested
1A demo sequence can be downloaded at http://www.ifp.uiuc.edu/~yingwu.
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color region is used to initially train the SASOM so that it can work with nearly any users,

which has been tested in our extensive experiments.

3.6 Discussion

Computer vision techniques supply good ways to improve human-computer interaction by

visually understanding the human movements, which requires a robust and accurate tracking

of parts of the human body, such as hands and face. However, cluttered backgrounds, un-

known lighting conditions, and multiple moving objects make the tracking tasks challenging.

This chapter mainly concentrated on color-based image segmentation and color-based target

tracking.

We presented a new representation of color models based on the proposed structure adaptive

self-organizing (SASOM) neural network, in which the structure of the SOM could be trained.

This SASOM representation could afford efficient image segmentation through a competitive

process of the neurons in SASOM. Then we also investigated the color-based tracking task. A

challenge of such a task lies in the fact that the lighting conditions and the background may not

be static, such that the color distributions in the image sequence are not stationary. In order

to capture the nonstationary color distribution, the SASOM could be transduced by combing

supervised and unsupervised learning paradigms, which we called SASOM transduction. Based

on the SASOM model, we achieved a robust real-time tracking system that has been widely

used in our further research.

Besides the SASOM color model, we also looked into a parametric approach by using the

Gaussian mixture model. Since the nonstationary color tracking could be formulated as a

model transduction problem, our study focused on the problem of learning a new Gaussian

mixture model based on an old one and a set of training data, e.g., color pixel data. Instead of

assuming a transition model, we assume that some unlabeled pixels in a new image frame can

be “confidently” labeled by a “weak classifier” according to a preset confidence level.

We noticed that the SASOM transduction is not mature, and it needs more efforts to find

a better way to combine supervised and unsupervised learning schemes. Since the process of

competition among all neurons is essentially parallel, the tracking system can be made much

faster by parallel implementation of the competition process. Currently, our localization system
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offers a bounding box of the interested objects. Shape analysis of localized objects will be

extended to estimate the 3-D motion of the target.
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CHAPTER 4

MULTIPLE CUES INTEGRATION FOR ROBUST

TRACKING

4.1 Introduction

With the rapid enhancement of computational power provided by computer hardware, it

becomes easier to afford some visual capacities for computers. Recent years has witnessed

an expeditious development of the research and applications of visual surveillance and vision-

based interfaces. Visual tracking is an important part of such topics. The vision systems

should be able to localize moving targets from video sequences. A large amount of research

effort has been devoted to visual tracking and analysis of human motion [3, 6, 7]. More natural

and immersive human computer interactions could be developed by visually recognizing and

interpreting human actions. Therefore, to afford such interactions, human motion should be

tracked visually to provide sensory inputs for recognition.

One of the purposes of visual tracking is to infer the states of the targets from image

sequences. Besides 2-D positions, visual tracking could also be expected to recover other states,

such as poses, articulation or deformations, which depend on different applications.

Although the tracking problem can be well formulated in control and signal processing

research, for visual tracking, it involves much more fundamental research problems such as

object representation, image measurement and matching. Since the states of the target are

hidden and can only be inferred from some observable image features, one of the difficulties for

visual tracking lies in the fact that it is crucial but difficult to measure state hypotheses against

image evidence.
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Bottom-up and top-down approaches are two kinds of methodologies to approach the visual

tracking problem. Bottom-up approaches generally tend to construct object states by analyz-

ing the content of images. Basically, many segmentation-based methods can be categorized as

bottom-up approaches. For example, blob tracking techniques group similar image pixels into

blobs to estimate the positions and shapes of the target. In contrast, top-down approaches gen-

erate candidate hypotheses of the target state from previous time frames based on a parametric

representation of the target. Tracking is achieved by measuring and verifying these hypotheses

against image observations. Many model-based and template-matching methods can be cate-

gorized as top-down approaches. Certainly, bottom-up approaches and top-down approaches

could be combined.

Bottom-up methods might be computationally efficient, yet the robustness is largely limited

by the ability of image analysis, because the processing of grouping or tracing image pixels could

be overwhelmed by image clutters. On the other hand, top-down approaches depend less on

image analysis because the target hypotheses serve as strong constraints for analyzing images.

But the performances of the top-down approaches are largely determined by the methods of

generating and verifying hypotheses. To achieve robust tracking, a large number of hypotheses

may be maintained so that more computation would be involved for measuring them. The

combination of these two methodologies could keep the robustness but reduce the computation.

Visual tracking techniques generally have four elements: target representation, observation

representation, hypotheses generating, and hypotheses measurement, which roughly characterize

tracking performances and limitations.

To discriminate the target from other objects, the target representation — which could

include different modalities such as shape, geometry, motion, and appearance — characterizes

the target in a state space either explicitly or implicitly. Although how to find the target rep-

resentation is a fundamental problem in computer vision, visual tracking research generally

employs concise representations to facilitate computational efficiency. For example, parame-

terized shapes [74, 91] and color distributions [32, 72, 92, 93] are often employed as target

representations. To provide a more constrained description of the target, some methods em-

ploy both shape and color [33, 34, 74, 77, 94, 95]. Obviously, unique characterization of the

target would be quite helpful to visual tracking, but in general it would involve high dimension-

ality. To add uniqueness in the target representation, many methods even employ the target’s
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appearance, such as image templates [96, 97, 98] or eigenspace representation [99], as the target

representation. For example, if you know a person, it would be a bit easier to track this person

in a crowd. Sometimes motion could also be taken into account in target representations, since

different objects can be discriminated by the differences of their motions. On the other hand,

if two objects share the same representation, it would be difficult to correctly track either of

them when they are close in the state space, if there are no priors from the dynamics of the

targets’ movements.

Closely related to the target representation, the observation representation defines the image

evidence of the object representation, i.e., the image features observed in the images. For

example, if the target is represented by its contour shape, we expect to observe edges of the

contour in the image. If the target is characterized by its color appearance, certain color

distribution patterns in the images could be used as the observation of the target.

The hypotheses measurement evaluates the matching between target state hypotheses and

their image observations. Sometime, we will measure with how much probability the state

hypotheses will generate such image observations. Similarly, the question we often ask is that,

given a certain image observation, which hypothesis will be most likely to produce such an

image observation. In many cases, we cannot obtain exact probability measurements, but we

can approximate them by pseudo-probabilities. For example, the template-matching tracking

method often takes SSD as the measurement. The fewer the SSD measurement, the higher

the probability of the hypothesis. The evaluation would be quite challenging when measuring

a shape hypothesis against a cluttered background. Although some analytical results were

reported in [35], many current tracking methods take ad hoc measurements.

The hypotheses generating is to produce new state hypotheses based on old estimation of

target’s representation and old observation, which implies the evolution of the dynamic pro-

cess. The target’s dynamics could be embedded in such a predicting process. At a certain time

instant, the target state is a random variable. The a posteriori probability distribution of the

target state, given the history of observations, changes with time. Therefore, the tracking prob-

lem can be viewed as a problem of conditional probability density propagation. The estimation

of the target state at a certain time instance could be approximated by estimating the condi-

tional probability density of it. The hypotheses generating basically describes the evolution of

such posterior density or some of its statistics. The Kalman filtering technique gives a classical
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example of hypotheses generating under Gaussian assumptions, due to which the density could

be characterized by its mean and covariance. In this case, hypotheses generating characterizes

the search range and confidence level of the tracking. If the Gaussian assumption does not hold,

which is often the case in tracking against cluttered backgrounds, we could represent the poste-

rior density of the target state by a nonparametric form. In this circumstance, the hypotheses

generating could be viewed as a process of the evolution of a set of hypotheses or state samples

or particles, which facilitates a Monte Carlo approach to tracking. The Condensation [35]

algorithm is one such example.

Since image sequences contain very rich visual information, using single object representa-

tion would not be robust when the target is in a clutter. For example, if we only use shape

models to represent the target and measure it against edges in images, the tracking could be

quite unstable when the target moves to a clutter. The false edges incurred by the clutter would

very likely distract the tracker.

To approach the problem of robust tracking and integrating multiple cues, this chapter

formulates it as the inference problem of a factorized graphical model. Due to the complexity

of such a graphical model, a variational method is taken to approximate the Bayesian inference.

Different modalities in the model present a co-inference phenomenon [75]. Based on the analysis

of the factorized model, this paper presents an efficient Monte Carlo tracking algorithm to

integrate multiple visual cues, in which the co-inference of different modalities is achieved by

the EM iterations.

In this chapter, we will give a brief overview of the research of multiple cues integration

for robust tracking in Section 4.2. Then the factorized graphical model used in our tracking

formulation will be presented in Section 4.3, and the co-inference phenomenon will be ana-

lyzed and explained in this section as well. Section 4.4 describes the techniques in sequential

Monte Carlo approaches for tracking problems. The importance sampling technique will be de-

scribed in more details. Our proposed approach and our implementation of co-inference based

on transductive importance sampling will be presented in Section 4.5, and the details of our

tracking implementation and experiments are described in Section 4.7. Section 4.8 discusses

the proposed approach and points out some possible directions for future research.
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4.2 Multiple Cues Integration

Based on the four elements of visual tracking described in Section 4.1, we often notice that a

state hypothesis of a richer target representation would have better opportunities to be verified

according to various aspects of image observations. For example, combining color distribution

of the target could largely enhance the robustness of contour tracking in a heavily cluttered

background, and integrating shape and color representations could incur better tracking against

color distracters. On the other hand, if the target and the clutter are indistinguishable in terms

of their representations, the tracking has to be almost determined by the prior knowledge about

the dynamics at least in a short period of time. If such prior dynamics is not available, or we

assume a random walk for the target, we could say that the target is untrackable in terms of

2-D. This aperture problem motivates the research of tracking and integrating multiple visual

cues.

On the other hand, we often observe that an accurate dynamics model is quite important for

a successful tracking for many existing visual tracking algorithms because it generally provides

the tracker a good prediction of the target. As an approximation, we often assume constant

velocity models or constant acceleration models for the target’s dynamics for a short period

of time. In many cases, the parameters of such dynamic models are set in advance. Tracking

will be at risk when the dynamic model is not properly set. An interesting question is whether

there is a way to enhance the robustness even if the dynamic model is not accurate enough.

According to our investigation, the answer is yes, and the solution is to use a richer target

representation and integrate multiple visual cues, which will be presented in the following

sections of this chapter. Some intuitions are given here. Suppose we represent the target by

two modalities: shape and color appearance. The two modalities have their own dynamics

models, which means that the target is deformable, and the lighting could change, but it is

difficult to know in advance about how the shape will deform and how the lighting will change.

Therefore, we can only assume very rough dynamics models for approximation. However, such

rough dynamics models will be sometimes violated such that the predictions based on the

dynamics models could largely deviate, causing tracking to fail. The reason for this is that the

two modalities are treated separately. Our main idea is to let the two modalities interact with

each other. For example, if the target’s shape changes very little but the lighting changes a lot,
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the estimation of the target’s color appearance could be fulfilled by taking advantage of shape

estimation, instead of relying on the dynamics models of color appearance. On the other hand,

if the lighting changes very slowly but the target deforms a lot, the deformation could be more

robustly localized by looking into its color appearance, instead of taking a strong prior from

the prediction from the dynamics model of the deformation. Naturally, we shall ask, What

if both deformation and lighting changes are quite large? As described before, the problem

becomes a sort of untrackable problem, but we can still approach it by taking the estimation

that maximizes the joint probability of both modalities. Exact formulation and analysis will

be given later in this paper.

Multiple cues integration could be done in terms of object representation and observation

representation. Some approaches perform multiple observation measurements and accumulate

the measurements for each hypothesis [34, 94]. Although robust to some extent, many methods

of combining the measurements from different sources are often ad hoc. To integrate shape and

color, many tracking algorithms assume fixed color distribution [34, 74, 77] for the target to

enable efficient color segmentation. However, such an assumption is often invalid in practice.

In the literature, nonstationary color tracking methods [32, 72] were also reported. Instead of

assuming fixed color representation, some methods also include color modality in the target

representation [33, 59, 95], in which a multivariable Gaussian was used to represent both color

and motion parameters. To enable robust tracking and the capacity of reinitialization, some re-

searchers investigated the combination and switch among different trackers that track different

modalities [77, 100]. Generally, different modalities are updated sequentially in these methods.

On the other hand, tracking both shape and color simultaneously would be a formidable prob-

lem, since it increases the dimensionality of the state space of the target. This paper tries to

investigate the relationship among different modalities in visual tracking, and to identify an

efficient way to facilitate robust and simultaneous tracking of these modalities.

4.3 Graphical Models for Tracking

In this section, we shall formulate the visual tracking problem in a probabilistic framework.

The integration of multiple cues could be characterized by a factorized graphical model, in

which we make use of the variational analysis to approximate the inference task.
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In a dynamic system, the states of the target and image observations are represented by Xt

and Zt, respectively. The history of states and measurements are denoted by Xt = (X1, . . . ,Xt)

and Zt = (Z1, . . . ,Zt). The tracking problem could be formulated as an inference problem with

the prior p(Xt+1|Zt), which is a prediction density. We have

p(Xt+1|Zt+1) ∝ p(Zt+1|Xt+1)p(Xt+1|Zt)

p(Xt+1|Zt) =
∫

p(Xt+1|Xt)p(Xt|Zt)dXt

where p(Zt+1|Xt+1) represents the measurement or observation likelihood, and p(Xt+1|Xt) is

the dynamic model.

The probabilistic formulation of the tracking problem could be represented by graphical

models in Figure 4.1, which is similar to the hidden Markov model [101]. At time t, the

observation Zt is independent of previous states Xt−1 and previous observations Zt−1, given

current state Xt, i.e., p(Zt|Xt, Zt−1) = p(Zt|Xt), and the states have Markov property, i.e.,

p(Xt|Xt−1) = p(Xt|Xt−1).

Xt-1 X X

Z t-1 t+1

t+1t

tZ Z

Figure 4.1 The tracking problem could be represented by a graphical model, similar to the
hidden Markov model.

The tracking problem can be approached by the inference techniques in the graphical model.

Consequently, when the dimensionality of the hidden states increases, the inference and learning

would become difficult due to the exponential increase of required computational resources.

However, a distributed state representation could largely ease this difficulty by decoupling the

dynamics. Fox example, target states could be decomposed into shape states and color states

with the architecture shown in Figure 4.2(a).

Furthermore, the observation could also be separated into Zs
t and Zc

t for shape and color

respectively in Figure 4.2(b). Each observation depends on both color and shape states.

Due to the complex structure of the factorized network, the exact inference would be

formidable. One approach to this problem is statistical sampling-based methods, such as Gibbs

sampling. Another approach is to approximate the posterior probability p(Xt|Zt) of the hidden
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Figure 4.2 Factorized graphical models: (a) The states of the target could be decomposed into
shape states Xs

t and color states Xc
t in a factorized graphical model. (b) The observation could

also be separated into Zs
t and Zc

t .

states by a tractable distribution Q(Xt). A lower bound on the log likelihood log P (Zt) can be

achieved by such an approximation [102, 103, 104, 105]:

log P (Zt) ≥
∑

Xt

Q(Xt) log
P (Xt, Zt)

Q(Xt)
(4.1)

KL(Q||P ) =
∑

Xt

Q(Xt) log
Q(Xt)

P (Xt|Zt)
(4.2)

Generally, we can choose Q(·) to have a simpler structure by eliminating some of the de-

pendences in P (·), while minimizing the Kullback-Leibler divergence between P (·) and Q(·) in

Equation (4.2). It can be achieved by a structured variational inference. The basic idea is to

uncouple the Markov chains and replace the true observation probability of each hidden state

by a distinct variational parameter, which can be varied for the minimization. Supposing the

target state includes M modalities, we could write

Q(Xt|θ) =
1

ZQ

M∏

m=1

Q(Xm
1 |θ)

T∏

t=2

Q(Xm
t |Xm

t−1, θ)

=
1

ZQ

M∏

m=1

hm
x1

πm
T∏

t=2

hm
xt

p(Xm
t |Xm

t−1)

where M is the number of modalities or factorized Markov chains, Xm
t is the state of the

mth modality at time frame t, hm
xt

are the variational parameters, and ZQ is a normalization

constant. Although general continuous analysis of such an approach is unavailable, the method

in [103] employed a structured variational analysis for the case of discrete hidden state and

observation. Under the assumption of linear observation, a set of fixed point equations for hm
xt

to minimize KL(Q||P ) was obtained [103]:

h̃m
xt

= g(Zt, {E[Xn
t |Zn

t , hn] : ∀n 6= m}) (4.3)
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where g(·, ·) is a function whose details can be found in the Appendix A, E[Xn
t |Zn

t , hm] ≡ 〈Xm
t 〉

is the estimation of the hidden state Xn
t at the nth uncoupled Markov chain, based on the

variational parameters hn. Using these variational parameters, a new set of expectations for

the hidden states 〈Xm
t 〉 will be fed back into Equation (4.3), which can be solved iteratively.

It is very similar to the EM algorithm [106]. To make it clear, we could explicitly write up

in Equation (4.4) the fixed point equations in Equation 4.3 for the case of two modalities, for

example, shape and color: 



h̃s
xt

= g(Zt, E[Xc
t |Zc

t , h
c])

h̃c
xt

= g(Zt, E[Xs
t |Zs

t , h
s])

(4.4)

where Xs
t is the shape state, Xc

t is the color state, and hs
xt

and hc
xt

represent the shape and

color variational parameters, respectively.

It should be noted that the original densely connected graphical model is uncoupled. The

hidden states of each uncoupled Markov chain could be estimated separately, given the set

of variational parameters. The estimation of the variational parameters of one of the chains

depends on the hidden states of the other chains. Such a phenomenon becomes quite clear

in Equation (4.4), where in the iteration of the fixed point equations, the estimation of shape

state E[Xs
t |Zs

t , h
s] is used to calculate the variational parameters of color modality h̃c

xt
, and the

estimation of color state E[Xc
t |Zc

t , h
c] is used to calculate the variational parameters of shape

modality h̃s
xt

. We call such interesting phenomenon co-inference [75], since one modality could

be inferred iteratively by other modalities.

The variational analysis of the factorized model is meaningful for the problem of multiple

cues integration, since it reveals the interactions among different modalities. It thus suggests

an efficient approach to track multiple cues, which will be presented in Section 4.5.

4.4 Sequential Monte Carlo Techniques

As described in previous sections, the visual tracking problem could be formulated in a

probabilistic framework by representing tracking as a process of conditional probability density

propagation. Denote the target state and observation at time t as Xt and Zt, respectively, and

Xt = {X1, . . . ,Xt}, Zt = {Z1, . . . ,Zt}. The tracking problem is formulated as

p(Xt+1|Zt+1) ∝ p(Zt+1|Xt+1)p(Xt+1|Zt) (4.5)
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Although closed-form solutions of dynamic systems are generally intractable for many cases,

Monte Carlo methods offer a way to approximate the inference and to characterize the evolution

of the dynamic systems.

In statistics, sampling techniques are widely used to approximate a complex probability

density. Sequential Monte Carlo methods for dynamic systems are also studied in the area

of statistics [107, 108, 109]. A set of weighted random samples {(s(n), π(n))}, n = 1, . . . , N is

properly weighted with respect to the distribution f(X) if for any integrable function h(·),

lim
N→∞

∑N
n=1 h(s(n))π(n)

∑N
n=1 π(n)

= Ef (h(X)) (4.6)

In this sense, the distribution f(X) is approximated by a set of discrete random samples s(n),

each having a probability proportional to its weight π(n). Since the a posteriori density p(Xt|Zt)

is represented by a set of weighted random samples {(s(n)
t , π

(n)
t )}, such a sample set will evolve

into a new sample set {(s(n)
t+1, π

(n)
t+1)} representing the posterior p(Xt+1|Zt+1) at time t + 1. In

this sense, tracking could be characterized by the evolution of such a set of weighted samples

in the state space.

4.4.1 Factored sampling

To represent the a posteriori density p(Xt|Zt), a set of random samples {X(n)
t , n = 1, . . . , N}

could be drawn from a prior p(Xt|Zt−1), and weighted by their measurements, i.e., π
(n)
t =

p(Zt|Xt = X(n)
t ), such that the a posteriori density p(Xt|Zt) is represented by a set of weighted

random samples {s(n)
t , π

(n)
t }. This sampling scheme is called factored sampling in statistics. It

could be shown that such a sample set is properly weighted. This sample set will evolve to a

new sample set at time t + 1 and the new sample set {s(n)
t+1, π

(n)
t+1} represents the a posteriori

density p(Xt+1|Zt+1) at time t + 1. This is the sequential Monte Carlo method employed in

the Condensation algorithm [35, 91, 36].

Condensation achieved quite robust tracking results. The robustness of Monte Carlo

tracking is due to the maintaining of a pool of hypotheses. Since each hypothesis needs to be

measured and associated with a likelihood value, the computational cost mainly comes from

the image measurement processes. Generally, the more the samples, the better the chance to

obtain accurate tracking results, but the slower the tracking speed. Consequently, the number

of samples becomes an important factor in Monte Carlo based tracking, since it determines
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the tracking accuracy and speed. Unfortunately, when the dimensionality of the state space

increases, the number of samples increases exponentially.

This phenomenon has been observed, and different methods have been taken to reduce the

number of samples. A semiparametric approach was taken in [110], which retained only the

modes (or peaks) of the probability density and represented the local neighborhood surrounding

each mode as a Gaussian distribution. This approach eliminated the need for a large number of

samples for representing the distribution around each mode nonparametrically. Different sam-

pling techniques were also investigated to reduce the number of samples. In [111], a partitioned

sampling scheme was proposed to track articulated objects. It was basically a hierarchical

method to generate the hypotheses. A similar approach was taken in [112] to track multiple

objects. In [113], an annealed particle filtering scheme was taken to search the global maximum

of the a posteriori probability density. In [114], an exclusion scheme was proposed to approach

the occlusion problem in multiple target tracking.

4.4.2 Importance sampling

In practice, it might be difficult to draw random samples from the distribution f(X). Sam-

ples could be drawn from another distribution g(X), but their weights should be properly

adjusted. This is the basic idea of the technique importance sampling. When samples s(n) are

drawn from g(X), but weights are compensated as

π(n) =
f(s(n))
g(s(n))

π̃(n)

then it can be proved that the sample set {s(n), π(n)} is still properly weighted with respect to

f(X). This is illustrated in Figure 4.3.

g(X)

f(X)

Figure 4.3 Importance sampling. Samples that are drawn from another distribution g(X) but
with adjusted weights could still be used to represent density f(X).

To employ the importance sampling technique in dynamic systems, we need to let ft(X
(n)
t ) =

p(Xt = X(n)
t |Zt−1), where ft(·) is the tracking prior, i.e., a prediction density. So, when we want
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to approximate the posterior p(Xt|Z), we could draw random samples from another distribution

gt(Xt), instead of the prior density ft(Xt). But the sample weights should be compensated as

π
(n)
t =

f(X(n)
t )

g(X(n)
t )

p(Zt|Xt = X(n)
t ) (4.7)

To evaluate ft(Xt), we have

ft(X
(n)
t ) = p(Xt = X(n)

t |Zt−1)

=
N∑

k=1

π
(k)
t−1p(Xt = X(n)

t |Xt−1 = X(k)
t−1)

To approximate a posterior p(Xt|Zt), instead of sampling directly from the prior p(Xt|Zt−1),

samples s(n) could be drawn from another source gt(Xt), and the weight of each sample is

π
(n)
t =

ft(s
(n)
t )

gt(s
(n)
t )

p(Zt|Xt = s
(n)
t ) (4.8)

where ft(s
(n)
t ) = p(Xt = s

(n)
t |Zt−1). We should notice here that in order to sample from gt(Xt)

instead of ft(Xt), both ft(s
(n)
t ) and gt(s

(n)
t ) should be evaluatable. The importance sampling

technique is an important part in the proposed co-inference tracking in Section 4.5. A dynamic

system could be formulated in a probabilistic framework, and sampling techniques could be

used to approximate probabilistic inferences.

4.5 The Co-inference Tracking Algorithm

The structured variational analysis of the factorized graphical model in Section 4.3 suggests

a way to uncouple the dynamics of the states. In this section, we present an efficient algorithm

to approximate the co-inference of the variational analysis based on statistical sampling and a

sequential Monte Carlo technique.

Let s
(n)
t = (ss,(n)

t , s
c,(n)
t ) denote the nth sample of the target’s state at time t, where s

s,(n)
t

and s
c,(n)
t represent the shape and color states of a sample, respectively. Let π

s,(n)
t , π

c,(n)
t , and

π
(n)
t denote the sample weight based on shape observation, color observation, and a combination

of shape and color observation, respectively. At time t, we have a set of samples associated

with weights {(ss,(n)
t , s

c,(n)
t , π

s,(n)
t , π

c,(n)
t , π

(n)
t ), n = 1, . . . , N}. To generate the samples for time

t + 1, i.e., {(ss,(n)
t+1 , s

c,(n)
t+1 , π

s,(n)
t+1 , π

c,(n)
t+1 , π

(n)
t+1), n = 1, . . . , N}, an iterative procedure is shown in

Figure 4.4.
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Generate {(ss,(n)
t+1 , s

c,(n)
t+1 , π

s,(n)
t+1 , π

c,(n)
t+1 , π

(n)
t+1)} from

{(ss,(n)
t , s

c,(n)
t , π

s,(n)
t , π

c,(n)
t , π

(n)
t )},n = 1, . . . , N :

//Step(0): Initialization
s
(·)
(0) = s

(·)
t ; π

∗,(·)
(0) = π

∗,(·)
t ;

for k = 0 : K − 1
//Step(1): Shape samples generating
s
s,(·)
(k+1) = I Samping({(ss,(·)

(k) , π
c,(·)
(k) )});

//Step(2): Shape observation
π

s,(·)
(k+1) =Shape Obsrv(s

s,(·)
(k+1));

//Step(3): Color samples generating
s
c,(·)
(k+1) =I Sampling({(sc,(·)

(k) , π
s,(·)
(k+1))});

//Step(4): Color observation
π

c,(·)
(k+1) =Color Obsrv(s

c,(·)
(k+1));

end

s
(·)
t+1 = s

(·)
(K); π

∗,(·)
t+1 = π

∗,(·)
(K) ; π

(·)
t+1 = π

s,(·)
t+1 π

c,(·)
t+1 ;

Figure 4.4 Co-inference tracking algorithm I: top-down.

The basic idea behind the above iteration is that one modality receives priors from other

modalities such that the co-training among all the modalities will tend to maximize the like-

lihood. Specifically, at first shape samples are drawn according to color measurements based

on importance sampling, i.e., shape samples are drawn from gs ∼ {(ss,(n)
t , π

c,(n)
t )} instead of

fs ∼ {(ss,(n)
t , π

s,(n)
t )}. Since the clutter could also incur high shape measurements, sampling

only from shape measurements make it difficult to handle cluttered backgrounds, especially

when a generic shape representation is taken. However, sampling according to color measure-

ments would largely ease this difficulty, since the samples with higher color measurements would

have higher probability to propagate. Weight corrections are

π
s,(n)
t =

fs(s
s,(n)
t )

gs(s
s,(n)
t )

p(Zt|Xt = s
(n)
t )

fs(s
s,(n)
t ) =

N∑

k=1

π
s,(k)
t−1 p(Xs

t = s
s,(n)
t |Xs

t−1 = s
s,(k)
t−1 )
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Symmetrically, color samples are then drawn according to shape measurements based on

importance sampling, i.e., color samples are drawn from gc ∼ {(sc,(n)
t , π

s,(n)
t )} instead of fc ∼

{(sc,(n)
t , π

c,(n)
t )}. This step would let color samples with higher shape measurements have a

better chance to propagate to the next time step.

π
c,(n)
t =

fc(s
c,(n)
t )

gc(s
c,(n)
t )

p(Zt|Xt = s
(n)
t )

fc(s
c,(n)
t ) =

N∑

k=1

π
c,(k)
t−1 p(Xc

t = s
c,(n)
t |Xc

t−1 = s
c,(k)
t−1 )

The above two steps could approximate the co-inference. The iteration would increase the

likelihood of observations. For simplicity, we let π
(n)
t = π

s,(n)
t π

c,(n)
t , and the estimates of the

shape and color states are given by

X̄s
t =

N∑

n=1

s
s,(n)
t π

(n)
t ; (4.9)

X̄c
t =

N∑

n=1

s
c,(n)
t π

(n)
t (4.10)

Our approach is different from the ICondensation algorithm in [74]. Their method as-

sumes a fixed color distribution and color is used as an extra prior, while our approach could

track both shape and color due to the co-inference between them. If color dynamics were fixed,

our approach would be similar to their method.

The above algorithm takes the top-down approach for both shape and color by generating

samples in the joint shape and color state space. However, we notice that it would be more

efficient to combine the top-down and bottom-up approaches, since color state could be estimated

by taking a bottom-up approach. The basic idea is that we generate shape samples but train a

color model of the target based the color data collected according to shape samples in an EM

framework. The EM iteration would end up with a color model that maximizes the likelihood

of color observation.

At time t, we have {(ss,(n)
t , π

s,(n)
t , π

c,(n)
t , π

(n)
t )} and a color model Mt. The procedure for

generating the samples at time t + 1 is shown in Figure 4.5.

The E-step calculates the observation probability for color model hypotheses with respect

to the current color model M̃(k) at different positions and with different shapes. The M-step

trains a new color model M̃(k+1) based on such observations. The EM iteration in the algorithm
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Generate {(ss,(n)
t+1 , π

s,(n)
t+1 , π

c,(n)
t+1 , π

(n)
t+1),Mt+1} from

{(ss,(n)
t , π

s,(n)
t , π

c,(n)
t , π

(n)
t ),Mt}, n = 1, . . . , N :

//Step(1): Shape samples generating
s
s,(·)
t+1 = I Sampling({(ss,(·)

t , π
c,(·)
t )});

//Step(2): Shape observation
π

s,(·)
(t+1) =Shape Obsrv(s

s,(·)
t+1 );

//Step(3): Collecting of initial color observations
Z

(·)
t+1 =Color Collect(s

s,(·)
t+1 );

M̃(0) = Mt;

//Step(4): Re-training of color model
for k = 0 : K − 1

// E-step
π

c,(·)
(k) =E(Z

(·)
t+1, M̃(k));

// M-step
M̃(k+1) =M(Z

(·)
t+1, π

(·)
(k));

end

Mt+1 = M̃(K);

Figure 4.5 Co-inference tracking algorithm II: combining top-down and bottom-up.

basically is a bottom-up routine to learn a new color model based on the old one and a set of

training data obtained from the shape model. It is similar to the transductive learning approach

for color tracking in [72].

4.6 Implementation

Section 4.5 proposed a framework for tracking and integrating multiple cues based on the

importance sampling technique. The remainder of this paper presents a specific implementation

of a real-time tracker.

4.6.1 Shape representation

Instead of using a detailed shape model by B-splines, we employ the conics model for a

general purpose, since it is more flexible. The conics model is suitable for certain specific
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applications, such as tracking human heads or fingertips. We take a generic form of the conics,

i.e.,

X′AX′ + 2BX + C = 0

A shape template is initialized by conics fitting. The deformation of the shape is governed by

an affine transformation:

Y = AX + t =


 A11 A12

A21 A22


 +


 t1

t2




which characterizes the shape space S. Thus, the dimensionality of the shape space S is 6.

Taking the idea of shape space [35], we could determine a conic shape given the template and

an affine transformation. The shape samples in our algorithms are drawn in the shape space,

i.e., Xs = (A11, A12, A21, A22, t1, t2)T .

4.6.2 Shape observation

It is crucial to have an accurate shape observation in tracking. Our implementation takes

a similar approach to that used in [35]. Edge detection is performed in 1-D along the normal

lines of the hypothesized shapes, shown in Figure 4.6. Thus, observation reduces to a set of

scalar positions z = (z1, . . . , zM ) due to the presence of clutter. The true observation z̃ could

be any one of them. So,

p(z|x) = qp(z|clutter) +
M∑

m=1

p(z|x, z̃ = zm)P (z̃ = zm)

where x is the point on the shape contour and q is the probability that none of such M positions

could be viewed as an observation.

q = 1−
M∑

m=1

P (z̃ = zm)

When we assume that any true observation is unbiased and normally distributed with standard

deviation σ, P (z̃ = zm) = p for all zm, and the clutter is a Poisson process with density λ, then,

p(z|x) ∝ 1 +
1√

2πσqλ

∑
m

exp−(zm − x)2

2σ2
(4.11)
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Shape Hypothesis

Edge
Observation

Normal
Lines

Figure 4.6 Shape observation and measurement. A set of 1-D observations are applied along
the contour of a shape hypothesis. Each 1-D measurement calculates the likelihood of a segment
of shape contour by observing some edges.

To measure a shape hypothesis, we can apply a set of N 1-D observations p(zs
n|xs

n),where n ∈
{1, . . . , N} along the shape contour. Such 1-D measurements are obtained on a set of normal

lines of the contour. In our experiments, we use an ellipse as the target shape representation

because it is a general shape for many convex objects such as the human head. An example

is shown in Figure 4.6, in which the red line is a shape hypothesis, the curves are the edges

detected, and the line segments are the normal lines of the ellipse. When assuming all indi-

vidual 1-D observations are independent of each other, we obtain the measurement of a shape

hypothesis:

p(Zs|Xs) ∝
N∏

n=1

p(zs
n|xs

n) (4.12)

4.6.3 Color representation

We take a parametric color representation in normalized-RGB color space. If the object is

uniform in color, a Gaussian distribution is taken to model the color distribution. For simplicity,

we represent the color state by Xc = (µr̃, µg̃, µb̃, σr̃, σg̃, σb̃). If the target has two salient colors,

a mixture of two Gaussians could model such a distribution. To keep the dimensionality small,

we represent the color state by Xc = (µ1
r̃, µ

1
g̃, µ

1
b̃
, µ2

r̃, µ
2
g̃, µ

2
b̃
).

We also take a nonparametric representation by 2-D color histogram, which uses two nor-

malized colors such as r̃ and g̃ with N bins. We set N = 3 for our approach I and N = 8 for

approach II.
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4.6.4 Color observation

A set of color pixels is collected inside the shape contour. If the parametric approach is taken,

a parametric color model will be estimated based on these color pixels, and the Mahalanobis

distance is used to measure the similarity of the two distributions.

If the nonparametric approach is taken, a color histogram will be built based on these color

pixels, and the histogram intersection φc(s) [94, 115] is computed between the hypothesis color

model Xc and the observed histogram Zc = Is:

φc(s) =
∑N

k=1 min(Is(k),Xc(k))∑N
k=1 Is(k)

(4.13)

We can use such a histogram intersection to approximate the color likelihood:

p(Zc|Xc) ∼ φc(s)

4.7 Experiments

This section reports some experimental results of sequential Monte Carlo tracking techniques

and our tracking algorithm based on co-inference learning. The tracking performances of both

signal cue and multiple cues are examined in this section.

4.7.1 Single cue

We implement the Condensation algorithm, and run it with two different methods of

hypotheses measurements, i.e., shape and color, respectively. The Condensation maintains

a set of particles (or hypotheses) that represent the posterior probability of the target’s state

p(Xt|Zt). Here, we use shape representation. Generally, the expectation E[Xt|Zt] could be

calculated based on factored Monte Carlo sampling to approximate the target estimation.

When the shape hypotheses are solely measured against edge observation, the tracking

algorithm works well in simple backgrounds and where strong edges can be observed. However,

when the background is cluttered, the tracking often fails because some hypotheses with high

probability might be distractors in terms of shape. In Figure 4.7, we use red ellipses to represent

shape hypotheses. The brighter the red ellipse, the higher the likelihood of such a hypothesis.

The blue ellipse is the shape estimation of the target. In these examples, we observed that
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many hypotheses have high probability on the cluttered backgrounds, such as the keyboard

area in Figure 4.7(a) and the bookshelf area in Figure 4.7(b).

(a) (b)

Figure 4.7 Condensation using shape observation alone: Many hypotheses were generated
on clutter. (a) Tracking hand. The keyboard area produces many false shape hypotheses. (b)
Tracking head. The bookshelf area is highly cluttered so that many hypotheses have incorrect
shape measurements.

Part of the reason for the tracking failure is that we use a very generic shape model, which

does not accurately align to the contours of the target. The advantage of using a generic model

is that it will allow more shape deformation. On the other hand, if a specific shape model is

employed such as the B-spline model in [35], it will largely alleviate the difficulty of clutter

because of the uniqueness of the shape representation. This is the direct reason that a leaf

could be tracked against a background full of leafs in [35]. However, it would be difficult to

handle the large shape deformation caused by out-of-plane rotation when using affine shape

space.

In another experiment we made color observations for the shape hypotheses. We constructed

a color model of the target in the initialization step of tracking, for example, the histogram of the

target. For each shape hypothesis, we measured the likelihood that such color model produces

the color distribution inside the shape hypothesis. When the hypotheses are solely measured

against their color distributions, the tracking algorithm succeeds when the background does

not have a comparable area with similar color as the target. However, the tracking often fails

when the background has similar colors to the targets. Figure 4.8(a) shows the case when the

wooden color is similar to skin tone such that false hypotheses are generated. In Figure 4.8(b),

the lighting conditions change dramatically, which makes it difficult to track the shoulder of

the person.
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(a) (b)

Figure 4.8 Condensation using color observation alone: Color distracters and nonstation-
ary environments make tracking difficult. (a) Tracking face. Many hypotheses are generated
for the wooden door area because many unlikely hypotheses survive the color measurements.
(b) Tracking shoulder in a dynamic environment. Due to the changing of the illumination
conditions, the color measurements will not be accurate anymore.

4.7.2 Multiple cues

Our tracking algorithm has been applied to a variety of environments and tracking tasks.

Our experiments show that the tracking algorithm with multiple cues performs very robustly.

The tracking algorithm runs on a 1-processor PIII 850 MHz PC at around 30 Hz.1

Our co-inference tracking algorithm has been successfully applied to different tracking sce-

narios. Figure 4.9 shows the example of tracking a hand fist with large rotations against a

cluttered background. Figure 4.10 shows the example of tracking a head with out-of-plane

rotations in an office environment.2 In Figure 4.11, the task is to track the speaker’s head in a

lecture room where the lighting changes dramatically. Figure 4.12 shows an example of tracking

a person’s shoulder from the top view in a virtual environment. We also experimented with

some occlusions, which are shown in Figure 4.13.

In Figure 4.9, a hand is moving and rotating in a cluttered background. If tracking is solely

based on shape and edge, it will be lost when the hand leaves the keyboard area, which has been

shown in the previous section. However, our algorithm, which employs both shape and color

representation, and make both shape and color observations, can overcome this difficulty. The

reason behind the success is that different modalities provide reinforcement to each other in a

co-inference fashion. Including both shape and color results in a richer target representation

such that the tracking algorithm can work in a more complex environment. Although the
1Some of the demo sequences can be obtained from http://www.ifp.uiuc.edu/~yingwu.

2The testing sequences were obtained from http://robotics.stanford.edu/~birch/headtracker.
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Figure 4.9 A hand in clutter.

dimensionality of its state space is higher than in the case of single modality, the co-inference

among different modalities can explore the high dimensional state space efficiently.

Figure 4.10 A moving face in an office environment. Testing sequence courtesy of Dr. Stan
Birchfield.

Figure 4.10 shows the result of our algorithm to track a head in an office. Obviously, the

color distribution of the girl’s head has at least two components: skin color tone and black

hair tone. So, when she turns her head around, it makes nonstationary color changes of the

visible side of the head. In this scenario, it does not make sense to construct a fixed color

model for her head, since the color distribution of the visible side of her head varies when she

rotates her head. One of the solutions is to make a 3-D head model with color features [94]. A

similar texture model was reported in [77]. Another approach is to adapt the color model to the

lighting changes [32, 72]. Our co-inference tracking algorithm adapts the nonstationary color

distribution, with the assumption that the changing of color distribution is slow. Generally, this

assumption is valid for many scenarios. Our algorithm tracks the head very accurately, even
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when she moves in front of the wooden door. The reason for this is that the shape modality

provides an external constraint for color modality.

Figure 4.11 Head in a lecture room with dramatic lighting variations. Testing sequence cour-
tesy of Dr. Kentaro Toyama.

Figure 4.11 shows the case of a lecture room where the lighting changes dramatically due

to an overhead projector. The color of the speaker’s head varies in a wide range of intensities.

Our algorithm tracks the speaker’s head pretty robustly, although it will fail reasonably due to

large movements of the camera and speaker’s uncertain movements in very dim light.

Figure 4.12 Shoulder in CAVE, a large virtual environment with lighting diffused from screen
displays.

Figure 4.12 shows the tracking scenario in a large virtual environment, which has four

displays on three sides and floor. The camera is mounted on the ceiling. It is of interest to

estimate the user’s position and orientation by tracking his head and shoulder. The difficulty

is that the displays will diffuse a large amount of lighting in the environments. Tracking the

shoulder is even harder than tracking head, since the shoulder deforms and rotates much more,
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and in addition it does not produce strong edges as the head does. It is a very difficult scenario

for the methods using single modality. However, employing multiple modalities in the target

representation, our algorithm works robustly when parameters are properly set.

Figure 4.13 A face occluded by another moving face in an office environment. Testing sequence
courtesy of Dr. Stan Birchfield.

Figure 4.13 shows a good example of our algorithm for handling occlusion. In this example,

a boy is moving in front of the target, i.e., the girl, which causes the occlusion of the girl’s face

in a period of time. The co-inference tracking algorithm keeps tracking the girl when occlusion

occurs. The reason for this example is that the occluding object (the boy) has a different

size from the target (the girl), which avoids generating too many hypotheses on the occluding

object.

From our extensive experiments on both live video and recorded sequences, we found that

our co-inference tracking algorithm performed very robustly against clutter backgrounds, non-

stationary color changes, slow dynamic illumination environments and some occlusion scenarios.

4.8 Discussion

Visual tracking is a fundamental problem in computer vision. It receives more and more

attention due to the rapid development of visual surveillance and vision-based human-computer

interaction, in which robust tracking methods are desirable. However, one of the difficulties

confronting us is how to measure a tracking hypothesis from image observations. The richer the

target’s representation we use, the more accurate we can measure the likelihood of a hypothesis.

Basically, the tracking process is to search for the best match in the target’s state space.

70



Thus, when we use multiple modalities for target representation, many tracking methods, such

as the Condensation algorithm, will involve exponential increases in computation with the

dimensionality of the state space.

In this paper we have presented a co-inference approach for integrating and tracking multiple

cues. The tracking problem could be formulated as the inference problem of a graphical model.

This approach is based on the structured variational analysis of a factorized graphical model,

which suggests that the inference in a higher dimensional state space can be factorized by several

lower dimensional state spaces in an iterative fashion. We call this co-inferencing. A sequential

Monte Carlo tracking algorithm, based on the importance sampling technique, is proposed to

approximate the co-inference process among different modalities. Our tracking algorithm is

robust in dealing with target deformation and color variations, since a richer representation of

the target is taken.

The co-inferencing phenomenon is very interesting since it involves the information fusion

and exchanges between different modalities. We can see that it might be a general phenomenon

for the learning in high dimensional space. In the area of text classification, although it does

not involve dynamics, a similar approach, called co-training [116], has been taken to explore the

correlation among different modalities. We will investigate the occlusion problem further and

extend our work to the case of tracking multiple objects and articulated objects in the future.

71



CHAPTER 5

CAPTURING HUMAN HAND MOTION

5.1 Introduction

Hand gestures could be a more natural and articulate way for many human-computer inter-

action applications. For example, people could use their hands to manipulate virtual objects

directly in virtual environments. But one of the difficulties confronting us is how to capture

human hand motion. As an alternative to glove-based techniques that require users to wear a

special glove, vision-based techniques are noninvasive and more affordable. However, capturing

hand and finger motion in video streams is a quite challenging task. Typical hand motions

include global translation, rotation, and natural finger movements. Hand rotation would incur

self-occlusion in that some fingers may become invisible. Since the finger motion has high de-

grees of freedom, many techniques of estimating finger articulations often involve a formidable

search problem in a high-dimensional space.

Different methods have been proposed to analyze human hand motion. One approach makes

use of deformable hand shape models [19], in which the hand shape deformation could be gov-

erned by Newtonian dynamics or statistical training methods such as the principal component

analysis (PCA) technique. However, accurate estimates of hand poses are hard to obtain by

these methods.

Another approach is the appearance-based approach, which tries to establish the mapping

between the image feature space and the hand motion space [42, 117]. However, the appearance-

based approach generally involves a quite difficult learning problem, and it is not trivial to collect

large sets of training data.
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Many other methods could be categorized into the 3-D model-based approach. Hand motion

could be recovered by matching the projected 3-D model and observed image features, so

that the problem becomes a search problem in a high-dimensional space. To construct the

correspondences between the model and the images, different image observations have been

studied, such as fingertips [18, 23, 24], line features [22, 118], and silhouettes [17, 37, 113].

Many methods tackle the global hand motion and local finger motion simultaneously, such

that the optimization would have a very high chance to get into local minima. On the other

hand, a divide-and-conquer approach [23] could be taken to separate the hand pose determina-

tion and articulation estimation. It could be a general method for articulate objects.

This paper proposes an approach to capture both hand pose and finger articulation in the

divide-and-conquer framework. We propose an algorithm combining the iterative closed points

(ICP) algorithm and the factorization method to determine global hand pose. Section 5.3 will

describe this approach. The fact that the natural finger motion is also highly constrained helps

us reduce the dimensionality of the feasible hand configuration space. We propose to use a set

of linear manifolds to characterize hand configuration. Details of the hand motion model can

be found in Section 5.2. An efficient algorithm based on sequential Monte Carlo techniques

for finger motion is also presented in this paper, which will be presented in Section 5.4. To

enhance the accuracy, the iteration between the pose estimation and finger articulation tracking

is performed in an EM fashion. Details will be given in Section 5.5. Our experiments including

simulation and real sequences will be shown in Section 5.6.

5.2 Hand Motion and Hand Model

Hand motion consists of global hand pose MG and local finger articulation ML. Global

pose MG is the 3-D translation t and rotation R of the palm, and finger motion ML could

be represented by the set of joint angles Θ. We can see from our finger and hand model in

Figure 5.1(a) that Θ ∈ R20. The names of the joints are also shown in Figure 5.1(a). Thus the

task of motion capturing is to estimate {R, t, Θ} from image sequences.

The hand could be modeled by a cardboard model, in which each finger could be represented

by a set of three connected planar patches. The length and width of each patch should be

73



calibrated to individual people. The cardboard model is shown in Figure 5.1(b). Although it

is a simplification of the real hand, it offers a good approximation for motion capturing.

y

z

x

θ

θ
θ

MCP

PIP

DIP

θMCP_A

(a) (b)

Figure 5.1 Hand Model: (a) kinematical chain of one finger, (b) cardboard hand model.

Integrating finger motion constraints and reducing the dimensionalities, we employ hand

configuration space X ∈ Ξ to represent local finger motion, instead of using the joint angle

Θ ∈ R20. We are particularly interested in the dimensionality and topology of Ξ. Using

CyberGlove, we have collected a set of more than 30,000 joint angle data, which could well

represent the finger motion constraints. The PCA technique is employed to eliminate the

redundancy. We can project Θ ∈ R20 into a 7-dimensional subspace while maintain 95%

of the information. Thus, X ∈ Ξ ⊂ R7. Furthermore, we define 28 basis configurations

B = {b1, . . . ,bM : ∀bk ∈ Ξ,M = 28} to characterize the configuration space Ξ. These basis

configurations could be identified by clustering the data in Ξ or selecting intuitively. Some

of them are shown in Figure 5.2(a). Surprisingly, after examining the data in Ξ, we found

that natural hand articulation lies largely in the linear manifolds spanned by any two basis

configurations. For example, if the hand moves from a basis configuration bi to another basis

bj , the intermediate hand configuration lies approximately on the linear manifold spanned by bi

and bj , i.e., X ∈ Lij = sbi +(1− s)bj . Consequently, hand articulation could be characterized

in the configuration space by

Ξ ≈
⋃

i,j

Lij , where Lij = span(bi,bj) (5.1)

A lower-dimensional illustration is shown in Figure 5.2(b), in which the black dots are real

finger motion data points.
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Figure 5.2 Hand articulation in the configuration space, which is characterized by a set of
basis configurations and linear manifolds. (a) A subset of the basis configurations, (b)linear
manifolds in the configuration space.

5.3 Capturing Global Motion

The global hand motion is defined by the pose of the palm. In this paper, we treat the

palm as a rigid planar object. The pose determination is formulated under scaled orthographic

projection in Section 5.3.1 and the global motion is computed via the iterative closed points

approach in Section 5.3.2.

5.3.1 Hand pose determination

In this section, we assume the correspondences have been constructed for pose determina-

tion. The process of building the correspondences will be presented in Section 5.3.2. Let a point

on the plane be xi = [xi, yi]T , and its image point be mi = [ui, vi]T . Under scaled orthographic

projection, we have

s




ui

vi

1


 =




R11 R12 R13 t1

R21 R22 R23 t2

0 0 0 t3







xi

yi

0

1




That is

t3


ui

vi


 =


R11 R12

R21 R22





xi

yi


 +


t1

t2
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Or t3mi = Axi + t, where

A =


R11 R12

R21 R22


 and t =


t1

t2




We can subtract the centroids of the projection points and model points, i.e., m̂i = mi− m̄

and x̂i = xi − x̄, which gives t3m̂i = Ax̂i. Let B = A/t3 =


B11 B12

B21 B22


; then we write

m̂i = Bx̂i

Denoting [uk
i , v

k
i ]T the ith image point at the kth frame, we can write

W =




u1
1 u1

2 . . . u1
N

v1
1 v1

2 . . . v1
N

u2
1 u2

2 . . . u2
N

v2
1 v2

2 . . . v2
N




= MS (5.2)

where

M =


M1

M2


 and S =


x1 x2 . . . xN

y1 y2 . . . yN




The factorization method [119] could be taken to solve M. Based on SVD, we can write

W = UΣVT = (UΣ
1
2 )(Σ

1
2 VT ) = M̂Ŝ

It is well known that the factorization can recover the motion M and shape S up to a matrix D,

since W = M̂Ŝ = (M̂D)(D−1Ŝ) = MS. But D could be found by the constraints of M. When

we construct the feature points correspondences among several image frames, such structure

from motion technique could allow us to calibrate a 3-D hand model automatically, which is

more desirable than manually calibrating the hand model. Once the 3-D model is calibrated,

i.e., S is computed, calculation of the motion M is straightforward. We let S = D−1Ŝ and solve

D by D = ŜS†, where S† = ST (SST )−1. Then the motion could be solved by

M = M̂D = M̂ŜS†

Since M contains only B and t3, in Appendix B, we show how to estimate R and t3 from B.

Once the rotation matrix R and the depth translation t3 are computed, we can easily compute

t1

t2


 = t3m̄−


R11 R12

R21 R22


 x̄
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For simplicity, we could use the first frame that shows the front palm for calibration, and take

the image points along the palm contour as the model points.

5.3.2 The iterative closed points algorithm

The pose determination method presented in the previous section assumes point correspon-

dences. In this section we describe a method for establishing point correspondences by adapting

the idea of the iterative closed points (ICP) algorithm. A comprehensive description of ICP for

free-form curve registration can be found in [120]. The basic idea is to refine the correspondences

and the motion parameters iteratively.

Since we treat the palm as a rigid planar object, it can be represent by its contour curve. A

curve can be represented by a set of points. Let xj(1 ≤ j ≤ N) be the N chained points on the

3-D curve model C. Let C′ be the edges observed in the image. The objective is to construct

the correspondences between the two curves, such that

F(R, t) =
N∑

j=1

wjD(P(Rxt
j + t), C′) (5.3)

is minimized, where D(x, C′) denotes the distance of the point x and the curve C′, and wj takes

value 1 if there is a match for xj and takes 0 otherwise, and P represents the image formation.

The ICP algorithm takes the image edge point that is closest to the projected 3-D model

point, i.e., P(Rxt
k + t), as its correspondence. When all image edge points are far enough from

the projection, this model point xk cannot be matched and we set wk = 0. Motion (R, t) could

be computed based on such temporary correspondences using the pose determination method

present in Section 5.3.1. The computed motion would result in a new matching. Iteratively

applying this procedure, ICP could yield a better and better pose estimation. It should be

pointed out that the ICP procedure converges only to local minima, which means that we

need a close initial start. Obviously, the ICP algorithm could be easily extended to two-frame

registration.
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5.4 Capturing Local Motion

This section presents our method for tracking local finger motion. Since the articulated

finger motion is highly constrained, we propose a sequential Monte Carlo algorithm taking

advantage of these constraints.

5.4.1 Sequential Monte Carlo techniques

The tracking problem could be formulated as a process of conditional probability density

propagation. Denote the target state and image observation by Xt and Zt, respectively, and

Xt = {X1, . . . ,Xt}, Zt = {Z1, . . . ,Zt}. The tracking problem is formulated as

p(Xt+1|Zt+1) ∝ p(Zt+1|Xt+1)p(Xt+1|Zt) (5.4)

Monte Carlo methods offer a way to approximate the evolution of the densities.

The a posteriori density p(Xt|Zt) could be represented by a set of weighted random samples

{s(n)
t , π

(n)
t }. This sample set will evolve to a new sample set at time t + 1 such that the new

sample set {s(n)
t+1, π

(n)
t+1} represents the a posteriori density p(Xt+1|Zt+1) at time t+1. According

to the source of sampling priors, sequential Monte Carlo could have different sampling schemes,

including factored sampling, i.e., the Condensation algorithm [91], which samples directly

from the prediction prior P (Xt|Zt−1), and importance sampling [74] which samples from an

outside density. Importance sampling provides a flexible way to choose tracking priors, and the

extra computation is to compensate the weights of the samples.

Since finger articulation has very high degrees of freedom, the Condensation still requires

a huge amount of samples for density propagation; thus an intensive computation would be

involved. Fortunately, we could take advantage of the constrained finger motion model described

in Section 5.2, which represents the finger configuration space by a set of linear manifolds.

Although such representation is not perfectly accurate, it could still serve as a good outside

prior for the importance sampling technique to reduce the computational complexity.

Let ft(X
(n)
t ) = p(Xt = X(n)

t |Zt−1), where ft(·) is the prediction tracking prior. When

we want to approximate the posterior p(Xt|Z), we could draw random samples from another

distribution gt(Xt), instead of the prior density ft(Xt). But the sample weights should be

78



compensated by

π
(n)
t =

f(X(n)
t )

g(X(n)
t )

p(Zt|Xt = X(n)
t ) (5.5)

For natural finger motion, each hand configuration X should be either around a basis state

bk, 1 ≤ k ≤ M , or on the manifold Lij , where i 6= j, 1 ≤ i, j ≤ M . Suppose at time frame t,

the hand configuration is Xt, which is not on any basis states. The process of generating new

hypotheses is shown in Figure 5.3(a). First, we find the projection X̄t of Xt onto the nearest

manifold L∗ij . Accordingly,

st = 1− (Xt − bi)T (bj − bi)
||(bj − bi)||

Then, random samples are drawn from the manifold Lij according to the density pij , i.e.,

s
(n)
t+1 ∼ pij = N(st, σ) (5.6)

X̃(n)
t+1 = s

(n)
t+1bi + (1− s

(n)
t+1)bj (5.7)

Then, perform random walk on X̃(n)
t+1 to obtain hypothesis X(n)

t+1. So, we could write the

importance function as gt+1(X
(n)
t+1) = p(s(n)

t+1|st)p(X(n)
t+1|X̃(n)

t+1). So,

gt+1(X
(n)
t+1) ∼ 1

σ|Σ|1/2
exp{−(s(n)

t+1 − st)2

2σ2

− 1
2
(X(n)

t+1 − X̃(n)
t+1)Σ

−1(X(n)
t+1 − X̃(n)

t+1)}

So, the weight of each sample is

π
(n)
t+1 =

ft+1(X
(n)
t+1)

gt+1(X
(n)
t+1)

p(Zt+1|Xt+1 = X(n)
t+1) (5.8)

If the previous hand configuration is one of the basis configurations, say Xt = bk, the

process of generating hypotheses is illustrated in Figure 5.3(b). It is reasonable to assume that

it takes any one of the manifolds of {Lkj , 1 ≤ j ≤ M} with equal probability. Consequently,

random samples are drawn from a mixture density pk. Details of the algorithm can be found

in [37].

5.4.2 Model matching

We employ both edge and silhouette observations to measure the likelihood of articulate

motion hypotheses, i.e., p(Zt|Xt). Self-occlusion is handled by constructing an occlusion map for
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Figure 5.4 Shape measurements.

the hand model. Since the hand is represented by a cardboard model, it is expected to observe

two edges for each planar patch. The observation process can be illustrated by Figure 5.4.

The cardboard model is sampled at a set of K points on the laterals of the patches. For

each such sample, edge detection is performed on the points along the normal of this sample.

When we assume that M edge points {zm, 1 ≤ m ≤ M} are observed, and the clutter is a

Poisson process with density λ, then,

pe
k(z|xk) ∝ 1 +

1√
2πσeqλ

M∑

m=1

exp−(zm − xk)2

2σ2
e

We also consider the silhouette measurements by calculating the difference between the areas

of the image AI and the projected cardboard model AM , i.e., pa ∝ exp− (AI−AM )2

2σ2
a

. Thus, the

likelihood can be written as

p(Z|X) ∝ pa
K∏

k=1

pe
k (5.9)

5.5 Divide and Conquer

Sections 5.3 and 5.4 treat global hand poses and local finger articulations independently.

However, the method for local finger motion capturing is based on global hand pose, since the

3-D model projection depends on both hand pose and finger joint angles. Any inaccuracy in
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global pose estimation will induce errors when estimating local articulation, because the method

would mistakenly try to stretch and bend fingers to match the observation when there are some

errors in global pose.

Unfortunately, the pose determination method in Section 5.3 would induce inaccuracies,

since the method matches the palm against all the edges observed in the images. The inaccuracy

occurs when the index or the pinky finger is straight, which would result in wrong scaling and

rotation. We do observe such phenomena in our experiments.

Our basic idea to tackle this difficulty is to introduce more feature points for pose determi-

nation. These extra feature points could largely reduce the ambiguity. We could pick some of

these points when the local finger motion is known. For example, if we know the MCP joint of

the index or the pinky finger is nonzero, we could use the point at the MCP joint. If we know

any of the fingers is straight, its fingertip could be used. The principle is that those points lie on

the same plane as the palm (on or outside the palm certainly). Generally, these points provide

bounds of the model for matching. Our extensive experiments have verified the usefulness of

these extra points.

Obviously, we can only find such extra points when we know the local finger configurations.

So, we iterate between two steps: (a) pose determination based on palm contour and some extra

points (using the method in Section 5.3) and (b) tracking local finger configuration (using the

method in Section 5.4) and finding some extra points. The iterations between global and local

motion estimation would converge to a stationary point that locally minimizes the discrepancy

between the observations and the model projections. Below we shall see the reason behind this.

The human hand is a special articulated object because the role of the fingers in motion is

much different from that of the palm. Based on the observation that the global hand motion is

represented by the position and orientation of the palm, we define the global hand motion as

the exact pose of the palm. The local hand motion is largely determined by the motion of five

fingers. Therefore, the problem of hand motion capturing can be specifically formulated as

(R,T, θ) = arg min
{R,t, θ}

D(X−PMG(R,T)ML( θ)xm) (5.10)

where MG(R,T) is the global motion, ML( θ) is the local finger motion, and perspective pro-

jection is approximated by scaled orthographic projection. Then, it is possible to estimate MG

and ML.
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Given a specific local motion, we can define an operation G( θ) to estimate the global motion

such that

(R,T) = G( θ) = arg min
{R,T}

e(R,T, θ) (5.11)

Given a global motion, an operation L(R,T) is defined to estimate the local motion such that

θ = L(R,T) = arg min
θ

e(R,T, θ) (5.12)

where e is an error measurement defined as

e = e(R,T, θ) = D(X−PMG(R,T)ML( θ)x) (5.13)

We propose a two-step iterative algorithm to estimate the global hand motion MG and the local

motion ML for one time frame:

• Track 2-D features I(t) at time t, using the previous hand model, H (t) = H (t − 1) =

H ( θ(t − 1)). The features are detected and tracked by the feature tracking algorithm

based on prediction from time t− 1.

• The iterative algorithm is applied to estimate the global motion R(t),T(t) and the hand

state θ(t) at time t. Here, xk is used to represent xk(t) for short.

1. Take motion parameters of time t − 1 as initial values, i.e., R0 = R(t − 1), T0 =

T(t− 1), θ0 = θ(t− 1).

2. Estimate the global motion parameters at the 2kth iteration. (R2k, t2k) = G( θ2k−1),

i.e., keep the local motion of previous iteration θ2k−1.

3. Estimate the local motion parameters θ2k+1 = L(R2k,T2k), i.e., hold the global

motion R2k,T2k of the 2kth iteration for the (2k + 1)th iteration.

4. Terminate the iteration when the change in error falls below a preset threshold.

Then, the estimations of R(t), T(t), and θ(t) are obtained at time t.

• Update the 3-D model H (t) = H (θ(t)), then process the next time frame.

A proof of convergence is given below. The ideas of the two-step iterative algorithm are that

the operation G( θ) finds the best global motion given known local motion, and the operation

L(R,T) also finds the best hand state given known global motion.
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Convergence Theorem: The two-step iterative algorithm converges monotonically to a

limit point with respect to certain nonnegative error measurements such as the mean square

error.

Proof: We can suppose the error measurement to be the mean square error w.l.g.:

ek =
1
N

N∑

i=1

||Xi −PMG(Rk,Tk)ML( θk)xm
i ||2 (5.14)

Since θ2k = θ2k−1, apply the operation G to estimate global motion at the 2kth iteration.

(R2k,T2k) = G( θ2k−1) = arg min
{R,T}

e(R,T, θ2k−1) (5.15)

So, the error of the 2kth iteration is

e2k = e(R2k,T2k, θ2k−1) = min
{R,T}

e(R,T, θ2k−1) (5.16)

Obviously, e2k ≤ e2k−1. Then, the operation L is applied to estimate local motion at the

(2k + 1)th iteration:

θ2k+1 = L(R2k,T2k) = arg min
{ θ}

e(R2k,T2k, θ) (5.17)

Since we keep the global motion (R2k+1,T2k+1) = (R2k,T2k), the error of the (2k + 1)th

iteration is

e2k+1 = e(R2k,T2k, θ2k+1) = min
{ θ}

e(R2k,T2k, θ) (5.18)

Obviously, e2k1 ≤ e2k. So, we have

0≤e2k+1≤e2k≤e2k−1 ∀k (5.19)

Since the error measurement cannot be negative, the lower bound occurs. Because the error

sequence is nonincreasing and bounded below, this two-step iterative algorithm should converge

to a limit point. Furthermore, it can be shown that the algorithm converges to a stationary

point. Q.E.D.

Our divide-and-conquer approach has a lot of advantages over other methods treating hand

motion as a whole in which the optimization problem is always hard to handle. In our decoupled

problem, we have many alternatives to deal with each subproblem. For example, a simple but

effective GA-based method was used to estimate local finger motion in [23], but here we use a

sequential Monte Carlo tracking method.
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5.6 Experiments

We have performed several simulation experiments to evaluate the proposed algorithm, and

applied our algorithm to real image sequences.

5.6.1 Simulation

Since it is generally difficult to get the ground truth of hand motion of real video sequences,

we have produced a synthetic sequence of 200 frames containing typical hand motions. This

synthetic sequence will facilitate quantitative evaluations of our algorithm.

(a) (b)

Figure 5.5 Sample of our results on synthetic sequences. (a) A synthetic image, (b) the image
with model aligned.

Some examples are shown in Figure 5.5. Figure 5.6 shows some of the motion parameters

for comparison. The solid curves are our estimates and the dashed curves are the ground truth.

The figure plots the x translation with average error of 3.98 pixels, the rotation with average

error of 3.42o, the PIP joint of the index finger with average error of 8.46o, the MCP flexion of

the middle finger with average error of 4.96o, the PIP joint of the ring finger with average error

of 5.79o, and the MCP abduction of the ring finger with average error of 1.52o.

5.6.2 Real sequences

We have also performed our motion capturing algorithm with real video sequences. We

have compared different schemes for local motion capturing. The first one is a random search

scheme in the R7 space. Our experiment used 5,000 random samples. Since this scheme does

not consider the finger motion constraints, it performed poorly for local motion estimation, and

it even destroyed global pose determination. The second scheme is the Condensation with

3,000 samples in R7. It performed better than the first method, but it was not robust. It seems

that 3,000 samples is still not enough for this task. The third scheme is the proposed method.

84



−200

0

200

T
X

0.6

0.8

1

R
11

−100

0

100

I
PIP

−50

0

50

M
MCP−F

0

50

R
PIP

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

R
MCP−AA

Frame Number

Figure 5.6 The comparison of our results and the ground truth on a synthetic sequence. The
dashed curves are the ground truth, and the solid curves are our estimates.

We found that this method worked accurately and robustly. The articulation model makes the

computation more efficient and the local motion estimation enhances the accuracy of hand pose

determination. Some of our results are shown in Figure 5.6.2.

5.7 Discussion

It is a difficult problem to capture both global hand poses and local finger articulations in

video sequences because of the high degrees of freedom of the articulated hand. This chapter

presented a divide-and-conquer approach to this problem by separating hand poses and finger

articulations. We treat the palm as a rigid planar object and use a 3-D cardboard hand model

to determine hand pose based on an ICP algorithm. The local finger articulation is tracked

85



through a sequential Monte Carlo technique. The iteration between the estimation of global

hand pose and that of local finger motion results in accurate motion capturing.

Our current technique assumes clean backgrounds, which largely simplify the image obser-

vation processes. We shall investigate the problem of clutter backgrounds. Since we are using

a cardboard model, it would be difficult to tackle large out-of-plane rotations. Our future work

includes a better hand model for out-of-plane rotations. Our current method needs manual

initialization for tracking. It would be interesting if we could achieve automatic initialization

through combining the 3-D model-based approach and the appearance-based approach.
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(a) Random search 5,000 points in R7.

(b) Condensation with 3,000 samples in R7.

(c) Our approach with 100 samples.

Figure 5.7 Comparison of different methods on real sequences. Our method is more accurate
and robust than the other two methods in our experiments.
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CHAPTER 6

THE DISCRIMINANT-EM ALGORITHM

6.1 Introduction

Invariant object recognition is a fundamental but challenging computer vision task, since

finding effective object representations is generally a difficult problem. 3-D object reconstruc-

tion suggests a way to invariantly characterize objects. Alternatively, objects could also be

represented by their visual appearance without explicit reconstruction. However, representing

objects in the image space is formidable, since the dimensionality of the image space is in-

tractable. Dimension reduction could be achieved by identifying invariant image features. In

some cases, domain knowledge could be exploited to extract image features from visual inputs;

however, many other cases need to learn such features from a set of examples when image

features are difficult to define. Many successful examples of learning approaches in the area of

face and gesture recognition can be found in the literature [46, 121].

Generally, characterizing objects from examples requires huge training data sets because

input dimensionality is large and the variations that object classes undergo are significant.

Labels or supervised information of training samples are needed for recognition tasks. The gen-

eralization abilities of many current methods largely depend on training data sets. In general,

good generalization requires large and representative labeled training data sets. Unfortunately,

collecting labeled data can be a tedious, if not altogether impossible, process. Although unsu-

pervised or clustering schemes have been proposed [50, 122], it is difficult for pure unsupervised

approaches to achieve accurate classification without supervision.

This problem can be alleviated by semisupervised or self-supervised learning techniques

which take hybrid training data sets. This learning paradigm could be viewed as an integration
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of pure supervised and unsupervised learning. These algorithms assume that only a fraction of

the data is labeled with ground truth, but still take advantage of the entire data set to generate

good classifiers; they make the assumption that nearby data are likely to be generated by the

same class. Work in this area has been successfully applied to text classification [116, 123, 124,

125].

Expectation–Maximization (EM) is a powerful technique for self-supervised learning be-

cause it can handle missing values or hidden variables in probabilistic interference. Generally,

parametric generative models could be as concise and efficient approximation of probability

densities. Since such parametric generative models include strong assumptions of probabilistic

structures and distribution models, however, a näıve combination of EM and generative model

confronts some difficulties in practice.

Discriminant-EM (D-EM) presented in Section 6.6 is a self-supervised learning algorithm

for such purposes by taking a small set of labeled data with a large set of unlabeled data. The

basic idea of this algorithm is to learn discriminating features and the classifier simultaneously

by inserting a multiclass linear discrminant step in the standard Expectation–Maximization

iteration loop. D-EM makes the assumption that the probabilistic structure of data distribution

in the lower-dimensional discrimination space is simplified and could be captured by lower-

order Gaussian mixtures. Because the discrimination step in D-EM is linear, however, it has

difficulty handling data sets that are not linearly separable, and input data is likely to be highly

nonlinearly separable, regardless of the features used as input.

Based on nonlinear kernel discriminant analysis, Section 6.7 will present a kernel D-EM

algorithm [126]. Kernel discriminant analysis transforms the original data space X to a higher-

dimensional kernel feature space F and then projects to a lower-dimensional discrimination

space ∆, such that nonlinear discriminating features could be identified, and training data

could be better classified in a nonlinear feature space. Two novel algorithms are presented for

sampling training data for efficient learning of nonlinear kernel discriminants. Our experiments

include standard benchmark testing, view-independent hand posture recognition and invariant

fingertip tracking.

In this chapter, based on the EM framework, we make use of a parametric generative model

to investigate self-supervised learning. Section 6.3 gives a brief description of our generative

model. Section 6.4 briefly reviews the EM algorithm. After pointing out some possible problems
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with the näıve usage of EM and the generative model, we present the linear D-EM and kernel

D-EM in Section 6.6 and 6.7, respectively. Experiments of invariant 3-D object recognition and

content-based image retrieval will be described in Section 6.8. At the end, we will have some

discussions of self-supervised learning in Section 6.9.

6.2 Learning from Hybrid Data Sets

6.2.1 Setting of learning

Different from pure supervised and unsupervised learning, the training data set is hybrid,

i.e., both labeled and unlabeled data are used. For a learning task, a learner L is to learn a

function f in a hypothesis space H of functions, given a set of labeled training data set L

L = (Lx,Ly) = {(xl
1, y

l
1), (x

l
2, y

l
2), . . . , (x

l
n, yl

n)}

where xl ∈ X l is a data point, yl ∈ Y l is a label and n is the size of L. For classification

problems, Y is a discrete set. For regression problems, Y could be Rd. At the same time, the

learner L is also given an unlabeled data set U :

U = {xu
1 ,xu

2 , . . . ,xu
m}

where m is its size. In most cases, we assume the data points in the labeled set L and are

drawn from the same distribution as the unlabeled set U . Sometimes, we do not make such an

assumption.

In some cases, labeled data L are too few to perform pure supervised learning successfully,

since the generalization would be very poor. However, if we have a large set of unlabeled data

from the same distribution, the performance of the learner is expected to be boosted by such

an unlabeled set. In these cases, if we do not have the distribution assumption, and it does not

make sense to use unlabeled data, because the prior of the unlabeled data is zero.

In other cases, we cannot assume Lx and U from the same distribution. In order to take

the advantage of unlabeled data U , we should know the joint probability p(Lx,U). In this case,

learner is “optimal” in U .
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The learner L aims to learn a function y = f(x) from the hypothesis space H based on L
and U such that the risk

R(L) =
∫

1
m

m∑

j=1

D(f(xu
j ), y∗j )dP (xl

1, y
l
1) . . . dP (xl

n, yl
n)dP (xu

1 , y∗1) . . . dP (xu
m, y∗m) (6.1)

on the unlabeled data set is minimized.

Vapnik [127] gives bounds on the relative uniform deviation of training error

Rtrain(L) =
1
n

n∑

j=1

D(f(xl
j), y

l
j)

and test error

Rtest(L) =
1
m

m∑

j=1

D(f(xu
j ), y∗j )

that satisfy

Rtest(L) ≤ Rtrain(L) + Ω(n,m, d, η) (6.2)

where the confidence interval Ω(n,m, d, η) depends on the number of training examples n, the

number of working samples m, and the VC-dimension d of the hypothesis space H.

6.2.2 Some approaches

Some of the theoretical basis are constructed by Vapnik in his statistical learning theory

of structural risk minimization (SRM) [127]. Some interesting algorithms have been proposed

recently in learning from hybrid data. One approach is based on SVM to study transductive

learning. Another approach is based on the EM principle for induction from hybrid data sets.

Some methods are proposed to investigate the interaction between multiple learners.

6.2.2.1 SVM-based approaches

S3V M [123, 128] are constructed using a mixture of labeled data (the training set) and

unlabeled data (the working set). The working set is labeled by S3V M . If the working set is

empty, S3V M becomes the standard SVM; if the training set is empty, S3V M becomes a form

of unsupervised learning. It is mentioned by the authors that S3V M can be viewed as a form

of semisupervised clustering if the working set is large but the training set is small, and a form

of transductive problem on the other hand.
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The learning of S3V M is to find a classification function that minimizes the empirical

misclassification rate and maximizes the capacity of the classification function. Two constraints

are added for each sample in the working set. One constraint calculates the misclassification

error as if the point were in class 1, and the other constraint calculates the misclassification

error as if the point were in class -1. The objective function contains the minimum of the two

possible misclassification errors. The new optimization problem can be formulated as an integer

programming problem:

min
W,b,η,ε,z

C[
l∑

i=1

ηi +
l+k∑

j=l+1

min(εj , zj)] + ||w|| (6.3)

The problem that the authors look into is a transductive problem by including a small set

of unlabeled date (50 unlabeled points). Their formulation only works for the linear case so far.

Tranductive SVM was proposed for text classification [124]. The problem for this type of

problem is learning from a small training set. Another specification of this type of learning

problem is that the learner can only be the best for a given working set or a given database. In

this sense, it is transductive learning. Inductive learning is unnecessarily complex for this type

of problem. In this type of transductive learning, the training set is very small. One could learn

a model solely based on the training set by inductive learning, and then apply to the testing set.

However, the generalization will not be good since we are not given enough training samples.

A common problem of SVM-based methods is that they involve a formidable and expensive

optimization problem.

6.2.2.2 EM-based approaches

An EM-based approach is taken to deal with an inductive learning problem in [125]. The

application background is also text classification. Their situation is that the training set is small,

but a large unlabeled data set is freely available. Their objective is to augment the accuracy

of the classifier. By this means, the reduction in the number of labeled samples needed can be

dramatic.

The basic EM scheme is easy to apply in this problem [129, 130], since the labels of unlabeled

data can be treated as missing values, which can be estimated by the EM algorithm. Combing a

set of unlabeled data in training, classifier accuracy can be improved by EM. They made several
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assumptions. The first assumption is that data are generated by a mixture model. Another

assumption is that there is a correspondence between mixture components and classes.

Since there may be a discrepancy between the generative model and the ground truth data

distribution, the näıve EM would risk to fail. Still, based on EM, two extensions of EM are

proposed in their research to alleviate the misfit between the modeling assumption and the

unlabeled data.

Although the EM-based approach has a very sound basis and intuition, it poses some dif-

ficulties when we use parametric generative models. We should develop more robust methods

when the true data distribution disagrees the generative model. And we should be able to

handle the learning in a high-dimensional space.

6.2.2.3 Co-training approaches

One very interesting approach to learning from hybrid data is to exploit the cross-modality

structure of training data [131, 132]. For some of the unlabeled samples, their labels can be

obtained by making use of structure between the pattern distributions over different sensory

modalities. The situation is that classification can be achieved by combining several different

subclassifiers from different modalities. They showed that minimizing the disagreement between

these subclassifiers is a good approximation to minimizing the number of misclassification of

each subclassifier. Their approach was based on SOM and LVQ.

Recently, taking a similar idea as in [131], the method in [116, 133, 134] described the co-

training approach to Web page classification. They gave a bipartite graph representation of

this problem.

The basic idea is to train two independent classifiers rather than one. Initially, two classifiers

are trained using whatever labeled training examples are available. This results in two imper-

fect classifiers. Each classifier is allowed to examine the unlabeled data and to pick its most

confidently predicted positive and negative examples, and add them to the set of labeled ex-

amples. Then, both classifiers are now retrained on this augmented set of labeled data set, and

the process is repeated until it converges. However, this algorithm is based on an assumption

that the features to train two classifiers are redundantly sufficient to the classification problem.

There are some application examples of this approach. Blum and Mitchell [116, 133] apply it

to Web page classification. A page-based classifier and a hyperlink-based classifier are trained.
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Riloff and Jones [134] employ this approach to learn to classify noun phrase as positive and

negative examples of locations. De Sa and Ballard [132] employ this approach to classify speech

phonemes based on both the audio signal and the video signal watching the speaker’s lips.

Learning from hybrid data by investigating the interaction among different subclassifiers is

a very interesting and promising approach in integration of multiple cues and multimodalities.

6.3 Generative Model

We assume that the hybrid data set is drawn from a mixture density distribution of C

components {cj , j = 1, . . . , C}, which are parameterized by Θ = {θj , j = 1, . . . , C}. The

mixture model can be represented as

p(x|Θ) =
C∑

j=1

p(x|cj ; θj)p(cj |θj) (6.4)

where x is a sample drawn from the hybrid data set D = L⋃U . We make another assump-

tion that each component in the mixture density corresponds to one class, i.e., {yj = cj , j =

1, . . . , C}. The generative model represents a strong assumption that some parts of the proba-

bilistic structure of the data distribution are known.

6.4 Expectation–Maximization

In practice, many learning approaches face the imperfection of the training and testing data.

These imperfections could be from missing sensor information, from the specific learning set-

tings, in which some variables are unobservable or partially observable. These hidden variables

should be recovered in learning. Expectation–maximization (EM) [106] is a powerful way to

deal with these situations.

6.4.1 EM algorithm for density estimation

The EM algorithm is a widely used approach to learning in the presence of unobserved

variables. It can be used to train Bayesian belief networks. It is also the basis for many

unsupervised learning algorithms.

Essentially, many learning problems can be approached by density modeling and estimation.

The density-based approach tries to estimate the joint density and allows for representation of

94



any related variables, so that the inference can be made possible. The density-based approach

is applicable both to supervised and unsupervised learning in exactly the same way [129], and

it is able to naturally handle incomplete data.

We assume that the data D = {x1, . . . ,xN} is generated independently from a mixture

density as in Equation (6.4). The log likelihood of the parameters given the data set is

l(Θ|D) =
N∑

i=1

log
C∑

j=1

P (xi|cj ; θj)P (cj) (6.5)

The best density model Θ for the data set D maximizes the log likelihood l(Θ|D). However,

this function is difficult to maximize numerically due to the log of a summation.

Considering the nature of the mixture density model, we can introduce a “hidden” indicator

variable z = (z1, . . . , zC)′ that indicates which component generates the given data point, i.e.,

zk = 1, if the data point is generated by the kth component, zk = 0, otherwise. By this

means, the maximization problem would decouple into a set of simple maximizations, given

Z = {z1, . . . , zN}. Using the indicator z, we obtain the log likelihood of a “complete-data,”

lc(Θ|D,Z) =
N∑

i=1

C∑

j=1

zij log P (xi|zi; Θ)P (zi; Θ) (6.6)

Since z is unknown, and lc cannot be used directly. Instead, we work with the expectation

of lc, i.e.,

Q(Θ|Θk) = E[lc(Θ|X ,Z)|X ,Θk]

As shown by Dempster [106], l(Θ|X ) can be maximized by iterating the following two steps:

• E-step: Q(Θ|Θk) = E[lc(Θ|X ,Z)|X , Θk]

• M-step: Θk+1 = arg maxΘ Q(Θ|Θk)

The E-step computes the expected complete data log likelihood, and the M-step finds the

parameters that maximize this likelihood.

In this case, the E-step is just to compute the expectation of zj , given the data point xj

and the model Θk of the previous iteration, i.e.,

hij = E[zij |xi,Θk] (6.7)
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since

E[lc(Θ|X ,Z)|X , Θk] =
N∑

i=1

C∑

j=1

E[zij |xi,Θk] log P (xi|zi; Θ)P (zi; Θ)

When we assume the generative model is a mixture of Gaussians, a closed-form solution of

density estimation can be obtained. At the kth iteration, the E-step computes as

hij =
|Σk

j |−1/2exp{−1
2(xi − µk

j )
T Σ−1,k

j (xi − µk
j )}∑N

l=1 |Σk
l |−1/2exp{−1

2(xi − µk
l )

T Σ−1,k
j (xi − µk

l )}
(6.8)

The M-step re-estimates the means and covariances of the Gaussians using the data set weighted

by hij :

µk+1
j =

∑N
i=1 hijxi∑N
i=1 hij

(6.9)

Σk+1
j =

∑N
i=1 hij(xi − µk+1

j )(xi − µk+1
j )T

∑N
i=1 hij

(6.10)

EM is a powerful tool to estimate the density if the probabilistic structure of data distribution is

given. This approach is very similar to the soft K-means algorithm in unsupervised clustering.

6.4.2 Dealing with missing values

Since the labels of unlabeled data can be treated as missing values, the expectation–

maximization (EM) approach can be applied to the self-supervised learning problem. In self-

supervised learning, since the training data set D is a union of a set of labeled data L and a

set of unlabeled data U , the joint probability density of the hybrid data set can be written as

p(D|Θ) =
∏

xi∈U

C∑

j=1

p(cj |Θ)p(xi|cj ;Θ)
∏

xi∈L
p(yi = ci|Θ)p(xi|yi = ci;Θ) (6.11)

This equation holds when we assume that each sample is independent of others. The first part

of Equation (6.11) is for the unlabeled data set, and the second part is for the labeled data.

The parameters Θ can be estimated by maximizing a posteriori probability p(Θ|D). Equiv-

alently, this can be done by maximizing lg(p(Θ|D)). Let l(Θ|D) = lg(p(Θ)p(D|Θ)), and we

have

l(Θ|D) = lg(p(Θ)) +
∑

xi∈U
lg(

C∑

j=1

p(cj |Θ)p(xi|cj ;Θ))

+
∑

xi∈L
lg(p(yi = ci|Θ)p(xi|yi = ci;Θ)) (6.12)
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Since the log of the sum is hard to deal with, a binary indicator zi is introduced, zi =

(zi1, . . . , ziC). And zij = 1 iff yi = cj , and zij = 0 otherwise, so that

l(Θ|D,Z) = lg(p(Θ)) +
∑

xi∈D

C∑

j=1

zij lg(p(Oj |Θ)p(xi|Oj ;Θ)) (6.13)

The EM algorithm can be used to estimate the probability parameters Θ by an iterative hill

climbing procedure, which alternatively calculates E(Z), the expected values of all unlabeled

data, and estimates the parameters Θ given E(Z). The EM algorithm generally reaches a local

maximum of l(Θ|D). It consists of two iterativE-steps:

• E-step: set Ẑ(k+1) = E[Z|D; Θ̂(k)]

• M-step: set Θ̂(k+1) = arg maxθ p(Θ|D; Ẑ(k+1))

where Ẑ(k) and Θ̂(k) denote the estimation for Z and Θ at the kth iteration, respectively.

6.5 Some Problems

6.5.1 Model assumption

If the probabilistic structure, such as the number of components in mixture models, is

known, EM could estimate true probabilistic model parameters. When the generative model

does not capture the underlying data distribution, the performance of this approach could be

very bad. We often assume the number of components is known and use a Gaussian or mixture

of Gaussians distribution. Unfortunately, this assumption is often invalid in practice.

Generally, when we do not have such a priori knowledge about the data distribution, a

Gaussian distribution is always assumed to represent a class. However, this assumption is often

invalid in practice, which is partly the reason that unlabeled data hurt the classifier.

Figure 6.1 shows a simple example. In Figure 6.1.a, there are two classes of data drawn

from two Gaussian distributions, and only six samples are labeled. EM assumes Gaussian for

both classes. The iteration begins with a weak classifier learned from these labeled samples.

This weak classifier is used to estimate the labels of all the other unlabeled samples. Then, all

these data are employed to learn a new classifier, which labels the unlabeled samples again in

the next iteration. In this special case, EM converges to the Bayesian classifier. On the other
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hand, if the guess of probabilistic structure is not correct, EM may not give a good estimation.

In Figure 6.1(b), one class of data is drawn from a three-component Gaussian mixture, but the

model still assumes Gaussian distribution. EM fails to give a good classifier.
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(a) (b)

Figure 6.1 “.” represents unlabeled sample. “+” and “*” denote labeled sample. Six samples
are labeled. Solid lines are Bayesian classifier, and dashed lines are the iteration results of EM.
(a) Data are drawn from two Gaussian distributions. EM converges to the Bayesian classifier.
(b) One class of data is drawn from a three-component Gaussian mixture, but EM still assumes
Gaussian. One component is mislabeled. EM fails and unlabeled data do not help.

6.5.2 Learning in high dimensions

EM is a general and solid approach to deal with hidden variables. To model the distribution

of data, parametric generative models are often employed, since they are analyzable as well as

flexible. Mixture of Gaussians is a frequent choice. Although parametric generative models

offer good analytical properties, they also bring some problems.

In Section 6.5.1, we explained that the structure of a generative model is a factor affecting

the result of EM iteration. In practice, especially, in vision problems, learning techniques are

performed in high-dimensional space. Consequently, the dimension of a generative model is

also very high, such that the M-step has to estimate numerous parameters of the model. If the

training data set is not large enough, the estimation could be highly biased and numerically

unstable.

Although some regularization approaches have been proposed to handle such circumstances,

we still ask whether it is necessary to perform learning in such a high-dimensional space? Is it

possible to reduce the dimensions?
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6.6 The Linear D-EM Algorithm

Since we generally do not know the probabilistic structure of a data distribution, EM of-

ten fails when structure assumption does not hold. One approach to this problem is to try

every possible structure and select the best one. However, this requires more computational

resources. An alternative is to find a mapping such that the data are clustered in the mapped

data space, in which the probabilistic structure could be simplified and captured by simpler

Gaussian mixtures. The multiple discriminant analysis (MDA) technique offers a way to relax

the assumption of probabilistic structure, and EM supplies MDA a large labeled data set to

select most discriminating features.

6.6.1 Linear multiple discriminant analysis

Multiple discriminant analysis (MDA) [78] is a natural generalization of Fisher’s linear

discrimination (LDA) in the case of multiple classes. MDA offers many advantages and has

been successfully applied to many tasks such as face recognition. The basic idea behind MDA

is to find a linear transformation W to map the original d1-dimensional data space to a new d2

space such that the ratio between the between-class scatter and within-class scatter is maximized

in the new space.

W = arg max
W

|WT SbW|
|WT SwW| (6.14)

Suppose x is an m-dimensional random vector drawn from C classes in the original data space.

The ith class has a probability Pi, a mean vector mi. The within-class scatter matrix Sw is

defined by

Sw =
C∑

i=1

PiE[(x−mi)(x−mi)T |ci] (6.15)

where ci denotes the ith class. The between-class scatter matrix Sb defined by

Sb =
C∑

i=1

Pi(mi −m)(mi −m)T (6.16)

where the grand mean m is defined as m = E[x] =
∑C

i=1 Pimi. Details can be found in [78].

MDA offers a means to catch major differences between classes and discount factors that

are not related to classification. Some features most relevant to classification are automatically

selected or combined by the linear mapping W in MDA, although these features may not have
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substantial physical meanings any more. Another advantage of MDA is that the data are

clustered to some extent in the projected space, which makes it easier to select the structure of

Gaussian mixture models.

It is apparent that MDA is a supervised statistical method, which requires enough labeled

samples to estimate some statistics such as mean and covariance. By combining MDA with

the EM framework, our proposed method, the Discriminant-EM algorithm (D-EM), is such a

way to combine supervised and unsupervised paradigms. The basic idea of D-EM is to enlarge

the labeled data set by identifying some “similar” samples in the unlabeled data set, so that

supervised techniques are made possible with such an enlarged labeled set.

6.6.2 Expectation-Discrimination-Maximization

D-EM begins with a weak classifier learned from the labeled set. Certainly, we do not

expect much from this weak classifier. However, for each unlabeled sample xj , the classification

confidence wj = {wjk, k = 1, . . . , C} can be given based on the probabilistic label lj = {ljk, k =

1, . . . , C} assigned by this weak classifier.

ljk = − p(xj |ck)p(ck)∑C
k=1 p(xj |ck)p(ck)

(6.17)

wjk = lg(p(xj |ck)) k = 1, . . . , C (6.18)

By Equation (6.18), every unlabeled sample is weighted by its Mahalanobis distance to the

class center. Euqation(6.18) is just a heuristic to weight unlabeled data xj ∈ U , although there

may be many other choices.

After that, MDA is performed on the new weighted data set D′ = L⋃{xj , lj ,wj : ∀xj ∈
U}, by which the data set D′ is linearly projected to a new space of dimension C − 1 but

unchanging the labels and weights, D̂ = {WTxj , yj : ∀xj ∈ L}⋃{WTxj , lj ,wj : ∀xj ∈ U}.
Then parameters Θ of the probabilistic models are estimated on D̂, so that the probabilistic

labels are given by the Bayesian classifier according to Equation (6.17). The algorithm iterates

over these three steps: expectation, discrimination, and maximization. Figure 6.2 describes the

D-EM algorithm.

It should be noted that the simplification of probabilistic structures is not guaranteed by

linear MDA. If the components of data distribution are mixed up, it is very unlikely to find

such a linear mapping. In this case, nonlinear mapping should be found so that a simple
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Discriminant-EM algorithm (D-EM)
inputs: labeled set L, unlabeled set U
output: classifier with parameters Θ
begin Initialize: number of components C

W ← MDA(L)
lset ← Projection(W,L)
uset ← Projection(W,U)
Θ ← MAP (lset)
D-E-M iteration

E-step:
plabel ← Labeling(Θ, uset)
weight ← Weighting(plabel)
D′ ← L⋃{U , plabel, weight}

D-step:
W ← MDA(D′)
lset ← Projection(W,L)
uset ← Projection(W,U)
D̂ ← lset

⋃{uset, plabel, weight}
M-step:

Θ ← MAP (D̂)
return Θ

end

Figure 6.2 The D-EM algorithm.

probabilistic structure could be used to approximate the data distribution in the mapped data

space. Generally, we use Gaussian or second-order Gaussian mixtures. Our experiments show

that D-EM works better than pure EM.

6.7 The Kernel D-EM Algorithm

In this section, we try to extend the linear discriminant analysis to nonlinear analysis, in

order to achieve better discrimination power. We take a kernel-based approach. The D-EM

algorithm is generalized to the kernel D-EM algorithm in this section.

6.7.1 Nonlinear discriminant analysis

In linear discriminant analysis (LDA), a linear projection W is obtained, by which the

original data space X is linearly transformed to a new space Y. A classifier can be designed in

the new space Y. In many cases, we find that a linear projection is not enough to discriminate

different patterns. It is natural to extend this linear approach to the nonlinear realm.
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Nonlinear discriminant analysis finds a nonlinear mapping y = φ(x) to nonlinearly transform

the original data space X to a feature space (F-space) F , in which linear discriminant analysis

can be performed, i.e.,

J(V) =
|VT Sφ

BV|
|VT Sφ

WV|
(6.19)

where V = [v1, . . . ,vc−1], and vk ∈ F . A linear subspace V = span{v1, . . . ,vc−1} of the feature

space F is found. Patterns in the feature space y ∈ F are linearly projected onto this subspace,

while the corresponding patterns in the original data space x ∈ X are projected nonlinearly.

Quadratic and polynomial mapping have been investigated [78]. For example, if X is a 1-D

space, the quadratic mapping could be

y = [1, x, x2]T (6.20)

If X is a 2-D space, the complete quadratic mapping is

y = [1, x1, x2, x1x2, x
2
1, x

2
2]

T (6.21)

Generally, even if the decision boundary in the feature space F is linear, the corresponding

decision boundary in the original space X could be highly nonlinear and complex.

However, there are two problems related to this approach. First, the curse of dimensionality

often makes this approach impractical. Quadratic mapping involves O(d2) terms, and n-order

polynomial mapping involves O(dn) terms. The nonlinear mapping transforms the original space

into a higher-dimensional feature space. Unfortunately, the dimensions of the feature space F
will often be too high to handle. Second, parameter estimation in such a high-dimensional

feature space will be impossible, since it will require unrealistic computation and data.

Sometimes, we may want to transform the original data space into an infinite-dimensional

space. For example, we use an exponential mapping. It is nearly impossible to perform any

analysis in such feature spaces, since it is impossible to explicitly represent a transformed

pattern.

6.7.2 The kernel approach

The dot product of the form (φ(x) · φ(y)) can be represented as a kernel:

k(x,y) = (φ(x) · φ(y)) (6.22)
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By using the kernel presentation, we are able to calculate the value of the dot product in the

feature space mapped by φ(·), without having to find the mapped data φ(x) explicitly.

Mercer Theorem: Mercer’s theorem [135] gives conditions to construct the mapping φ(·)
from the eigenfunction decomposition of a kernel. If k is the continuous kernel of an integral

operator K : L2 → L2, (K)f(y) =
∫

k(x,y)f(x)dx, which is positive, i.e.,
∫

k(x,y)f(x)dx ≥ 0 ∀f ∈ L2 (6.23)

then, k can be expanded into a uniformly convergent series

k(x,y) =
∞∑

j=1

λjφj(x)φj(y) (6.24)

with λj ≥ 0. In this case,

Φ : x → (
√

λ1ϕ1(x),
√

λ1ϕ1(x), . . .) (6.25)

is a map into F such that k acts as the given dot product, i.e., k(x,y) = (φ(x) · φ(y)).

For example, a simple second-order polynomial kernel k(x,y) = (x · y)2 can be represented

as

(x · y)2 = (x2
1, x

2
2,
√

2x1x2)(x2
1, x

2
2,
√

2x1x2)T

In general, the polynomial kernel

k(x,y) = (x,y)d (6.26)

corresponds to a dot product in the space of d-order monomials of the input coordinates. Many

other forms of kernels are employed in the community. For example, radial basis functions

k(x,y) = exp(−||x− y||2
2σ2

) (6.27)

and sigmoid kernels

k(x,y) = tanh(κ(x · y) + Θ) (6.28)

have been employed in support vector machines [127], kernel PCA [136], and invariant feature

extraction [137, 138, 139, 140]. The choice of the kernel k implicitly determines the mapping

φ(·) and the feature space F .
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6.7.3 Kernel MDA

Nonlinear discriminant analysis can be made possible by the kernel approach. Assume the

d1-dimensional original data space is X . The number of classes is c, the size of the training

data set is n, and nj for class j, s.t.,
∑c

j=1 nj = n.

We try to find a nonlinear mapping φ(·) to transform the original data space X into a

higher-dimensional feature space F , whose dimension is d2 (d2 can be ∞). Linear discriminant

analysis is performed in such a feature space, i.e., to find a linear subspace V of the feature

space F by a linear projection V to discriminate different patterns, i.e,

Φ : x → y (6.29)

V : y → ζ (6.30)

The pattern in the feature space y = φ(x), and the pattern in the subspace V of feature space

ζ = VTy = VT φ(x).

We reformulate the between-class scatter SB and within-class scatter SW in the feature

space.

SB =
C∑

j=1

(mj −m)(mj −m)T (6.31)

SW =
C∑

j=1

nj∑

k=1

(φ(xk)−mj)(φ(xk)−mj)T (6.32)

where

m =
1
n

n∑

k=1

φ(xk) (6.33)

mj =
1
nj

nj∑

k=1

φ(xk) (6.34)

where j = 1, . . . , C, and m and mj are the total mean and class mean, respectively.

In feature space, the solution of linear discriminant analysis V = [v1, . . . ,vc−1] is given by

SBvi = λiSWvi (6.35)

It is known that any solution vi ∈ F must lie in the span of all training samples in F , i.e.,

v =
n∑

k=1

αkφ(xk) = Φα (6.36)
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where α = [α1, . . . , αn]T and Φ = [φ(x1), . . . , φ(xn)].

We can find a projection of a data point x onto one coordinate of the linear subspace of F
by

vT φ(xk) = αT ΦT φ(xk) (6.37)

= αT




φT (x1)φ(xk)
...

φT (xn)φ(xk)


 (6.38)

= αT




k(x1,xk)
...

k(xn,xk)


 (6.39)

= αT ξk (6.40)

where

ξk =




k(x1,xk)
...

k(xn,xk)


 (6.41)

Intuitively, ξk is sort of a representation of xk in the feature space.

vTmj = αT ΦT 1
nj

nj∑

k=1

φ(xk) (6.42)

= αT 1
nj

nj∑

k=1




φT (x1)φ(xk)
...

φT (xn)φ(xk)


 (6.43)

= αT 1
nj

nj∑

k=1




k(x1,xk)
...

k(xn,xk)


 (6.44)

= αT




1
nj

∑nj

k=1 k(x1,xk)
...

1
nj

∑nj

k=1 k(xn,xk)


 (6.45)

= αT µj (6.46)
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where

µj =




1
nj

∑nj

k=1 k(x1,xk)
...

1
nj

∑nj

k=1 k(xn,xk)


 (6.47)

We can view µj as the counterpart of the mean of the j class of the data space in the feature

space. So,

vT SBv =
C∑

j=1

vT (mj −m)(mj −m)Tv (6.48)

= αT [
C∑

j=1

(µj − µ)(µj − µ)T ]α (6.49)

= αT KBα (6.50)

where

KB =
C∑

j=1

(µj − µ)(µj − µ)T (6.51)

To find KW , we have

vT SWv =
C∑

j=1

nj∑

k=1

vT (φ(xk)−mj)(φ(xk −mj)Tv (6.52)

=
C∑

j=1

nj∑

k=1

αT (ξk − µj)(ξk − µj)T α (6.53)

= αT KW α (6.54)

where

KW =
C∑

j=1

nj∑

k=1

(ξk − µj)(ξk − µj)T (6.55)

We can write the kernel MDA as

J(α) =
|αT KBα|
|αT KW α| (6.56)

The projection of a data point x onto the direction v in the feature space F can be obtained

by

vT φ(x) =
n∑

k=1

αkk(xk,x) (6.57)

or

vT φ(x) = αT ξ (6.58)

which only involves a set of kernel computations and can be easily achieved.
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6.7.4 Sampling data for efficiency

Because KB and KW are n×n matrices, where n is the size of the training set, the nonlinear

mapping is dependent on the entire training samples. For large n, the solution to the generalized

eigensystem is costly. Approximate solutions could be obtained by sampling representative sub-

sets of the training data, {pk|k = 1, . . . ,M, M < n}, and using ξ̃k = [k(x1,xk), · · · , k(xM ,xk)]t

to take the place of ξk.

6.7.4.1 PCA-based kernel vector selection

The first approach we propose is blind to the class labeling. We select representatives,

or kernel vectors, by identifying those training samples which are likely to play a key role in

Ξ = [ξ1, . . . , ξn]. Ξ is an n × n matrix, but rank(Ξ) ¿ n when the size of training data set is

very large. This fact suggests that some training samples could be ignored in calculating kernel

features ξ.

We first compute the principal components of Ξ. Denote the n× n matrix of concatenated

eigenvectors with P. Thresholding elements of abs(P) by some fraction of the largest element

of it allows us to identify salient PCA coefficients. For each column corresponding to a non-

zero eigenvalue, choose the training samples which correspond to a salient PCA coefficient, i.e.,

choose the training samples corresponding to rows that survived the thresholding. Doing so for

every nonzero eigenvalue, we arrive at a decimated training set, which represents data at the

periphery of each data cluster. It is illustrated in Figure 6.3.

6.7.4.2 Evolutionary kernel vector selection

Another approach is to take advantage of class labels in the data. We maintain a set of

kernel vectors at every iteration which are meant to be the key pieces of data for training. M

initial kernel vectors, KV (0), are chosen at random. At iteration k, we have a set of kernel

vectors KV (k) which are used to perform KMDA such that the nonlinear projection y(k)
i =

V(k)T φ(xi) = A(k)T
opt ξ

(k)
I ∈ ∆ of the original data xi can be obtained. We assume Gaussian

distribution θ(k) for each class in the nonlinear discrimination space ∆, and the parameters θ(k)

can be estimated by {y(k)}, such that the labeling and training error e(k) can be obtained by

l̄
(k)
i = arg maxj p(lj |yi, θ

(k)).
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(a) (b)

(c) (d)

Figure 6.3 KMDA with a 2-D two-class nonlinearly separable example. (a) Original data, (b)
the kernel features of the data, (c) the normalized coefficients of PCA on Ξ, in which only a
small number of them are large (in black), and (d) the nonlinear mapping.

If e(k) < e(k−1), we randomly select M training samples from the correctly classified training

samples as kernel vector KV (t+1) at iteration k + 1. Another possibility is that if any current

kernel vector is correctly classified, we randomly select a sample in its topological neighborhood

to replace this kernel vector in the next iteration. Otherwise, i.e., e(k) ≥ e(k−1), and we

terminate.

The evolutionary kernel vector selection algorithm is summarized below in Figure 6.4.

6.7.5 Kernel D-EM algorithm

As an extension to expectation–maximization (EM), Wu and Huang [42] proposed a three-

step algorithm, D-EM, which loops between an expectation step, a discrimination step (via

MDA), and a maximization step. D-EM estimates the parameters of a generative model in a

discrimination space.

We now apply KMDA to D-EM. Kernel D-EM (KDEM) is a generalization of D-EM, in

which instead of a simple linear transformation of the data, KMDA is used to project the data

nonlinearly into a feature space where the data is better separated linearly. The nonlinear

mapping, φ(·), is implicitly determined by the kernel function, which must be determined in

advance. The transformation from the original data space X to the discrimination space ∆,

which is a linear subspace of the feature space F , is given by VT φ(·) implicitly or AT ξ explicitly.

108



Evolutionary Kernel Vector Selection: Given a set of training
data D = (X, L) = {(xi, li), i = 1, . . . , N}, to identify a set of
M kernel vectors KV = {νi, i = 1, . . . ,M}.

k = 0; e = ∞; KV (0) =random pick(X); // Init
do{

A(k)
opt =KMDA(X,KV (k));// Perform KMDA

Y (k) =Proj(X,A(k)
opt); // Project X to ∆

Θ(k) =Bayes(Y (k), L); //Bayesian classifier
L̄(k) =Labeling(Y (k), Θ(k)); // Classification
e(k) =Error(L̄(k), L); // Calculate error
if(e(k) < e)

e = e(k); KV = KV (k); k + +;
KV (k) =random pick({xi : l̄

(k)
i 6= li});

else
KV = KV (k−1); break;

end
}
return KV ;

Figure 6.4 Evolutionary kernel vector selection.

A low-dimensional generative model is used to capture the transformed data in ∆.

p(l|Θ) =
c∑

j=1

p(VT φ(x)|cj ; θj)p(cj |θj) (6.59)

Empirical observations suggest that the transformed data often approximates a Gaussian in

∆, and so in our current implementation we use low-order Gaussian mixtures to model the

transformed data in ∆. Kernel D-EM can be initialized by selecting all labeled data as kernel

vectors, and training a weak classifier based on only unlabeled samples. Then, the three steps

of kernel D-EM are iterated until some appropriate convergence criterion:

• E-step: set Ẑ(k+1) = E[Z|D; Θ̂(k)]

• D-step: set Ak+1
opt = arg maxA

|AT KBA|
|AT KW A| , and identify kernel vectors KV (k+1)

• M-step: set Θ̂(k+1) = arg maxθ p(Θ|D; Ẑ(k+1))

The E-step gives unlabeled data probabilistic labels, which are then used by the D-step to

separate the data. As mentioned before, this assumes that the class distributions are moderately

smooth.
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6.8 Experiments

In this section, KMDA is compared with other supervised learning techniques on some

standard data sets in Section 6.8.1. Experimental results of D-EM and kernel D-EM algorithms

on hand posture recognition and content-based image retrieval will be presented in Sections 6.8.2

and 6.8.3, respectively.

6.8.1 Benchmark tests for KMDA

We first verify the ability of KMDA with our data-sampling algorithms. Several benchmark

data sets1 are used in our experiments. The benchmark data has 100 different realizations.

In [138], results of different approaches on these data sets have been reported. The proposed

KMDA algorithms were compared to a single RBF classifier (RBF), a support vector machine

(SVM), AdaBoost, and the kernel Fisher discriminant (KFD) [137]. RBF kernels were used in

all kernel-based algorithms.

Table 6.1 Benchmark test of the kernel MDA algorithm: The average test error as well as
standard deviation.

Benchmark Banana B-Cancer Heart Thyroid F-Sonar

RBF 10.8±0.06 27.6±0.47 17.6±0.33 4.5±0.21 34.4±0.20
AdaBoost 12.3±0.07 30.4±0.47 20.3±0.34 4.4±0.22 35.7±0.18

SVM 11.5±0.07 26.0±0.47 16.0±0.33 4.8±0.22 32.4±0.18
KFD 10.8±0.05 25.8±0.46 16.1±0.34 4.2±0.21 33.2±0.17

KMDA-pca 10.7±0.25 27.5±0.47 16.5±0.32 4.2±0.21 33.5±0.17
KMDA-evol 10.8±0.56 26.3±0.48 16.1±0.33 4.3±0.25 33.3±0.17

#-KVs 120 40 20 20 40

In Table 6.1, KMDA-pca is KMDA with PCA selection, and KMDA-evol is KMDA with

evolutionary selection, where #-KVs is the number of kernel vectors. The benchmark tests

show that the proposed approaches achieve results comparable to those of other state-of-the-

art techniques, in spite of the use of a decimated training set.
1The standard benchmark data sets in our experiments are obtained from

http://www.first.gmd.de/~raetsch.
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6.8.2 View-independent hand posture recognition

View-independent hand posture recognition identifies a posture in any view direction [42,

43, 141]. Some hand posture images are shown in Figure 6.5. Each row should be classified

into the same posture class.

Figure 6.5 Fourteen different postures. Each row is one posture from eight different views.

The gesture vocabulary in our gesture interface is 14. The hand localization system is

employed to automatically collect hand images which serve as the unlabeled data, since the lo-

calization system [90] only outputs bounding boxes of hand regions, regardless of hand postures.

A large unlabeled database can be easily constructed. Currently, there are 14,000 unlabeled

hand images in our database. It should be noted that the bounding boxes of some images are

not tight, which introduces noise to the training data set. For each posture class, some samples

111



are manually labeled. To investigate the effect of using unlabeled data and to compare different

classification algorithms, we construct a testing data set, which consists of 560 labeled images.

Image (I-) and eigen (E-) features are both used as hand representation in our experiments.

Gabor wavelet filters with 3 levels and 4 orientations are used to extract 12 texture features,

each of which is the standard deviation of the wavelet coefficients from one filter. Ten coefficients

from the Fourier descriptor are used to represent hand shapes. We also use some statistics such

as the hand area, contour length, total edge length, density, and second-order moments of edge

distribution. Therefore, we have 28 low-level image features in total. After resizing the images

to 20× 20, some eigen features are extracted by PCA.

We feed the algorithm a different number of labeled and unlabeled samples. In this ex-

periment, we use 500, 1000, 2500, 5000, 7500, 10000, 12500 unlabeled samples and 42, 56, 84,

112, 140 labeled data, respectively. In this experiment, we use the eigen features extracted by

PCA with 22 principle components, and the dimension for MDA is set to 10. As shown in

Figure 6.6(a), in general, combining some unlabeled data reduce the classification error by 20%

to 30%.
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Figure 6.6 (a) The effect of labeled and unlabeled data on D-EM. (b) The effect of the
dimension of PCA and MDA on D-EM.

In Figure 6.6(b), we study the effect of the dimension parameters in PCA and MDA. If fewer

principle components of PCA are used, some minor but important discriminating features may

be neglected so that those principle components may be insufficient to discriminate different

classes. On the other hand, if more principle components of PCA are used, it would include

more noise. Therefore, the number of principle components of PCA is an important parameter
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for PCA. The dimension of MDA ranges between 1 and C−1, where C is the number of classes.

We are interested in a lower-dimensional space in which different classes can be classified. In

this experiment, we use 112 labeled data and 10000 unlabeled data, and we find that a good

dimension parameter of PCA is around 20 to 24, and 8 to 13 for MDA.

Four classification algorithms are compared in this experiment. For E-features, the number

of principle components of PCA is set to 22, and a set of 560 labeled data is used to perform

MDA with dimension of 10. Using 1000 labeled training data, the multilayer perceptron used

in this experiment has one hidden layer of 25 nodes. We experiment with two schemes of the

nearest neighbor classifier. One is just of 140 labeled samples, and the other uses 140 labeled

samples to bootstrap the classifier by a growing scheme, in which newly labeled samples will

be added to the classifier according to their labels. The labeled and unlabeled data for both

EM and D-EM are 140 and 10000, respectively. Table 6.2 shows the comparison.

Table 6.2 View-independent hand posture recognition: comparison among multiplayer per-
ceptron (MLP), Nearest Neighbor with growing templates (NN-G), EM, linear D-EM (LDEM)
and KDEM.

Algorithm MLP NN-G EM LDEM KDEM

I-Feature 33.3% 15.8% 21.4% 9.2% 5.3%
E-Feature 39.6% 20.3% 20.8% 7.6% 4.9%

We observed that multilayer perceptrons are often trapped in local minima and nearest

neighbor suffers from the sparsity of the labeled templates. The poor performance of pure EM

is due to the fact that the generative model does not capture the ground-truth distribution well,

since the underlying data distribution is highly complex. It is not surprising that LDEM and

KDEM outperform other methods, since the D-step optimizes the separability of the classes.

Some typical images classified and misclassified by LDEM and KDEM are shown in Figure 6.7.

Finally, note the effectiveness of KDEM. We find that KDEM often appears to project

classes to approximately Gaussian clusters in the transformed space, which facilitates their

modeling with Gaussians. Figure 6.8 shows typical transformed data sets for linear and non-

linear discriminant analysis, in a projected 2-D subspace of three different hand postures.
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(a) (b) (c)

Figure 6.7 A comparison of linear D-EM and kernel D-EM. (a) Some correctly classified images
by both LDEM and KDEM. (b) Images that are mislabeled by LDEM, but correctly labeled
by KDEM. (c) Images that neither LDEM nor KDEM can correctly classify.
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Figure 6.8 Data distribution in the projected subspace. (a) Linear KMDA. (b) Kernel KMDA.
Different postures are more separated and clustered in the nonlinear subspace by KMDA.

6.8.3 Transductive content-based image retrieval

In order to give some analysis and compare several different methods, we manually label

an image database of 134 images, which is a subset of the COREL database. Our dataset has

seven classes: airplane, bird, car, church painting, flower, mountain view, and tiger. All images

in the database have been labeled as one of these classes. In all the experiments, these labels

for unlabeled data are only used to calculate classification error.

To investigate the effect of the unlabeled data used in D-EM, we feed the algorithm a

different number of labeled and unlabeled samples [142, 143, 144, 145]. The labeled images are

obtained by relevance feedback. When using more than 100 unlabeled samples, the error rates

drop to less than 10%. From Figure 6.9, we find that D-EM brings about 20% to 30% more

accuracy. In general, combining some unlabeled data can largely reduce the classification error

when labeled data are very few.
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Figure 6.9 The effect of labeled and unlabeled data in D-EM. Error rate decreases when adding
more unlabeled data. Combining some unlabeled data can largely reduce the classification error.

We test and compare four methods. The first one is to weight each feature by relevance

feedback (WRF) [9], in which 37 image features are precalculated and prestored. The top 20

most similar images are obtained through ranking each image by comparing the Mahalanobis

distances to the means of query images. The second method is a simple probabilistic method

(SP), in which both classes (relevant and irrelevant) are assumed Gaussian distributions, and

the model parameters are estimated by feedback images. The third method is the basic EM

(EM) algorithm, which assumes Gaussian distributions for both classes. The fourth is the D-

EM algorithm. In the last three probabilistic methods, the label of each image is given by

maximizing a posteriori probability:

lj = arg max
k

p(ck|xj)

We also compare a set of image features (I-Features) and eigen features (E-Features). We

use the same image features as in WRF [9]. The eigen features are extracted by PCA, in which

the number of principle components is 30, and the image resolution is reduced to 20×20. Except

for WRF, both I-features and E-features are tested.

These four methods are compared on this fully labeled database. The results are shown

in Table 6.3. Classification error for each method is calculated for evaluation, although these

errors are not available for the training. Suppose the database has N samples, C classes, and

the kth class has Nk samples, and N =
∑C

k=1 Nk. The method to calculate error in WRF is

different from the other three methods. In WRF, if the query images belong to the jth class,

and mj samples in the top Nj belong to the jth class, the error for this query is defined as

ej =
2(Nj −mj)

N
(6.60)
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In the other three methods, if there are m samples in total that are not correctly labeled, the

error is defined as

ej =
m

N
(6.61)

The average error is obtained by averaging over M experiments, i.e.,

e =

∑M
j=1 ej

M
(6.62)

Table 6.3 Error rate comparison among different algorithms. All comparisons are based on
the first time relevance feedback with six relevant and six irrelevant images. D-EM outperforms
the other three methods.

Algorithm I-features E-features

WRF 6.3% N/A
SP 21.2% 15.7%
EM 23.4% 25.8%

D-EM 3.9% 5.3%

Our algorithm is also tested by several large databases. The COREL database contains more

than 70,000 images over a wide range of more than 500 categories with 120 × 80 resolution.

The VISTEX database is a collection of 832 texture images.

6.9 A Discussion on Self-Supervised Learning

Previous sections presented linear D-EM and kernel D-EM for self-supervised learning tech-

niques. Extensive experiments show the effectiveness of the D-EM approach in many learning

tasks. This section will give a further discussion on self-supervised learning.

6.9.1 A new learning paradigm

The cognitive processes of human beings are highly complicated. It is very difficult to

represent such processes explicitly. However, there are some general measurements of cognitive

ability. One of them is induction, which is to learn a model from a set of given examples.

Obviously, the result of inductive learning largely depends on the training examples. Deduction

is to learn a better model for a specific domain given a generic knowledge. More interestingly,
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human beings are also able to conduct transduction, which is to transduce a specific domain

model to another unknown domain.

Supervised learning and unsupervised learning are the two main learning paradigms inves-

tigated in current machine learning research. We can look the supervised learning and unsu-

pervised learning as two extremes, since supervised learning tries to “teach” the learner all the

examples, while unsupervised learning leaves all the studying to the learner without teaching

anything. Pure supervised learning is probably not able to perform transduction because it is

incapable in an unknown world. On the other hand, pure unsupervised learning is not able to

perform effective induction because of lack of supervision. There are also some paradigms in the

middle such as reinforcement learning and supervised clustering. Reinforcement learning tries

to tell the learner “correct” and “incorrect” instead of “how.” Supervised clustering essentially

is an unsupervised learning technique. These two techniques start to find an answer to the

question: How much should we teach a learner?

One answer is given by Vapnik in his support vector machine theory [127] that the classi-

fication boundary depends only on the support vectors instead of the whole training data set,

which means the support vectors are the minimum training samples needed. This fact suggests

that it might not be necessary to have every sample labeled in supervised learning. Although

the identification of these support vectors is not trivial, it motivates us to think about the roles

of nonsupport vectors.

If the probabilistic structure of data distribution is known, parameters of probabilistic mod-

els can be estimated by unsupervised learning alone, but it is still impossible to assign class

labels without labeled data [78]. This fact suggests that labeled and unlabeled training data

are both need in learning, in which labeled data (if enough) can be used to label the class and

unlabeled data can be used to estimate the parameters of generative models.

We introduce a new learning paradigm called self-supervised learning (SSL) to unify induc-

tion, deduction, and transduction, by using both labeled and unlabeled training data. Labeled

training data sets represent the knowledge we should teach the learner, and the unlabeled set

is the inputs from an unknown world, which should be explored by the learner itself.

Some fundamental questions are raised in Section 6.9.2 and the new self-supervised learning

paradigm is given in Section 6.9.3.
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6.9.2 Some fundamental questions

Unlabeled data contain information about the joint distribution over features. If the para-

metric forms of the probability densities are known, the parameters can be estimated by un-

supervised learning alone, but it is impossible to assign class label without labeled data. The

assumption of the generative model must be held to reach this strong conclusion. This conclu-

sion suggests that labeled data (if enough) can be used to label the class of each component

and unlabeled data can be used to estimate the parameters of the model.

There should be an assumption about the distribution of the unlabeled data set. There

are several possibilities. One is that the unlabeled set is from the same distribution as the

labeled set, and we may know exactly the form of the distribution density. Second is that the

distribution of the unlabeled set has some deviation from the labeled set, but we know the

relationship between these two distributions, such as joint density or conditional density.

We should answer some important questions:

• Why do we use unlabeled data sets in supervised learning?

• What are the objectives and advantages?

• What are the assumptions about the unlabeled data, if any?

• When do unlabeled data help, and when do they hurt?

• What are the roles of labeled and unlabeled data?

• What are the necessary conditions for successful model transduction?

• How is the unlabeled data set to be used?

6.9.3 Self-supervised learning

6.9.3.1 Problem formulation

Self-supervised learning (SSL) employs a hybrid training data set D which consists of a

labeled data set L = {(xi, yi), i = 1, . . . , n}, where xi is feature vector, yi is label and n is the

size of the set, and an unlabeled data set U = {xi, i = 1, . . . ,m}, where m is the size of the set.
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Generally, we make an assumption here that L and U are from the same distribution. We have

a risk function

R(Θ) =
∫

L(y, f(x,Θ(L,U)))dF (x, y) (6.63)

where L(y, f(x,Θ(L,U))) is the loss function. The learning is to find the function f(x,Θ∗)

minimizing the risk without knowing the joint p.d.f. F (x, y). The function f(x,Θ∗) depends on

both labeled and unlabeled training data sets. Essentially, the classification can be represented

as

yi = arg max
j=1,...,C

p(yj |xi,L,U : ∀xi ∈ Ψ) (6.64)

where Ψ is a subset of the whole data space Ω and C is the number of classes. Consequently, the

decision is made based on both L and U . Inputs of the classifier are drawn from Ψ. According

to different Ψ, self-supervised learning has different special cases.

6.9.3.2 Induction

When Ψ = Ω, self-supervised learning becomes inductive learning.

yi = arg max
j=1,...,C

p(yj |xi,L,U : ∀xi ∈ Ω) (6.65)

Different from conventional learning paradigms, inductive learning depends both on supervised

data set L and unsupervised data set U . If L = φ, it degenerates to pure unsupervised learning.

If U = φ, it degenerates to pure supervised learning.

Since it is not necessary to have every training sample labeled, the most interesting question

in inductive learning is how much supervised information is needed. Generally, we use a large

unlabeled training set while employing a relatively small labeled set.

6.9.3.3 Deduction

When Ψ is a subset of U , i.e., Ψ ⊂ U , the problem degenerates to SSL deduction.

yi = arg max
j=1,...,C

p(yj |xi,L,U : ∀xi ∈ (Ψ ⊂ U)) (6.66)

When we have a rough generic model of a domain, deduction is to learn a specific model which

works in a specific subdomain based on this rough model. Deduction can be treated as a special

case of transduction. For example, a generic model classifies men and women; deduction learns

a specific model to differentiate Asian men and Asian women.
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6.9.3.4 Transduction

When Ψ = U , self-supervised learning becomes transductive learning.

yi = arg max
j=1,...,C

p(yj |xi,L,U : ∀xi ∈ U) (6.67)

Generally, the classifier obtained from inductive learning could be highly nonlinear, and a huge

labeled training set is required to achieve good generalization. However, the requirement of

generalization could be relaxed to a subset of the whole data space. The generalization of

transductive learning is only defined on the unlabeled training set U , instead of the whole data

space Ω.

In human cognition, we usually can learn a good model in a specific domain (i.e., a subset).

This model may not be good for other domains. But the model can be adapted to solve problems

in similar domains. This cognition process can be captured by SSL transduction, which can be

used to transduce a specific model to another specific model. For example, based on a specific

model which is to classify Asian men and Asian women, transduction learns another specific

model to recognize European men and European women. It can be illustrated by an example

of the nonstationary color model adaptation in Chapter 3.
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CHAPTER 7

VISION-BASED GESTURE INTERFACE SYSTEMS

This chapter will present two interesting prototype vision-based gesture interface systems.

One of them is called “Paper-Rock-Scissors,” in which people could play a simple interactive

video game against computers. The other is called “Visual Panel,” through which people could

control a remote display only using their fingers and an arbitrary paper.

7.1 “Paper-Rock-Scissors”: An Interactive Video Game

The design of an interesting interactive video game, paper-rock-scissors, will be presented

in this section. Using live video inputs, the system could localize the user’s hand and recognize

the hand postures. The framework of the design will be described in Section 7.1.1. The four

subsystems of hand localization, motion capturing, posture recognition and hand animation

will be given in Section 7.1.2, 7.1.3, 7.1.4 and 7.1.5, respectively.

7.1.1 System framework

The whole gesture interface consists of four subsystems: the hand localization system,

articulate motion capturing system, gesture recognition system, and animation system. The

framework is shown in Figure 7.1.

7.1.2 Localization system

Our localization system is based on color segmentation. Motion segmentation and region-

growing method are also employed to make the system more robust and accurate without
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Figure 7.1 The framework of our vision-based gesture interface.

introducing too much computation cost. Figure 7.2 shows the overview of the localization

system.

Figure 7.2 Hand localization system framework.

The first frame taken by a camera is used to initially train the SOM by the proposed self-

organizing clustering algorithm that has been described in Section 3.2.3. In this initialization

stage, the color distribution in the scene is initially mapped. In our experiments, the training

is fast (less than 1 second) with a 640× 480 color image. The inputs of the SOM are the HSI

value of pixels, and the outputs are the indexes of winning nodes of SOM through competition.

Typically, it takes fewer than six nodes to segment indoor working environments.
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For each newly captured color image at time frame t, the SOM is transduced by the algo-

rithm described in Section 3.4. Such SOM is used to segment the input image to find different

color regions. This stage can be done on a lower resolution image to make the segmentation

faster. Morphology operators are used to get rid of noise. After each pixel has been labeled, the

SOM should be updated again by the supervised updating scheme described in the Section 3.4.

The labeled training data set is randomly selected from the segmented image, ignoring those

that are too bright or too dark.

Since there may be many different colors in the working space, and if the system does not

specify which color to track, how to determine what to track is a problem. One possible solution

is to specify a color region such as a human hand or face. Another solution is to use some rules

to automatically find an interested color from motion intention. If we detect a motion region

by examining the frame difference or optic field, the color of that region is taken to be the

interested color.

There are some cases in which several objects have nearly the same color. For instance,

tracking two faces or two hands is needed in recognizing sign languages. When the color

segmentation algorithm separates them from the background, there are some ways to locate

each region. One method is to use the same scheme of our self-organizing clustering to find the

centroid of each isolated blob. Another way is to use a region-growing technique to label each

blob or use some heuristics to find bounding boxes.

A typical hand-tracking scenario is controlling the display or simulating a 3-D mouse in

desktop environments. A camera mounted at the top of the desktop computer looks below at

the keyboard area to give an image sequence of moving a hand. Another typical application

is to track a human face. Our localization system is able to simultaneously localize multiple

objects, which is useful in tracking a moving human.

Since our localization system is essentially based on a global segmentation algorithm, it does

not largely rely on the tracking results of previous frames. Even if the tracker may for some

reason gets lost in some frames, it can recover by itself without interfering the subjects. In this

sense, the tracking algorithm is very robust.

Our proposed system can handle changing lighting conditions to some extent because of

the transduction of the SOM color classifier. At the same time, since hue and saturation are

given more weight than intensity, our system is insensitive to changes in lighting intensity
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such as when objects are shadowed or the intensity of the light source changes. However,

there are still some problems. Insufficient lighting, too strong lighting, or very dark or bright

backgrounds may pose problems for the color segmentation algorithm, since hue and saturation

become unstable and the system does not give more weight to intensity. If lighting conditions

change dramatically, the color segmentation algorithm may fail since the transduction cannot

be guaranteed.

7.1.3 Motion capturing system

A model-based approach is taken to capture the articulated hand motion by employing

a 3-D hand model. Here, a kinematical hand model is employed. Articulated hand motion

is decoupled from its global hand motion and local finger motion, in which global motion is

parameterized as the rotation and translation of the palm, and local motion is parameterized as

the state of the hand. Global hand poses are captured by a robust pose determination algorithm

based on ICP, and local finger articulations are estimated by a sequential Monte Carlo tracking

algorithm, respectively, in an iterative fashion.

7.1.4 Posture recognition system

The hand posture recognition system recognizes static hand postures from the hand im-

ages located by the hand localization system. For each frame, the localization system gives a

bounding box of the hand, and hand posture recognition is based on the cropped hand image.

We look into fourteen different hand postures, which are shown in Section 6.8.2. Eigen

features are used as hand representation, due to the simplicity of feature extraction. The

feature extractors are PCA and MDA. The training algorithms can take both linear and kernel

D-EM algorithms. The generative model is a Gaussian mixture model. The training is off-line,

in which the parameters of the generative model and an MDA projection matrix are estimated.

Recognition is on-line based on Bayesian decisions. Some of the experiments are given in

Section 6.8.2. Figure 7.3 illustrates the hand posture recognition subsystem.
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Figure 7.3 The hand posture recognition subsystem.

7.1.5 Animation system

In our hand animation system, hand model is animated by keyframe-based methods. The

starting, ending, and several transitions hand states are given as the keyframes. The animation

sequences are obtained by a cubic spline interpolation scheme.

If the model is driven by the set of joint angles which represents the state of hand, hand

states can be interpolated by prespecified key-frame states. If the model is driven by the

position of fingertips, an inverse kinematics problem must be solved. Although it is simple to

implement, the drawback of this approach is apparent. In order to obtain a realistic effect,

a large number of control points must be specified along the fitting curves. To reduce the

amount of motion specification, some knowledge about hand motion should be built in the

animation system to execute certain aspect of movement autonomously. Some high-level control

schemes and physical rules can be used to achieve this goal: however, the disadvantage is lack

of interactivity.

7.1.6 System performance and demos

The system is implemented in C++ on SGI O2 R10000 machines. The SOM-based hand

localization system runs at 20-25 Hz, and the hand posture recognition subsystem runs at
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around 15 Hz. Since the articulated motion capturing is very expensive, it is far from real-time.

The animation looks very natural and realistic.

A simple demo is made to show some of the capacity of our gesture interface. It is a virtual

game of paper-rock-scissors, which uses three hand signs: “rock,” “scissors,” and “paper,” shown

in Figure 7.4.

Figure 7.4 The children’s game paper-rock-scissors.

There is a traditional children’s game with these hand signs, in which rock beats scissors,

scissors beats paper, and paper beats rock. In this demo, a person will play against a computer,

and a second computer tracks and recognizes the sign made by the human and keeps the score.

The computer player randomly generates one of these three hand signs, and the transition from

one to another is shown in another window by the animation system.

7.2 “Visual Panel”: A Vision-based Mobile Input System

The goal of the virtual panel system is to use an arbitrary quadrangle-shaped plane object,

such as a paper, and a tip pointer, such as a fingertip and a pen, to serve as a natural and

convenient input device for accurately controlling remote displays, based on computer vision

techniques. Using fingertips, a natural body part, we developed an intuitive and immersive way

for accurate interaction with remote and large displays.

The system consists of virtual panel tracking, tip pointer tracking, homography calcula-

tion/updating, and action detection/recognition. The whole system is shown in Figure 7.5.

Part of the user input is analyzed from video sequences by a panel tracker and a tip pointer

tracker. The panel tracker can accurately track an arbitrary quadrangle-shaped plane object

by outputting the positions of the four corners. Since an edge-based dynamical programming

technique is employed in the panel tracker, it is quite robust and reliable, even some of the
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corners of the panel are occluded. At the same time, since the positions of the corners are

calculated by intersecting four lines of the quadrangle, such that the positions are calculated in
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Figure 7.5 The system of “Virtual Panel”, which consists of panel tracker, pointer tracker,
action detector, and message generator.

The mapping will be constructed between this panel and a remote display by calculating a

homography transformation, through which any point on the panel will be mapped to the corre-

sponding position on the remote display. Obviously, remote mouse and remote keyboard can be

used to control a remote display. However, such devices are expensive and emit electromagnetic

radiation.

In the virtual panel system, users can use their fingertip as a mouse to simulate a cursor

for the remote display. Consequently, the tracking of the tip pointer should be quite accurate

and stable, since a small error of tip position will be magnified in the remote large screen.

For instance, we assume the resolution of input video is 320 × 240 and the remote display is

1024 × 768. Since generally the panel in the image is roughly half the size of the image, it is

obvious that the tracking error of 1 pixel will incur around 6 pixels error in the large display,

which will make the mapped cursor position very shaky. This problem is solved in our system

by representing any tip pointer as a conic and fitting a parametric conic to image observations.

Therefore, the tip position can also be calculated in subpixels such that the error can be reduced.

The current system simulates the clicking/pressing gestures by holding the tip pointer on

the position for a while. By this means, the system is capable of having two inputting methods:

virtual mouse and virtual keyboard. Obviously, the position of the tip pointer can be mapped
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to the remote display such that a cursor can be simulated. We also use a paper with a keyboard

pattern printed on it as a virtual keyboard, by which users can point the keys on the paper to

input texts.

The message generator in the system gets inputs from the action detector, and issues various

mouse and keyboard events, according to the different user input methods.

Figure 7.6 shows the basic idea of visual tracking of the virtual panel system. Figure 7.6(a)

is one frame of the video input, and Figure 7.6(b) shows the tracking results of the panel and

the fingertip.
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(a) (b)

Figure 7.6 The tracking in the visual panel system. (a) Input image. (b) Tracking outputs:
A tracked panel and a tracked fingertip.

The virtual panel system is also scaleable and extendable, which makes the system portable,

easy-to-use and cost-efficient.

• Camera setting: The setting of the camera can be quite flexible. It can be anywhere as

long as the panel is not totally occluded. If the camera is fixed, the panel cannot move

too far, and it should be in the field of view of the camera. We can mount the camera on

the ceiling. The user can rotate, translate, and tilt the panel to reach a comfortable pose

for use. Obviously, users should not let the normal of the panel be vertical to the optical

axis of the camera. Under some circumstances when the user wants to walk around, we

can mount a camera on top of his head by wearing a hat, or on his shoulders, such that

the user can be anywhere to interact with the computer. It would be quite useful for a

speaker who wishes to walk around when giving his PowerPoint presentation.
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• Panel design: At the same time, the panel can be anything as long as it is quadrangle-

shaped. For example, we can use white paper with some printing on it, which is widely

available in offices and homes.

• Tip pointers: The system allows arbitrary tip pointers, such as fingertips and pens. In

our usability studies, many users prefer using pens to fingertips in some applications such

as finger painting, since pens are more intuitive for them, although using fingertips is of

more fun.

• Clicking: The current virtual panel system simulates clicking and pressing by holding

the tip pointer for a while, since this means is easy to use and more reliable for vision

techniques. Alternatively, the system can use some natural gestures to act as clicking.

7.2.1 Homography

Since we use an arbitrarily rectangle-shaped panel to control the cursor position on the

remote display, we have to know the mapping between a point on the panel and a point on the

display. Furthermore, what is available is an image sequence of the panel which may undergo

arbitrary motion (as long as the image of the panel does not degenerate into a line or a point), so

we also need to know the mapping between a point in the image plane and a point on the panel.

We assume the camera performs a perspective projection. As the display, the panel, and the

image plane are all planes, both above relationships can be described by a plane perspectivity,

to be explained below.

Given a point p = [x, y]T on a plane Π, we use p̃ = [x, y, 1]T to denote its homogeneous

coordinates. Then, the plane perspectivity between planes Π and Π′ is described by a 3 × 3

matrix H such that

λp̃′ = Hp̃

where λ is an arbitrary nonzero scalar. This implies that the homography matrix is only defined

up to a scale factor, and therefore has 8 degrees of freedom. If four couples of corresponding

points (no three of them are collinear) are given, the homography matrix can be determined.

It is not difficult to see that the composition of two plane perspectivities is still a plane

perspectivity. Thus, the mapping between the images of the panle and the remote display can

be described by a homography matrix. This is very important because what we really need is to
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use the detected tip position in the image to control the cursor position on the remote display.

The composed homography can be easily determined once the four corners of the panel are

located in the image. As we know the dimension of the display, we compute the homography

by mapping each corner of the panel to a corner of the display.

7.2.2 Tracking a quadrangle

The panel can be represented by a quadrangle:

Q = {l1, l2, l3, l4} (7.1)

where li is a margin line. It can also be represented by four corners Q = {q1, q2, q3, q4}. There

is a set of image edge features associated with each line.

E = {e1, e2, e3, e4} (7.2)

The gradient of each pixel on any edge is represented by ek
i = (ek

i (x), ek
i (y)). In spite of its

location, the appearance of an edge can be represented by a set of statistics, such as edge

length and average gradient. Here, we represent the appearance of an edge as a random vector

X = {G, I}, where G is the gradient and I is the intensity. We assume the distribution of X a

Gaussian, i.e.,

X ∼ N(µx,Σx) (7.3)

At time frame t, the location of the quadrangle is at Q(t) = {p1(t), p2(t), p3(t), p4(t)}, and

the appearance of the quadrangle is X(t). We assume at time t + 1, these four corner points

will be in a range Di around pi(t), respectively. The tracking can be formulated as a MAP

problem:

Q∗(t + 1) = arg max
Q

p(Q(t + 1)|Q(t),X(t),X(t + 1)) (7.4)

This problem can be approximated by

Q∗(t + 1) = arg max
Q

p(X(t + 1)|Q(t),X(t) : {D1, D2, D3, D4}) (7.5)

Obviously, this is a formidable searching problem. To illustrate this, we assume the size of each

search area of Di is N . The complexity of the exhausted search for this problem is O(4N ).
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However, since the four margins of the quadrangle are sequentially connected, this problem can

be solved by the dynamic programming technique.

Q∗(t + 1) = arg max
Q

4∑

i=1

p(Xi(t + 1)|Xi(t), Qi(t) : Di(qi(t), q∗i−1(t))) (7.6)

= arg max
{q1,q2,q3,q4}

4∑

i=1

p(Xi(t + 1)|Xi(t), qi(t), q∗i−1(t)) (7.7)

It is illustrated in Figure 7.7:
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Figure 7.7 Tracking a quadrangle by dynamic programming technique.

In our implementation, the search region for each corner point is approximated by a line

segment, instead of a region. This is equivalent to searching for side lines. Corner points are

then computed from the intersections of these lines.

Criterion. As mentioned earlier, the appearance of each side line of the quadrangle is mod-

eled by x that contains both the gradient information and the color information. Maximizing

the probability in Equation (7.7) implies finding a pair of line segments between t and t+1 such

that their appearances are closest. This can be done by minimizing the relative entropy between

their distributions. Assume Gaussian distribution of X and Y , then the relative entropy:

D(X||Y ) =
∫

p(u) lg
px(u)
py(u)

du = E[lg
px(u)
py(u)

] (7.8)

=
d

2
lg
|Σy|
|Σx| −

1
2

+
1
2
E[(x− µy)′Σ−1

y (x− µy)] (7.9)

=
d

2
lg
|Σy|
|Σx| −

1
2

+
|Σy|
2|Σx| +

1
2
(µx − µy)′Σ−1

y (µx − µy) (7.10)
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Thus, we have a symmetric distance metric:

D(X,Y ) = 2(D(X||Y +) + D(Y ||X)) (7.11)

=
|Σy|
|Σx| +

|Σx|
|Σy| + (µx − µy)′(Σ−1

x + Σ−1
y )(µx − µy)− 2 (7.12)

By this means, we can find the best-matched edge at time t + 1 by

e∗i (t + 1) = arg min
{qi,qi−1}

D(X(t), X(t + 1) : {qi, qi−1}) (7.13)

7.2.3 Tracking a fingertip

The section presents the method of determining the exact tip of a tip pointer by conic

fitting for tip pointer tracking, and the method of reinitialization the tracking by a background

subtraction technique.

7.2.3.1 Fingertip representation

A tip pointer, such as a fingertip, can be represented by a conic, say,

a1x
2 + a2y

2 + a3xy + a4x + a5y + 1 = 0 (7.14)

If we know a set of positions {(x1, y1), · · · , (xn, yn)} of edge pixels, we can fit a conic on such

data by LSE. Explicitly, we have



x2
1 y2

1 x1y1 x1 y1

...

x2
n y2

n xnyn xn yn







a1

...

a5


 =




−1
...

−1


 (7.15)

Concisely, this equation can be written as Ma = b. So, the LSE solution of x is given by

a∗ = (MTM)−1MTb (7.16)

The conic fitting is be shown in Figure 7.8.

7.2.3.2 Tracking the tip pointer

The tracking of a tip pointer is quite intuitive and cost-efficient. Assume the position of

the tip at time t is p(t). The Kalman filtering technique can be employed to predict the tip
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Figure 7.8 Fingertip detection by conic fitting.

position p̄(t+1) at time t = 1. In a small window, say 30× 30, we identify as many edge pixels

as possible that probably belong to the edge of the tip by thresholding the gradient and taking

advantage of the color of the previous tracked tip edge. After that, we can fit a conic to these

edge pixels and solve the exact tip p(t + 1) for time t + 1.

7.2.3.3 Maintaining background and re-initialization

To make the system more robust and easy-to-use, the scheme of automatic tracking initial-

ization and tracking recovery should be embedded in the system. Here, we developed a means

for such a reinitialization task by a dynamic background subtraction technique.

Assume we have already registered the panel at the beginning of the application, i.e., the

position of the panel Q(0) at time 0 is known. Since at time t, the system can track the panel

position Q(t), the homography H(t) between Q(0) and Q(t) can be easily calculated. Through

the homography H(t), the pixels Pt(0) in the panel at time 0 are mapped to the panel at time

t as Pb(t) by

Pb(t) = H(t)Pt(0)

Here, Pb(t) is the background of time t. Obviously, the foreground Pf (t) at time t can be

calculated by subtracting the bacground Pb(t) from current image P (t), i.e.,

Pf (t) = P (t)− Pb(t) = P (t)−H(t)Pt(0) (7.17)

Figure 7.9 shows the basic idea of our approach.
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Figure 7.9 The foreground, i.e., the hand, can be segmented out from the background, since
the current position of the panel is tracked and a background template is maintained.

7.2.4 Action detection and recognition

This section presents the techniques of action detection and recognition. The virtual panel

system has two clicking modes (clicking mode and dragging mode), and two mouse types (ab-

solute type and relative type).

7.2.4.1 Two mouse clicking modes

To enable our system clicking and dragging, we have two modes in virtual mouse: mode

I (clicking mode) and mode II (dragging mode), as shown in Figure 7.10. In our current

implementation, clicking/pressing is simulated by holding the tip pointer for a while, say 1
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Figure 7.10 Simulating clicking (mode I) and dragging (mode II).
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A state variable S maintains two states, UP and DN, to simulate the two natural state of

a button. At the beginning, the variable S is UP. For the clicking mode (mode I), when the

system detects that the tip pointer has been in a fixed place for 1 second (or other amount of

time prespecified), the state variable S is set to UP; otherwise, S keeps UP. After 0.1 second,

the state variable S will be automatically set to UP to simulate button release. When the state

change from UP to DN is detected, a clicking action is detected.

Obviously, the clicking mode (mode I) has very limited ability to drag, since the release

is automatic. To simulate dragging, the dragging mode (mode II) uses another state variable

D to memorize the flip of clicking. If the previous D-state is D UP, then the current click is

D DN; otherwise, the current click is D UP. When the D-state change from D UP to D DN

is detected, a pressing action is detected; when the D-state change from D DN to D UP is

detected, a releasing action is detected. By this means, we facilitate the system the ability of

dragging.

7.2.4.2 Two mouse motion types

The virtual panel system can simulate two mouse types: absolute type and relative type. In

the absolute type, the panel will be mapped to the whole remote display, such that each point

in the panel will be mapped to the corresponding point in the display. As we discussed before,

this type needs very accurate tracking, since a small tracking error of the panel and tip pointer

will be magnified. However, the absolute type is more intuitive.

The other type is the relative type, which will be much less sensitive to the tracking results,

since the cursor is controlled by the relative motion of the tip pointer. Assume the motion

direction of tip pointer is dp(t) at time t. The moving direction of the cursor will be dd(t) =

H(t)dp(t). The amount movement of the cursor will be determined by the velocity of the tip

pointer, i.e, ∆d = α||vp||.
There could be many other alternatives of relative mouse movements. For an instance, the

panel can be simply mapped to a window area centered at the previous cursor position on the

remote display. In this method, the center of the panel corresponds to the previous cursor

position. When the tip pointer moves from center to left, the cursor will move left. Obviously,

the window area could be smaller than the panel in the image, such that the tracking error can

even be minimized.
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The relative type brings much smooth movement of the cursor due to the nonmagnification

of the tracking error. However, compared to the absolute type, the relative type is less intuitive.

7.2.5 Demos

Based on the virtual panel system, several applications are made to demonstrate the capacity

of the system. One of the applications shows that a remote display can be freely and accurately

controlled. One can use his finger to draw a picture in another demo. Even more, one can input

text without using any keyboards in the third demo.

7.2.5.1 Calculator controlling

This application demonstrates the accuracy and stability of the virtual panel system. The

calculator, with around 30 buttons, takes a very small part area of the display. In this demo,

the user can freely use his fingertip to click any buttons or menus of the calculator, as shown

in Figure 7.11. The tracking error is less than 1 pixel, and the motion of the cursor is very

smooth.

Figure 7.11 Controlling a calculator.

7.2.5.2 Finger painting

This application demonstrates different clicking modes. In Paint, a Windows application,

user can use his finger to select any tools and draw anything (see Figure 7.12). Our usability

study shows that users are quite adaptive to this system. After several minutes of training, all

users can freely use their fingers to draw a picture and control the remote display.
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Figure 7.12 Finger painting.

7.2.5.3 Virtual keyboard

This application demonstrates that the physical keyboard can be replaced by a printed

virtual keyboard in the virtual panel system. We print a keyboard pattern on the panel, which

is shown in Figure 7.13. When the user points to any of the keys on the panel, a key-down

message will be sent to the operating system, such that the current active application will

receive that key. For example, we can use Notepad to receive text inputted by the user.
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Figure 7.13 Virtual keyboard.

In our current implementation, users only use one of their fingers. The typing speed is very

slow. We are not claiming that we can get rid of the physical keyboard. However, our system

could be a very promising alternative when the physical keyboard is not available under some

circumstances.

7.2.6 Extensions and future work

We developed a prototype vision-based gesture interface system, virtual panel, which is

capable of performing accurate control of remote display and simulating mouse and keyboard

input. The virtual panel system employs an arbitrary quadrangle-shaped planar object as a

panel, which can be viewed as a display or a keyboard. Users can use their fingers or other

137



tip pointers to simulate a cursor pointer and issue clicking/pressing instructions. The system

can robustly and accurately track the panel and the tip pointer. After the action is detected,

various events can be generated and sent to the operating system. Such vision-based gesture

interface can achieve more natural and intuitive interaction between humans and computers.

Three applications have been described: controlling a calculator, painting with fingers, and

inputting text with a virtual keyboard.

The virtual panel system leaves a lot of room for extensions and improvements in various

aspects, especially in action recognition. In our current implementation, action is triggered

when the tip point stays immobile for a short duration. We are investigating more natural

ways to do that, for example, by combining hand gesture recognition.

7.3 More Potential Applications

Many potential application systems can be developed given the capacity of our gesture

interface.

• Navigating 3-D VEs: Since the hand can be robustly and efficiently tracked, the cursor

pointer can be replaced by the natural hand. Some applications, such as map navigation

and BattleField navigation, can be easily developed. Since our color-based hand local-

ization algorithm can be easily extended to locate two hands simultaneously, and to 3-D

localization by two cameras, a full 6 DOF pose parameters can be obtained by two hands

because the 3-D position of two hands determines a 3-D line, which in turn determines a

plane. Such technique is being developed in the EVL lab of UI-Chicago.

• Switching commanding modes: In many applications, different commanding modes are

needed. For example, the two modes of navigating and selecting should be differentiated.

Previously, such switching is achieved by speech recognition. Our gesture interface of-

fers an alternative way of switching by recognizing different hand postures. Combining

this visual recognition and speech recognition would largely enhance the robustness of

command switching.

• Controlling displays: When a speaker makes a PowerPoint presentation in a large confer-

ence room, it would be inconvenient to control the slides by clicking a mouse. It would
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be better if users could use their hands to do this. In fact, our gesture interface can be

integrated into PowerPoint presentations.

• Manipulating virtual objects: If the articulated motion algorithm can be efficiently imple-

mented and run on nearly real-time, we can use the hand as a high DOF input tool. Our

research supplies an initial study in this direction.
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CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

The role and the functionality of computers have been changing since the boom in computer

hardware technology. The computer is no longer just a machine for scientific computation, no

longer just a machine for saving labor for trivial daily routines. It is an indispensable part of the

information age for information acquisition, storage, analysis, organization, and distribution.

It requires different levels of intelligence. Cutting-edge speech technology has achieved a big

step toward making computers less dumb and deaf. To some extent, computers are now able

to “listen” and “speak.” Meanwhile, we also need to make computers “see” and “think.”

Specifically, to have a more natural and more immersive interaction with human beings,

computers need to be able to visually perceive and understand human activities. For exam-

ple, instead of relying on devices such as a mouse, computers could understand the meanings

conveyed through human body movements or gestures. However, we are still far from this

goal. The main challenges lie in the richness of visual inputs and the large variations of hu-

man movements. To achieve immersive and intelligent human-computer interaction, we need

to investigate two problems: visual motion capturing and visual learning.

8.1 Summary

This dissertation addressed several aspects of these two difficult problems by taking the

human hand and hand gestures as a case study, because the hand is an important part of human

communication. Three important problems regarding visual motion capturing were presented

in this dissertation: nonstationary color tracking in Chapter 3, integration of multiple cues for

robust tracking in Chapter 4, and capturing hand articulation in Chapter 5. The techniques
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developed in those chapters could be easily extended to many other visual motion capturing

tasks.

It is noticeable that many learning problems in vision-based interaction share a common

difficulty, i.e., the lack of supervised information. These learning problems range from invariant

object recognition to color model adaptation, from feature selection to sensor fusion. Chapter 6

proposed a study of a new learning paradigm, self-supervised learning, which employs both

supervised and unsupervised training data sets. Many visual learning problems could be unified

into this learning paradigm.

According to the source of labeled data set L and unlabeled data set U , i.e., L and U

from the same or different pdf, and feature modalities, i.e., unimodal or multimodal, the self-

supervised learning has four typical learning problems: transduction, co-transduction, model

transduction and co-inferencing, as shown in Table 8.1.

Table 8.1 Four typical problems in self-supervised learning.
L/U source From the same pdf From different pdf

Unimodal Transduction Model transduction

Multimodal Co-transduction Co-inferencing

These four typical learning problems could be illustrated in Figure 8.1(a)-(d), respectively.

M j
t means the learning model of the jth modality at time t. Lt and Ut represent labeled and

unlabeled data at time t.

The transduction problem is the fundamental learning task in self-supervised learning. It

assumes that both labeled and unlabeled training data L and U are drawn from the same

distribution. The task is to learn a classifier based on both L and U . The significance of

investigating transduction is that it could save the tedious work of labeling a huge training

data set. When given a partially labeled training set, we expect the transduction algorithm to

propagate the labeling to those unlabeled data. Integrating discriminant analysis and the EM

algorithm, the D-EM algorithm in Chapter 6 combines supervised and unsupervised learning.

An example is view-independent hand posture recognition that requires the recognition of

specific hand postures from different view directions. Instead of collecting the images covering

nearly all possible viewpoints, we may only need to label a fraction of images under several
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Figure 8.1 Illustration of the four typical problems of self-supervised learning: (a) transduc-
tion, (b) model transduction, (c) co-transduction, and (d) co-inferencing.

typical view directions. Another good example is content-based image retrieval (CBIR). These

two problems have been studied in Chapter 6.

The model transduction problem does not assume L and U come from the same distribution,

but assume a known relationship between these two distributions, which introduces “dynamics”

into self-supervised learning. The learning task is to transduce an old model to a new one.

Many tasks in vision-based interaction could be represented by model transduction. It is easy

to see that an automatic adaptation of face or head models is a good example. An even more

interesting problem is the color model adaptation in nonstationary environments. Chapter 3

investigated color model transduction for non-stationary color tracking.

The co-transduction problem takes multimodal training data and assumes L and U from

the same distribution. The significance of this problem is that it could fuse multiple modalities

and reduce the computational complexity. A simple example comes from the CBIR problem.

Since it is difficult to represent a concept, a large number of features should be fed to the

learner. When considering different modalities such as color, texture, and structure layout of

images, the retrieval problem could become easier. Although this dissertation did not study

co-transduction, many ideas in the other three could be easily extended to this learning problem.
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The co-inferencing problem is the most complicated of these four problems. It takes mul-

timodal training data and assumes L and U from different distributions. It is a combination

of model transduction and co-transduction. The learning task is to transduce an old model to

a new model based on partially labeled multimodal training data. Chapter 4 investigated this

problem by taking the example of integrating multiple cues for robust visual tracking. The

most important conclusion is that different modalities present a co-inferencing phenomenon,

i.e., the model of anyone of the modalities is learned from all the other modalities iteratively.

Mathematically, co-inferencing could be described by a set of fixed point equations. Chapter 4

also gives an implementation of co-inferencing for robust tracking based on sequential Monte

Carlo techniques.

This dissertation also presented two interesting prototypes of vision-based gesture interface.

One of them allows users to play a simple interactive video game against the computer, and the

other allows users to control a remote display by just using their fingers and a piece of paper.

8.2 Future Research Directions

The research of combining labeled and unlabeled training data is still in its infancy. More

research effort should be made in this area, not only for the theoretical foundation, but also for

more realistic applications. Many interesting and important issues in self-supervised learning

should be investigated further.

In Chapter 6, we proposed a novel learning algorithm named the D-EM algorithm. We

notice that there is lack of analysis of this algorithm. We should study its convergence property

further. In our preliminary experiments, we found that D-EM may not converge, and one of the

classes may dominate the classification after several E-D-M iterations. It seems that the labeled

data affects the convergence. The necessary condition of convergence should be obtained in our

future study. It is also good to study the convergence rate. We should also study the stability

of D-EM in the future.

The role of unlabeled data in self-supervised learning is still unclear. We only give a very

intuitive explanation. When the unlabeled set helps an hurts is still a mystery. Although

self-supervised learning captures some human cognition processes to some extent, the human
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cognition model is still unknown, not only for psychology, but also for AI. We expect the model

of self-supervised transduction to be a strong tool for active learning and incremental learning.

The investigation of self-supervised learning in this dissertation mainly concentrates on

classification problems. It would be very useful to extend our approach to regression problems.

In fact, we have many such regression problems in vision applications. Head pose estimation is

a very good example, in which we need to regress 3-D head orientations given head observation

and a 3-D head model. It is very expensive and time-consuming to collect a large annotated

training data set for this problem. We should consider using fewer annotated samples combined

with a large set of un-annotated samples, to make a rough 3-D head model [77, 146].

In the proposed vision-based gesture interfaces, we do not focus on temporal gesture mod-

eling and recognition. One of the reasons for this is that we concentrate on hand and fingers,

rather than the hand global motion. Generally, temporal gestures do not make much sense

in hand and finger motion, since the most meaningful gestures can be represented by a large

number of hand postures. However, temporal gestures are useful in many other interesting

applications.

Finally, an important issue in recognition of temporal gestures is motion modeling. The

motion models can be learned from training samples. Different modeling approaches, such as

hidden Markov model (HMM), dynamic time warping (DTW), finite state machine (FSM), ex-

tended Kalman filtering (EKF), dynamic Bayesian networks (DBN) and dynamic self-organizing

map (DSOM), should be investigated in the future. Basically, self-supervised learning tech-

niques can also be applied to this problem, since the motion modeling problem is essentially a

regression problem.

The techniques developed in this dissertation are general enough to be extended to many

other research topics. The author hopes that this study could motive more and more investi-

gation of self-supervised learning and serve as an important step toward realizing the dream of

making computers “see” and “think.”
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APPENDIX A

DERIVATION OF FIXED POINT EQUATIONS

This appendix presents some details for the variational analysis of the factorized graphical

model and the derivation of the fixed point equation described in Chapter 4. Our purpose is

to illustrate the so-called co-inference phenomenon that presents in the interaction of different

modalities. In the visual tracking scenario, the state variables are continuous, which makes it

very difficult to analyze the graphical model. Here, the investigation of the case that takes

discrete states is described.

To simplify the analysis, we assume the state Xm
t a multinomial random variable which

takes one of K discrete states, i.e., Xm
t ∈ {1, . . . , K}. Here, we represent this random variable

by a K × 1 vector. Only one element of the vector will be 1 while others are 0, which means

that the state variable is in one of these discrete states.

Xm
t =




xm
t,1

...

xm
t,K




Such a setting could be used to approximate a continuous case in the tracking scenario. The

system dynamics will be approximated by a K ×K transition matrix.

P (Xt|Zt, φ) =
1
Z

exp{−H(Xt, Zt)} (A.1)

where Z is a constant to normalize the probabilities, and where

H(Xt, Zt) =
1
2

T∑

t=1

(Zt −
M∑

m=1

WmXm
t )′C−1(Zt −

M∑

m=1

WmXm
t )

−
M∑

m=1

Xm
1
′ log πm −

T∑

t=2

M∑

m=1

Xm
t
′(log Pm)Xm

t−1
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where Wm is an observation matrix and C is the covariance matrix, since here we also assume

a linear observation model to ease the derivation. Such a linear observation assumption may

not be true for visual tracking, but we take it as an approximation to ease the analysis.

On the other hand, we would write the inference probability of the graphical model under

structured variational approximation:

Q(Xm
1 |θ) =

K∏

k=1

(hm
1,kπ

m
k )xm

1,k

Q(Xm
t |Xm

t−1, θ) =
K∏

k=1


hm

t,k

K∑

j=1

Pm
kjX

m
t−1,j




xm
t,k

(A.2)

=
K∏

k=1


hm

t,k

K∑

j=1

(Pm
kj )

xm
t−1,j




xm
t,k

(A.3)

And similarly, we have

Q(Xt|θ) =
1

ZQ
exp{−HQ(Xt)}

where

HQ(Xt) = −
M∑

m=1

Xm
1
′ log πm −

T∑

t=2

M∑

m=1

Xm
t
′(log Pm)Xm

t−1 −
T∑

t=1

M∑

m=1

Xm
t
′ log hm

t

Thus, the KL divergence can be written as

KL(Q||P ) = 〈H〉 − 〈HQ〉 − log ZQ + log Z

=
T∑

t=1

M∑

m=1

〈Xm
t 〉 log hm

t +
1
2

T∑

t=1

[
Z ′tC

−1Zt − 2
M∑

m=1

Z′tC
−1Wm〈Xm

t 〉

+
M∑

m=1

M∑

n6=m

tr
{
Wm′C−1Wn〈Xn

t 〉〈Xm
t
′〉}

+
M∑

m=1

tr
{
Wm′C−1Wmdiag〈Xm

t 〉
}
]
− log ZQ + log Z

Then, to minimize the KL divergence of such two distributions, we can take the derivative

with respect to log(hn
t ):

∂KL(Q||P )
∂ log hn

t

= 〈Xn
t 〉+

T∑

t=1

M∑

m=1



log hm

t −Wm′C−1Zt +
M∑

k 6=m

Wm′C−1W k〈Xk
t 〉

+
1
2
∆m

}
∂〈Xm

t 〉
∂ log hn

t

− 〈Xn
t 〉

146



Setting the derivatives to zeros, we have

log hm
t −Wm′C−1Zt +

M∑

k 6=m

Wm′C−1W k〈Xk
t 〉+

1
2
∆m = 0 (A.4)

Therefore, we end up with a set of fixed point equations:

h̃m
t = exp



Wm′C−1


Zt −

M∑

k 6=m

W k〈Xk
t 〉


− 1

2
∆m





Since 〈Xm
t 〉 = E [Xm

t |θ, Zt], so, the set of fixed point equations can be written as:

h̃m
t = exp



Wm′C−1


Zt −

M∑

k 6=m

W kE [Xm
t |θ, Zt]


− 1

2
∆m



 (A.5)

To see them clearly, we could represent this set of fixed point equation by

h̃m
t = g(Zt, {E[Xn

t |Zn
t , hn] : ∀n 6= m}) (A.6)

where g(·, ·) is a function. Obviously, this equation is the same as Equation (4.3) in Section 4.3.
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APPENDIX B

SOLVING ROTATION MATRIX AND DEPTH

This appendix describes the details of solving the rotation matrix R and the depth t3 from

the matrix B. After we solve the motion based on the factorization method, M contains only

B if we assume orthographic projection. In the following, we show how to estimate the rotation

R and the depth translation t3 from B under scaled orthographic projection. It is clear that

R =




t3B11 t3B12 R13

t3B21 t3B22 R23

R31 R32 R33




From the property RTR = I, we obtain

t23b
2
1 + R2

31 = 1 with b2
1 = B2

11 + B2
21 (B.1)

t23b
2
2 + R2

32 = 1 with b2
2 = B2

12 + B2
22 (B.2)

t23d + R31R32 = 0 with d = B11B12 + B21B22 (B.3)

From Equation B.1, we have

t23 =
1
b2
1

(1−R2
31) (B.4)

Then, from Equation B.3, we obtain

R32 =
d

b2
1

R31 − d

b2
1

1
R31

(B.5)

Substitute them into Equation B.2, and we get

(b2
1b

2
2 − d2)R4

31 + (2d2 − b2
1b

2
2 + b4

1)R
2
31 − d2 = 0 (B.6)

We may have at most four solutions, but usually only two because R2
31 should be always positive.

Even the two solutions can be possibly resolved by checking whether the resulting matrix is a

rotation matrix or a reflection (the determinant is equal to −1).
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[137] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. Smola, and K.-R. Müller, “Fisher discrim-
inant analysis with kernels,” in IEEE workshop on Neural Networks for Signal Proceesing,
1999.
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