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ABSTRACT

Multiple Motion Analysis for Intelligent Video Surveillance

Ting Yu

With the proliferation of camera sensors deployed world widely, video surveillance

systems are gradually finding their way into our daily lives. A direct consequence of

these technological advancements is the increased demand for intelligent video analysis

and understanding techniques.

This dissertation concentrates on the developments of efficient and effective multiple

motion analysis techniques that allow automated tracking of multiple targets, which is

arguably the most challenging problem and essential component of any intelligent video

surveillance systems.

Besides sharing the common challenges faced by visual tracking of single target, includ-

ing large appearance variations, complex object motions, successful tracking of multiple

targets’ motions are also confronted by the tremendous difficulties from the theoretical

and practical aspects of the problems, such as target occlusions, unknown number of

targets, ambiguities induced by multiple target-tracker associations, high computational

demanding, and difficulty of training a target detector.
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This dissertation presents several effective and computationally efficient techniques to

addressing these challenges: a dynamic Bayesian network formulation for the multiple

target tracking with explicit occlusion reasoning; a decentralized framework to multiple

target tracking based on Markov network that handles the variable number of targets

and copes with the tracker coalescence problem with close to linear complexity; a novel

two-layer statistical field model to characterize the large shape variability and partial

occlusions for nonrigid target detections, especially pedestrian detections; a component-

based appearance tracker based on support vector machines to accommodate the large

object appearance variations with the extra appealing capacity of automatically select-

ing trustworthy components while down-weighting the unreliable occluded components; a

novel differential tracking approach based on a spatial-appearance model (SAM) formu-

lation to combine the local appearances variations and global spatial structures enabling

the continuous tracking of non-rigid objects that exhibit dramatic appearance deforma-

tions, large object scale changes and partial occlusions. Extensive experiments and very

encouraging results on both the synthetic and real-world data verified the effectiveness

and efficiency of the proposed methods.
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CHAPTER 1

Introduction

1.1. Background

Over the past few decades, the rapid advancement of information technology has lead

to significant improvements of the computational capacities of processing hardware with

relatively low cost. The development of sensor technology also made low power and on-

chip computing-based video cameras widely available. By connecting the cameras to the

inexpensive but powerful computing hardware, it now becomes feasible and convenient

to set up a camera-computer system to perform perceptual-based intelligent human com-

puter interactions, such as face/human detection, user tracking, gesture recognition, and

behavior analysis [141,101].

In addition, the combination of the sensor technology with the communication network

research also enables a new promising research direction on the large scale wired/wireless

camera networks, which targets on the potential applications of large area video surveil-

lance [18,22,23,34,72], environment monitoring [91,99], and possible medicare applications

such as tele-monitoring of elderly people for assistance in safety [150].

Compared with other sensing modalities, such as radar, infrared (IR) or sonar, camera

sensor provides the unique visualization properties, making itself especially appealing to

modern surveillance applications. On one hand, video data can be directly interpreted by

humans and offer relatively high-resolution measurements that allow the access to many
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details about the environment. On the other hand, the side effect of high sensor resolution

implies large quantities of video data that require tedious analysis in order to find out

specific information of interest.

The relatively easy access to large volume of visual data, captured by the camera sen-

sors and recorded in the storage devices, has lead to an increased demand for intelligent

software solutions to automatic video understanding, the essential problems of computer

vision research. Intelligent video surveillance embeds a range of image understanding tech-

niques, which automate the analysis of video data in order to extract various semantical

level events in accordance with human knowledge.

Depending on the pursued semantical levels, we may roughly categorize the utilized

computer vision techniques into the following groups:

• Background subtraction: In the lowest semantical level, pixel-based classifica-

tion may be taken to extract the interesting regions and remove unwanted back-

grounds, which generally achieves some attention mechanism, similar to biological

vision system, to allow the later more computationally intensive algorithms to

focus on more likely regions [38,45,57,89,109,120,125,132].

• Object detection and tracking: In the middle level, one aims to detect and count

some specific objects of interest, like humans or vehicles [129, 98, 47, 114, 88, 75,

29, 137, 139, 133]. And more elaborate applications involve analyzing the video

sequences, identifying multiple moving regions induced by the interesting objects,

and then tracking all these objects during their presences within the field of views

of the cameras [6, 5, 11,55,107,63,86,123,160,95,73,151].
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• Action, activity and event recognition: Based on the extracted relatively low-

level knowledge, the more sophisticated semantical understanding of the videos

focuses on recognizing object actions, interpreting the behaviors and activities of

each object or object groups [15,65,87,119,16,81,161,92,143,13,31,36,117,149].

The higher semantical level understanding of the video relies on the feasible solutions

to extract the lower level knowledge. For example, object level identifications and motion

trajectories computed from object detection and tracking, serving as the middle level

semantical features, are fed to the event modelling, classification and mining procedures

to facilitate the possibilities of high level semantic reasoning. Though the problem of pixel

level classification to identify the interesting regions has been solved in some sense, the

existing solutions to the middle and high level understanding of the visual data are still

far from satisfactions.

With the recent advancements of numerous literatures devoting into the visual tracking

research, it might be able to reasonably claim that there are feasible solutions to addressing

the robust tracking of single target, however, simultaneously analyzing multiple targets’

motions and tracking them in video stay as one of the most challenging problems in

computer vision.

Multiple targets’ motions, quite often observable from the real data, prevent a simple

solution of instantiating multiple independent single target trackers to solve the problem,

because both the number of targets that need to be tracked are unknown beforehand, and

there are potential ambiguities introduced by multiple target-tracker associations. Besides

sharing the common challenges faced by visual tracking of single target, successful tracking

of multiple targets’ motions are thus confronted by the tremendous difficulties from the
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theoretical and practical aspects of the problems, which in generally can be summarized

as follows:

• Target appearance variations: Visual appearance, as the most important cue of

characterizing the target to enable a target tracker, render numerous variations

due to both the intrinsic and extrinsic reasons. For example, the object appear-

ance can look quite different when the object is showing large shape deformation

and pose changes. In addition, the environmental factors, such as illumination

changes, cluttered backgrounds, all bring huge variations to the object appear-

ance.

• Target occlusion: The targets may be occluded by other targets of interest or

recurrent sources that are not of interest (such as background clutter). When

there are multiple targets in the scene, some of them may occlude one another

due to their spatial proximities and relative distances to the camera. Such a prob-

lem becomes even more severe, when targets, such as people in the surveillance

camera, move in a group, where the occlusion is often persistent.

• Computational demanding: The heavy computations are mainly due to the large

number of targets that need to be tracked simultaneously, where we will show

in later chapters, the required computational cost for the existing solutions are

mainly at the level of exponential or combinatorial complexity with regard to the

number of targets.

• Difficulty of training target detectors: Unlike the radar tracking scenario [6,11,94,

162], where a signal processing component is usually available to facilitate the col-

lections of target detections, thus making multiple target tracking problem better
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defined. Multiple target tracking from video is also encountered by the general

difficulty of training a visual target detector, which itself, if not impossible, is a

quite challenging problem.

During the visual tracking of a single target, the large uncertainties of the visual

appearances significantly complicate the measurement models and the matching measures.

This difficulty is also shared in object detection and recognition, and has been studied

extensively. To address this problem in the context of tracking, we should not let the

handling of this problem to jeopardize the requirement of computational efficiency of the

tracker.

In general, when a target is partially or completely occluded, its visual appearance

would dramatically deviate from its appearance template as we set for tracking. Thus,

occlusion becomes a special and difficult problem for appearance-based tracking. In terms

of multiple target tracking using appearances, explicit handling of occlusion is especially

indispensable for tracking, since occlusion would probably occur when different targets

interact. The ignorance of the occlusion problems in multiple target tracking will usually

result in the tracking failure, where the trackers may lose tracking some of the occluded

targets.

The high computational cost of the existing solutions to the multiple target tracking

problem is mainly due to the adoption of a centralized methodology by considering a

joint data association, which enumerates all the possible associations between targets and

observations. Various methods along this line have been developed. The essence of their

methods is the introduction of the joint state space representation, which concatenates

together all the state spaces of the individual targets such that they can be jointly inferred
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based on the exhaustive data association enumerations. However, due to the exploration of

a high-dimensional joint state space, these methods are generally computational intensive.

For example, the multiple hypothesis tracker (MHT) [108,28,55] and the joint probabilistic

data association filter (JPDAF) [43, 6, 107, 17] have to evaluate all possible associations

that suffer from the combinatorial complexity, and the sampling-based methods [60,63,86,

123,138,160,32,73] are confronted by the exponential demand of the increase of particles.

The demands for a robust human detector, as our primary interest is in the application

to intelligent video surveillance, are also confronted by many difficulties. Although the

research of object detection has greatly moved forward with the success of face detection,

these developed methods for face detection may not apply to human detection. The visual

appearances of the human present tremendous variabilities while lacking apparent visual

invariants, as the diversified clothing and the body articulation may significantly change

the image of a person.

1.2. Motivation

The listed challenges and discussions in the previous section motivate us to address

these critical problems before we can move to the higher semantical level understanding

of the video content. More specifically:

• We would like to deal with the explicit occlusion reasoning under the multiple

target tracking scenario, where the occlusion relationships (i.e. who is occluding

whom) between the tracked targets will be explicitly characterized. However,

we will show later that a necessary centralized methodology has to be taken

to achieve this goal, which implies that the more accurate descriptions about
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the multiple target motions are brought out with the trade-off cost of higher

computational demands.

• Such a centralized solution might be fine to a powerful processor. However, they

are not appropriate for our previously mentioned emerging application of wire-

less camera networks. In this application setup, there are a large number of

camera units that have the functionality of sensing, computing and communi-

cating. However, these units are power-limited to prevent much computation

and communication [77]. To make good use of such sensor networks for target

tracking, complex computation must be distributed into the network, since once

a certain unit takes charge of sensing, its computational load on target tracking

needs to be migrated to other idle units. Although this research is being carried

out at the computer architecture level, it is more desirable to find a decentralized

scheme at the algorithm-level for efficient tracking of multiple targets. When it

is available, it will lead to the essential parallelization and distributed comput-

ing. This can be a very promising and interesting application setup that strongly

motivates us to search for a decentralized formulation to addressing the multiple

target tracking problem.

• Although it may be true that the state-of-the-art multiple target tracking algo-

rithms can work through bootstrapping without the help of the target detectors,

the practical deployment of a a successful multiple target tracking algorithm, such

as multiple pedestrian tracking for intelligent video surveillance in our consider-

ation, may be largely benefited from the availability of a robust object detection

component. The existence of a reliable object detector is able to help collect the
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valid target observations from video frames. It can not only reduce the number

of wasted hypothesis due to inaccurate dynamics model of the tracker, but also

provide some informative clues to guide the trackers to searching around more

likely areas where the targets may move. The benefits, which can be obtained

from the robust human detection research, also stimulate us to investigate along

this direction.

• The solution to multiple target tracking problem does not like a simple algorithm

of running multiple independent trackers, however, an effective and efficient single

target tracker, which is capable of handling the tremendous appearance variations

and recovering any complex object motions, can obviously be greatly beneficial to

the efficacy and robustness of any multiple target tracking algorithms. Therefore,

in view of constructing a comprehensive multiple target tracking framework, a

deep investigation on robust single target tracking is also a must.

1.3. Organization

In this dissertation, several novel approaches to addressing the critical problems, such

as multiple target motion analysis, human detections, and robust single target tracking

will be presented, which serve as the basis for our targeting application of intelligent video

surveillance. More specifically, the dissertation is organized as follows:

• Chapter 2 presents a centralized approach based on a dynamic Bayesian network

(DBN) formulation to tackle the multiple target tracking problem with explicit

occlusion handling, where the term “centralized” implies that a joint state space

representation is adopted to concatenate all target states into a joint inference.
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In Section 2.2, we firstly briefly review the previous solutions to appearance

tracking of multiple targets. Section 2.3 presents the dynamic Bayesian network

for occlusion process. The sequential Monte Carlo strategy is described in Sec-

tion 2.4 to serve as the inference engine of the underlying probabilistic graphical

model. We further present a multiple view appearance model in Section 2.5 to

accommodate the target appearance variations due to object pose changes. The

generative model that combines the occlusion model and multiple view switching

is described in Section 2.5. Experiments are given in Section 2.6 and discussions

are given in Section 2.7.

• Chapter 3 presents a novel decentralized and linear complexity framework for

visual tracking of multiple targets, with simultaneous coalescence problem han-

dling. In addition, we relax the general assumption that the number of targets be-

ing tracked is given, where our solution can simultaneously track variable number

of targets. Section 3.3 presents our decentralized multiple target tracking frame-

work that is based on Markov network formulation in details. The autonomous

trackers with self-evaluation capacity are introduced in Section 3.4, which thus

enables the framework to be able to correctly estimate the number of targets

moving in the video scene at any time instant, and then track these variable

number of targets. Section 3.5 describes our variational analysis of the proposed

Markov networks, where loopy structure may present. Based on the mean field

fixed point equations derived from the variational analysis, Section 3.6 introduces

a sequential Monte Carlo implementation to approximate the variational infer-

ence to the loopy Markov network. An importance sampling mechanism is also
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presented to effectively combine the available target detectors with the trackers.

Extensive experiments on various synthetic and real video sequences are reported

in Section 3.7. Finally, Section 3.8 summarizes the chapter and makes a number

of suggestions for further improvements.

• Chapter 4 presents a novel object detection framework based on a two-layer sta-

tistical field model to effectively capture the large shape variability of deformable

object, especially humans. After a brief description of the related work in Sec-

tion 4.2, we describe the proposed two-layer field model in Section 4.3. The

probabilistic variational analysis of this model is given in Section 4.4, and the

learning algorithm is presented in Section 4.5. Section 4.6 describes our methods

for pedestrian detection and tracking, and our extensive results are reported in

Section 4.7. The chapter concludes in Section 4.8.

• Chapter 5 describes one of our proposed novel approaches to dealing with large

object appearance variations, with the aiming of developing a robust single target

tracker. Motivated by the factor that larger image regions incur more variabilities,

while smaller regions are more likely to be manageable, this chapter pursues

a robust appearance tracking idea by combining the previous support vector

tracking algorithm with a component-based object representation. Section 5.2

provides a brief overview of the original SVT method. Section 5.3 describes the

formulation and solution of the proposed component SVT algorithm. The further

extension of the model to handling severe occlusions is discussed in Section 5.4.

Section 5.5 then shows experimental results. Conclusions and discussions are

made in Section 5.6.
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• Chapter 6 devotes an additional chapter into the problem of robust single tar-

get tracking, where a novel differential tracking approach based on a spatial-

appearance model (SAM) that combines local object appearances variations and

global spatial structures is proposed. The SAM is in the form of a Gaussian

mixture model, as described in Section 6.2. Section 6.3 presents the designed

maximum-likelihood estimation for tracking, which is solved by a variant of

Expectation-Maximization (EM) algorithm. Section 6.4 shows the exciting re-

sults of the proposed approach. And Section 6.5 presents the conclusions and

some discussions.

• Chapter 7 summarize the dissertation, and some promising future research topics

are given at the end.

1.4. Contributions

Motivated by the existing challenges and insufficient solutions to the different problems

under multiple target tracking, this dissertation proposes several original contributions to

tackle the problems, including target occlusion, high computational demand, unavailability

of target detector, and large target appearance variations. As we have illustrated, all of

these problems are the critical issues that must be addressed in order to support the

successful applications of the intelligent video surveillance. To summarize, the following

contributions have been made in the dissertation:

• A novel centralized formulation to tackle the multiple target tracking problem has

been developed with explicit occlusion reasoning. A dynamic Bayesian network

formulation is proposed as a generative model by accommodating the hidden
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process of occlusion in the probabilistic framework, which can stipulate the con-

ditions on which the image observation likelihood is calculated. The statistical

inference of such a hidden process can reveal the occlusion relations among differ-

ent targets, thus making the tracker more robust against partial even complete

occlusions. In addition, considering target appearances are affected by views,

another generative model for multiple view representation is also proposed by

adding a switching variable to select from different view templates. The sampling-

based sequential Monte Carlo strategies are developed to achieve the tracking and

inferencing from the complicated network formulation [138].

• A novel linear complexity decentralized framework is proposed to address the

multiple target tracking problem with coalescence problem handling. The basic

idea is a distributed while collaborative inference mechanism, where the motion

state of each target, estimated by the tracker covering it, is not only determined

by its own observation and dynamics, but also through the interaction and col-

laboration with the state estimates of its adjacent targets. Markov networks

are proposed to model such competition correlations, and variational analysis is

employed and reveals a mean field approximation to the posteriors of the track-

ers, therefore providing a computationally efficient way to this difficult inference

problem [151,152].

• In order to track the variable number of targets, we further propose an au-

tonomous while collaborative tracker network formulation, where each tracker

is equipped with an entropy-based performance evaluator, which can switch the

tracker between active or inactive status, indicating if they are currently follow
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targets or not. Motion estimates of the targets from this set of autonomous

trackers can still be distributed into a Markov network formulation. Further-

more, target detectors are effectively combined with each autonomous tracker to

help sense the potential newly appearing targets in the dynamic scene, therefore

background subtraction is not necessary to our method. The use of object de-

tectors also supports the construction of an effective importance function, which

leads to a more efficient variational inference [153,155].

• A novel two-layer statistical field model is proposed to characterize the large

shape variability and partial occlusions for nonrigid target detections, especially

pedestrian detections. The complex shape changes are captured by a well trained

Boltzmann distribution as a prior model. Probabilistic variational analysis of this

model reveals a set of fixed point equations that give the equilibrium of the field,

leading to computationally efficient methods for calculating the image likelihood

and for training the model. Based on that, effective algorithms for detecting and

tracking nonrigid objects are developed [140,137].

• A novel solution of pursuing a component-based idea in visual tracking is pro-

posed with the emphasis on the handling of the challenges such as partial oc-

clusions in a computationally efficient way. Our solution is based on the opti-

mal integration of a set of correlated simple component support vector trackers,

where the collaboration among the set of component trackers enables the better

handling of object appearance variations. In addition, the enhanced model, by
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introducing a selective mechanism, can automatically select trustworthy compo-

nents while down-weight the unreliable ones that may be occluded, thus enabling

the reliable dealing of object partial occlusions [154].

• A novel differential tracking approach is developed based on a spatial-appearance

model (SAM) that combines local appearances variations and global spatial struc-

tures. This model can capture a large variety of appearance variations that are

attributed to the local non-rigidity. At the same time, this model enables effi-

cient recovery of all motion parameters. Rigorous derivation of the model lead

to a closed form solution to motion tracking. The obtained encouraging results

demonstrate the effectiveness and efficiency of the proposed method for tracking

non-rigid objects that exhibit dramatic appearance deformations, large object

scale changes and partial occlusions [156].

It is interestingly noted that although the first two Chapters 2, 3 and the later Chap-

ters 5, 6 are devoted into two seemingly quite different methodologies of visual tracking,

where Chapters 2, 3 are under the probabilistic tracking formulations, while Chapters 5, 6

are addressing the visual tracking in the deterministic differential-based tracking setups.

However, the powerful importance sampling strategy [153,155], capable of combining the

top down probabilistic sampling procedures and the bottom up deterministic matching

processes, serves as the clue to glue different parts together. In addition, the proposed

target detection method based on the statistical field model in Chapter 4 can also be

effectively bonded into the same multiple target tracking framework with the designing

of importance function.
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CHAPTER 2

Multiple Target Tracking: A Centralized Solution

2.1. Introduction

Tracking multiple targets based on their appearances play an important role in many

applications such as intelligent human computer interaction and video surveillance. For

example, before the detailed facial motion can be recovered and before the human iden-

tities can be recognized, we need to locate and track faces in video sequences. An effec-

tive way is through matching and tracking face appearances. Since image appearances

provide more comprehensive visual information to represent the targets, e.g., the faces,

appearance-based tracking methods receive more and more attention.

However, if a target is partially or completely occluded, its visual appearance would

dramatically deviate from its appearance template as we set for tracking. Thus, occlu-

sion becomes a special and difficult problem for appearance-based tracking. In terms of

multiple targets tracking using appearances, explicit handling of occlusion is especially

indispensable for tracking, since occlusion would probably occur when different targets

interact. The ignorance of the occlusion problems in multiple target tracking will easily

result in the tracking failure, where the trackers may lose tracking some of the occluded

targets.

This chapter proposes a centralized approach to tackle the multiple target tracking

problem with explicit occlusion handling, where the term “centralized” implies that a
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joint state space representation is adopted to describe the motion states of all targets be-

ing tracked. The theoretical foundation of the approach is based on a dynamic Bayesian

network, which functions as a generative model to accommodate the occlusion process

explicitly. This generative model consists of multiple hidden Markov processes: the dy-

namics of each individual target, and the process of the occlusion relation whose transition

is characterized by a finite state machine. In addition, the model describes the formation

(or generation) of the image observations, jointly conditioned on the targets states and

their occlusion relations. Then, tracking is to infer the states of all these hidden Markov

chains based on the sequence of image observations.

We investigate two representations for the appearances from single view and multiple

views. The single view appearance is represented by an appearance template associated

with a transformation that depicts the motion and deformation of the template. Since the

appearances change with views, we extend this “view+transformation” representation to

the multiple view case, by switching among a set of templates and transformations. This

mechanism is also modelled by a generative model which contains a hidden switching

process.

The combination of the occlusion modelling and the multiple view representation

results in a multilevel dynamic Bayesian network. Due to the complexity in the structure

of the generative model, the inference of the model is approximated by the sampling-based

sequential Monte Carlo strategies. Various test sequences showed the effectiveness of this

approach to handle the occlusion situations.

The proposed approach accommodates the inference of the occlusion relations of mul-

tiple targets and the switch of multiple views into a probabilistic tracking framework. Not
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limited to multiple face tracking, the proposed generative model is general and valid for

many tracking scenarios which need to handle occlusion explicitly.

The chapter is organized as follows. In Section 2.2, we briefly review the previous

solutions for appearance tracking of multiple targets. Section 2.3 presents the dynamic

Bayesian network for occlusion. The sequential Monte Carlo strategy is described in

Section 2.4. Section 2.5 presents the multiple view appearance model. The generative

model that combines the occlusion model and multiple view switching can also be found

in Section 2.5. Experiments are given in Section 2.6 and conclusions are in Section 2.7.

2.2. Previous Work

The representations for targets affect the effectiveness and efficiency of tracking al-

gorithms. Many approaches have been studied based on different target representations,

e.g., image appearances [9, 24, 52, 68, 124] and geometrical shapes [8, 62, 86]. Shape-based

approaches are concerned about the matching between shape models and image features.

They need to deal with more ambiguities in tracking but are less sensitive to lighting.

On the other hand, since massive image appearance data contain very rich information

for characterizing targets, appearance-based methods would not sensitive to image reso-

lutions, but special attention need to be taken for deformation and lighting [157,134].

Many different types of appearance models have been investigated, such as color ap-

pearances [24], eigen appearances [9], texture appearances [68], layered image template

appearances [124], and the appearances combining image template and lighting [52]. All

of these models parameterize the appearances for target representations.



35

Tracking targets includes the estimation of these parameters. There are two method-

ologies to this problem: bottom-up and top-down. The bottom-up approaches generally

formulate the problem as nonlinear optimization problems which minimize some error

functions, e.g., flow residue [9, 52] and color discrepancy [24]. On the other hand, the

top-down approaches adopt the idea of analysis-by-synthesis, by directly verifying plenty

of hypotheses [62,86].

Most bottom-up algorithms are computationally more efficient, but they are subject

to the validation of the small motion assumption, and it is hard for them to cope with

occlusions unless the appearance model itself is robust against occlusions. On the other

hand, most top-down algorithms involve more computation, but the motion estimation

tends to be more accurate and more robust. In addition, occlusion can be modelled from

top-down in the same framework.

The generative model approaches take a top-down methodology, by modelling the

hidden factors that would affect the observed data [69]. Once the structure and the

parameters of the model are set, those hidden factors can be inferred and the parameters

can be learnt from the data. As a special case, dynamic Bayesian networks model dynamic

systems and temporal signals [100]. The inference of the networks provides tracking results

directly.

To track multiple appearances with occlusions, this chapter describes a class of dy-

namic Bayesian networks that accommodates the hidden process of occlusion and model

the switching of the appearance templates of multiple views.
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2.3. A Generative Model for Occlusion

We take a “view+transformation” approach to represent the state of a target, which

consist of an appearance template T and a transformation H. The template T can be

any kind of templates, such as an image template, an edge map template, or a texture

template. The transformation H can be an affine transformation or a homography trans-

formation.

To make the description clearer, we limit to the situation of tracking two targets (i.e.,

A and B). We denote the target state of target k at time t by Xk
t . The tracking task is

to infer XA
t and XB

t based on all the observed image evidence Zt = {Z1, · · · ,Zt}, where

Zt is the image measurement (or observation) at time t, i.e., to estimate p(Xt|Zt) =

p((XA
t ,X

B
t )|Zt), where Xt = (XA

t ,X
B
t ).

We are concerned about the occlusions between these targets, i.e., a target is occluded

by a known object. This chapter does not investigate a more challenging situation where

the target is occluded by a completely unknown object, since no clue from the occluding

object can be used for occlusion detection. But it will be part of our future work.

The tracking process can be viewed as the density propagation [62] from p(Xt−1|Zt−1)

to p(Xt|Zt), and it is governed by the dynamic model p(Xt+1|Xt) and the observation

model p(Zt|Xt), since we have

p(Xt|Zt) ∝ p(Zt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1
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In addition, since the motion of two targets are independent, we have p(Xt|Xt−1) =

p(XA
t |XA

t−1)p(X
B

t|XB
t−1). Then we have

p(Xt|Zt) ∝ p(Zt|XA
t ,X

B
t )

∫
p(XA

t |XA
t−1)

×p(XB
t |XB

t−1)p(Xt−1|Zt−1)dXt−1

If there is no occlusion between A and B, the observation likelihood p(Zt|XA
t ,X

B
t ) can

be uniquely determined. However, when one target occludes the other, the occlusion rela-

tion has to be known before the likelihood can be uniquely calculated, i.e., the likelihood

should be conditioned on the occlusion relations additionally. Let αt ∈ {0, 1, 2} denote

the occlusion relation, i.e., αt = 0 indicates no occlusion, αt = 1 indicates A
∧

B, and

αt = 2 indicates B
∧

A, where
∧

means “occludes”. Then based on the joint likelihood

p(Zt|XA
t ,X

B
t , αt), we have

p(Xt, αt|Zt) ∝ p(Zt|XA
t ,X

B
t , αt)

∫
p(XA

t |XA
t−1)

×p(XB
t |XB

t−1)p(αt|αt−1)p(Xt−1, αt−1|Zt−1)dXt−1 (2.1)

where p(αt|αt−1) describes the transition of occlusion relation. Thus, based on Equa-

tion 2.1, the probabilistic dynamic system can be illustrated by a factorized graphical

model (a factorized dynamic Bayesian network) in Figure 2.1.
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α

Z tZt-1 t+1Z

t+1tα αt-1

t-1 X t+1t XX

t-1 t+1t XX XA A A

B B B

Figure 2.1. A hidden process {αt} is accommodated in the dynamic
Bayesian network to present the occlusion relationships.

The posterior density of occlusion can be obtained through integrating out XA
t and

XB
t from the joint posterior probability, i.e.,

p(αt|Zt) =

∫ ∫
p(XA

t ,X
B
t , αt|Zt)dX

A
t dX

B
t (2.2)

As a generative model, this dynamic Bayesian network models the forwarding process

of image formation. In the graphical model, there are three hidden Markov processes,

{XA
t }, {XB

t } and {αt}, which are to be inferred from the observation data Zt, based

on all the conditional probabilities as illustrated by arrows in the graph. Specifically, to

characterize the model, we need to model the dynamics of the two targets p(XA
t |XA

t−1)

and p(XB
t |XB

t−1), the transition model p(αt|αt−1) of the occlusion process {αt}, and the

observation likelihood p(Zt|XA
t ,X

B
t , αt).

We employ a constant velocity model for the target dynamics p(Xk
t |Xk

t−1), k ∈ {A,B}.

In addition, the transition p(αt|αt−1) of the occlusion process is described by a finite state
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machine, i.e.,

Tα = [Tα(i, j)] = [p(αt = j|αt−1 = i)].

The observation likelihood p(Zt|XA
t ,X

B
t , αt) is modelled based on the innovations, i.e,

the discrepancies between the predicted appearance and the actual image observations.

Denote the predicted region of the k-th target at time t by Rk
t = R(Xk

t ). Then, the

predicted region of Xt is the union of two targets’, i.e.,

Rt = R(Xt) = R((XA
t ,X

B
t )) = RA

t

⋃
RB

t

The actual image appearance observation is collected on the predicted region Rt and de-

noted by I(Rt). Denote the predicated appearance by Tt = T (XA
t ,X

B
t , αt) which depends

on the value of αt. As illustrated in Figure 2.2, we denote the overlapping region of the

AR
O

RB AT

AT
T B

Figure 2.2. The occlusion relations of α = 1.

two targets by

Ot = O(Xt) = O((XA
t ,X

B
t )) = RA

t

⋂
RB

t
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which is independent of αt. Then, ∀u ∈ Rt,

Tt(u) =





TA(XA
t (u)), u ∈ RA

t −Ot

TB(XB
t (u)), u ∈ RB

t −Ot

TC(XC
t (u)), u ∈ Ot

where u is a pixel location in a region, and C indicates the occluding target, i.e.,

C = C(αt) =





φ, αt = 0

A, αt = 1

B, αt = 2

Then, the observation likelihood is modelled by:

p(Zt|Xt, αt) ∝ exp

[
−

∑
u∈Rt
D(Tt(u), It(u))

M(Rt)

]
(2.3)

whereM(Rt) is the number of pixels in the regionRt, andD(Tt(u), It(u)) = |Tt(u)−It(u)|2.

Specially attention should be taken for the case where one target is fully occluded by

the other one as illustrated in Figure 2.3, since no image evidence can be used to support

the existence of the fully occluded target. Consequently, the tracker would not be able to

follow the occluded target again. Under this circumstance, the regain of tracking the fully

RA

BR =O

TA

TB

Figure 2.3. Target B is fully occluded by A.
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occluded target would depends on motion prediction of target and the detection around

the border of the occluding target. Such a mechanism can be implemented by reducing the

likelihood of the full occlusion events. Then, we have p(Zt|Xt, αt) ∝ exp [−H(Zt,Xt, αt)],

where H(Zt,Xt, αt) =

∑
u∈RA

t
D(TA

t (u), It(u)) +
∑

u∈RB
t
D(TB

t (u), It(u))

M(RA
t ) +M(RB

t )
(2.4)

2.4. Sequential Monte Carlo Tracking

The densely-connected structure of the factorized graphical model as shown in Fig-

ure 2.1 is complex. The structure variational analysis can be taken to analyze the graphical

model [70]. Analytical results of a set of fixed-point equations were obtained based on

some simplifications such as linear observation likelihood [50, 70]. In addition, the fixed-

point equations reveal a co-inference phenomenon [142]. However, in general, the exact

probabilistic inference of the hidden processes would be very difficult especially when the

observation likelihood is complicated.

On the other hand, statistical sequential Monte Carlo strategies provide a computa-

tional approach to this problem [35,84,85], in which a probability density is approximated

by a set of weighted particles. The evolution of the set of particles according to the dy-

namic Bayesian network characterizes the behavior of the dynamic system, and the hidden

processes can be recovered from the set of particles. Many particle-based algorithms have

been studied for visual tracking [62,86,142].

We take a sequential Monte Carlo approach to inferencing the factorized dynamic

Bayesian network in Figure 2.1. The posterior density p(XA
t ,X

B
t , αt|Zt) is represented
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by a set of weighted particles {xA,(n)
t , x

B,(n)
t , α

(n)
t , π(n)}. The sampling-based algorithm is

summarized in Figure 2.4.

Generate {xA,(n)
t+1 , x

B,(n)
t+1 , α

(n)
t+1, π

(n)
t+1} from {xA,(n)

t ,

x
A,(n)
t , α

(n)
t , π

(n)
t }.

(1) Re-sampling. Resample the parti-

cle set {xA,(n)
t , x

B,(n)
t , α

(n)
t } to produce

{x′A,(n)
t , x

′B,(n)
t , α

′(n)
t } based on {π(n)

t }.
(2) Prediction. For each (x

′A,(n)
t , x

′B,(n)
t , α

′(n)
t ):

(a) sample the density of the target dynamics

p(xA
t+1|xA

t ) to produce x
A,(n)
t+1 from x

′A,(n)
t ;

(b) sample the target dynamics p(xB
t+1|xB

t ) to

produce x
B,(n)
t+1 from x

′B,(n)
t ;

(c) sample the finite state machine Tα of

p(αt+1|αt) to produce α
(n)
t+1 from α

′(n)
t .

(3) Correction. Re-weight each particle by calcu-
lating the likelihood

π
(n)
t+1 = p(Zt+1|xA,(n)

t+1 , x
B,(n)
t+1 , α

(n)
t+1).

Then normalize all the new weights so that
∑

n

π
(n)
t+1 = 1.

Figure 2.4. The sequential Monte Carlo algorithm for the factorized dy-
namic Bayesian network in Figure 2.1.

Based on the weighted particle set at each time instant, we obtain the estimation of

the hidden states:

X̂k
t =

∑

n

x
k,(n)
t π

(n)
t , k = {A,B},

α̂t = argmax
α

∑

α
(n)
t =α

π
(n)
t , α = {0, 1, 2}.
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2.5. Switching Multiple Views

Most appearance-based methods are sensitive to view changes and large deformations,

since appearances are view-based. Subspace-based techniques can be employed to learn

the appearance-based representations which are robust to views [78] and large appearance

changes [9]. These representations are suitable for target detection and recognition, but

the dimensionality of the subspace is high for the tracking tasks.

To model view changes, we simplify the subspace-based approaches, and represent a

target by maintaining a finite set of view templates, each of which is associated with

a transformation, i.e.,{(T1, H1), · · · , (TV , HV )}. Denote an indicator variable by β ∈

{1, · · · , V }. Our representation stipulates that the whole set of appearances under dif-

ferent views can be divided into a set of non-overlapped subsets represented by (Tβ, Hβ).

In other words, for any appearance, a unique view template Tβ and a suitable transfor-

mation exist. This method extends the “view+transoformation” approach to a “switch

view+transformation” representation.

This representation is different from subspace representations. In subspace methods,

since an appearance is modelled by a linear/nonlinear combination of a set of appearance

basis, the methods are global. On the other hand, our “switch view+transformation”

approach identifies a specific “mode” (although it is a special case of linear combination),

and it is local like a piece-wise spline in the appearance space. Thus, our approach uses

a switch β to switch among different “modes” or views templates.

Accommodating this switching view representation in the generative model, the dy-

namic Bayesian net for a signal target can be illustrated in Figure 2.5, where {βA
t } is the
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A

AAA

AA

Zt+1

t

t+1β

t+1

β t

Xt-1X

t-1β

t

X

Zt-1Z

Figure 2.5. A discrete hidden process {βA
t } is used to switch among different

views of the target A.

hidden process, and we have

p(XA
t+1, β

A
t+1|XA

t , β
A
t ) = p(XA

t+1|XA
t , β

A
t+1)p(β

A
t+1|βA

t )

where p(XA
t+1|XA

t , β
A
t+1) describes the switch of view templates and its dynamics, and

p(βA
t+1|βA

t ) models the transition of the switch event which is stipulated by a finite state

machine:

TA
β = [TA

β (i, j)] =
[
p(βA

t = j|βA
t−1 = i)

]
.

Although we can perform the structure variational analysis on this graphical model

in Figure 2.5 (see [100]), a more flexible approach for inferencing is again the sequential

Monte Carlo strategies. Similar to the mixed-state Condensation [64], a particle for the

target A is represented as {xA,(n)
t , β

A,(n)
t , π

(n)
t }. The evolution of the set of particles is
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generated by the dynamic Bayesian net model. The estimate of the view is given by:

β̂A
t = arg max

β

∑

β
(n)
t =β

π
(n)
t ; (2.5)

X̂A
t =

∑

β
(n)
t =β̂A

t

π
(n)
t x

A,(n)
t π

(n)
t . (2.6)

Naturally, the combination of the occlusion model in Figure 2.1 and the model for

switching views in Figure 2.5 results in a new dynamic Bayesian network as illustrated

in Figure 2.6, which models the occlusion of multiple targets as well as multiple views.

Taking the sequential Monte Carol methods similar as those in previous sections, the

A
tXA t+1XXt-1

A

A

β

t-1

t+1β

B t+1β Bβ

t-1XB
tXB t+1XB

Z t-1

A

Z t
Zt+1

α t-1 tα t+1α

t
Aβ

β

t-1

t
B

Figure 2.6. A hidden process {αt} controls the occlusion relations among
different targets and {βk

t } switches among different views for the k-th target,
where k ∈ {A,B}.

inference of this dynamic Bayesian net is straightforward.
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2.6. Experiments

The proposed methods have been applied to the task of tracking two moving and

occluding faces. We report the experiments in three tracking scenarios including occlusion,

view changes and the combination of the two.

Our first experiment are concerned about the inference of occlusions induced by the

interaction of two targets, and the generative model in Figure 2.1 applies. In this case, the

appearance of a face is represented by a single pre-trained view template of the face and

an affine transformation. The tracking task is to estimate the affine parameters for both

templates as well as the occlusion relation when the two faces cross. We have employed

two types of view templates: one is the image template, and the other is the texture

template based on wavelet transformations.

Since the overlapping can be directly calculated once X
A,(n)
t and X

B,(n)
t are given,

the uncertainty remained for occlusion variable αt is either αt = 1 or α = 2. Then the

transition of {αt} is reduced to a two-state machine. In the experiment, we set

Tα = p(αj|αi) =




0.8 0.2

0.2 0.8


 , i, j ∈ {1, 2}. (2.7)

The tracking results can be seen in the sequence named “occlusion.mpg” with this

chapter. Some sample frames of the tracking results are shown in Figure 2.7. In this

experiment, the size of the particle set is 2000. When the two faces do not overlap, the

tracker acts like two independent trackers. When the two faces across, the tracker proved

to keep locking on the two faces with the right identities, because the occlusion relation

is recovered during tracking, which greatly helps to maintain the identities of different
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Figure 2.7. Two faces are tracked (in red or green) during the occlusion.
One becomes dark if occluded. Their occlusion relations are inferred and
the identities of the two faces are maintained. (See “occlusion.mpg” for
detail.)

targets. The occlusion is estimated by maximizing the a posteriori in Equation 2.5. The

recovered occlusion process {αt} is shown in Figure 2.8. The estimates of the occlusion

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

Figure 2.8. The recovered occlusion process {αt}.

relations are quite accurate, except for the frames where the occlusion is about to occur

or about to finish. But this phenomenon is reasonable since the occlusion relations are

weak and uncertain at those time instants. Since a face goes back and forth in front of

the other face in the sequence, the occlusion events α = 1 occur in two time intervals.

This is clearly indicated in Figure 2.8.
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The second experiment is about the multiple view model, and the generative model in

Figure 2.5 applies. The task is to track a single face but the motion of the face contains

out-plane rotation, which results in multiple distinguishable views. In this experiment,

we exploit three view templates: one front view, and two profile views, with three Homog-

raphy transformations associated with each template. The three templates are shown in

Figure 2.9. Here, β = 1/2/3 denotes left profile, front and right profile views, respectively.

Figure 2.9. The three view templates used for the multiple appearances switching.

The transition of the view switching process {βt} is a three-state FSM:

Tβ = p(βj|βi) =




0.8 0.15 0.05

0.1 0.8 0.1

0.05 0.15 0.8



. (2.8)

The result for the single face with multiple views is demonstrated in the sequence

“multiview.mpg”. Some sample frames are shown in Figure 2.10. The size of the particle

set in the sequential Monte Carlo inference is 1000. When the face turns, the correct view

template is automatically selected and the tracker can switch to this view template and

keep tracking. Since the particle set represents the density, it implicitly keeps all the view

hypotheses and the priors of these hypotheses are propagated from previous time instants.

The calculation of the likelihood of the image observation given these view hypotheses can

strengthen or weaken these hypotheses. The one with the maximum posterior probability
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Figure 2.10. Tracking one face with out-plane rotations with the switching
multiple view model. A suitable appearance template is selected automat-
ically at each time instant. (See “multiview.mpg” for detail.)

is selected as the estimation of the view template “mode” at each time instant. The

recovered process of mode switching is shown in Figure 2.11. We see clearly from this

0 20 40 60 80 100 120 140 160 180
0

0.5
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1.5

2

2.5

3

3.5
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Figure 2.11. The recovered switching process {βt}.

figure that the person turns his head around when he moves.

In the third experiment, we track two faces under occlusion and multiple views, and

the method in Figure 2.6 applies. The same as the second experiment, we use a three-view

templates with Homography transformations. And Tα uses Equation 2.7, and TA
β and

TB
β are set the same as Equation 2.8.
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The sequence “occlu multiview.mpg” demonstrates the tracking result for the single

face with multiple views. Some sample frames are shown in Figure 2.12. Due to the

Figure 2.12. Two faces move across inducing occlusion, and the motion of
the faces contains out-plane rotations. The occlusion (the occluded one is
shown in dark) are inferred and the suitable view templates are switched.
(See “occlu multiview.mpg” for detail.)

complexity of the dynamic Bayesian net in Figure 2.6 used in this experiment, more

particles are needed for effective Monte Carlo. We use 4000 particles to obtain the result.

By accommodating the processes of occlusion and view switching, the tracker needs to

infer more hidden factors based on the image observations, thus more computation is

involved. But the payoff is huge: the tracker becomes more robust and the recovered

hidden factors provide quantitative clues for evaluating the tracking performance online.
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2.7. Discussions

Appearance-based tracking is useful in many applications such as face tracking, but

is confronted by the problem of occlusion, especially when multiple appearances are con-

cerned. This chapter presents a generative model to accommodate a hidden process of oc-

clusion relations among multiple targets. The likelihood of the image observation is condi-

tioned on the configuration of the states of multiple appearances as well as an occlusion re-

lation among them. Graphically, such a generative model is a factorized dynamic Bayesian

network with multiple hidden Markov chains. In addition, this chapter also presents a mul-

tiple view representation for appearances by a “switch view+transformation” approach.

Accommodating multiple views in the dynamic Bayesian network results in a mode-switch

model. The inference of the hidden processes is made possible through particle-based se-

quential Monte Carlo methods, by which the the mode and transformations of different

appearances as well as their occlusion relations can be recovered.

The generative models explicitly represent the hidden factors which affect the image

observations, thus the recovery of these hidden factors would provide significant interpre-

tation of the image sequences besides tracking. Since analytical results are in general hard

to obtain, when more factors are included in the generative model, the computational com-

plexity tends to be more tremendous. Thus, more efficient Monte Carlo methods should

be developed to ease these computational issues. In addition, instead of presetting the

parameters in the models, learning these parameters from training data would be more

plausible. Our future work will include these two issues.
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CHAPTER 3

Multiple Target Tracking: A Decentralized Solution

3.1. Introduction

Video based multiple target tracking is an important problem in many emerging appli-

cations, such as for intelligent video surveillance systems where robustly tracking multiple

persons is a critical step towards some higher level processing and analysis like action

recognition and abnormal event detection [119], for sports video analysis where automat-

ically tracking multiple athletes in the field can help coaches for decision making and

performance analysis [145], and for video conferencing where effective low bit rate video

communication requires the accurate localization and tracking of all attendees.

If the targets demonstrate quite distinctive appearances from each other, they may

be robustly tracked by simply instantiating multiple independent trackers (M.i.T.) with

least confusion, since the strong discriminative image cues can provide reliable localization

power for each target through the likelihood calculations. However, many real applica-

tion scenarios prevent such a simple M.i.T. solution, where the targets may present more

or less the same appearances. For example, when tracking multiple soccer players in a

field, since all players are in the uniform sports wears, due to the appearance confusions,

the observation models of M.i.T. tracker becomes less effective, which leads to the diffi-

culty of maintaining the correct associations between the image observations with their

corresponding soccer player trajectories. Therefore, a major difficulty of multiple target
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tracking lies in the fact that the trackers might be insensitive to the differences among

the targets such that they may not be distinguishable from each other, which leads to

a combinatorial problem on target-tracker association. We can call it as the “identical”

targets problem, where “identical” targets imply that the tracked targets are indistin-

guishable from each other in terms of the tracker observation model. The neglect of

this problem (e.g., by using M.i.T.) will generally lead to the tracker coalescence phe-

nomenon [14], i.e., several trackers are associated to one same target while other targets

lose track. Coalescence often takes place especially when the targets are close or present

occlusions [73,151].

As a single target tracker, Condensation [62,12] or particle filtering may also be used

for multiple targets, since it can estimate the non-Gaussian posterior density of the targets,

where the potential multi-modes may imply the presence of multiple targets. However,

when the posterior distribution is propagating over frames by particles, it is likely that

the targets that attract more particles will dominate the dispersion of particles, which will

gradually reduce the number of particles for the targets that have weaker image observa-

tions, and finally lose track of them, i.e., the coalescence problem also happens in this case.

Aiming to handle such a problem, a variant of particle filtering algorithm was proposed

by [127], which is further extended by [95], to continuously maintain multiple modality of

the posteriori distribution using the particle set over time, which may effectively handle

the coalescence problem. However, since it is embedded into the single particle filtering

framework, it lacks a consistent way to resolve the target identity ambiguities that arise

in associating targets with the image observations.
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Most existing solutions to this problem are based on the centralized methodology by

considering joint data association that enumerates all the possible associations between

targets and observations. Various methods along this line have been developed (See Sec-

tion 2 for details). The essence of their methods is the introduction of the joint state

space representation which concatenates together all the state spaces of the individual

targets such that they can be jointly inferred based on the exhaustive data association

enumerations between targets and image observations. Our centralized solution to the

multiple target tracking problem introduced in the previous chapter also belongs to this

joint state space category [138]. The coalescence problem may be correctly handled dur-

ing the joint inference. However, due to the exploring of a high-dimensional joint state

space, these methods are generally computational intensive. For example, the multi-

ple hypothesis tracker (MHT) [28, 55] and the joint probabilistic data association filter

(JPDAF) [6, 17, 74, 107] have to evaluate all possible associations which suffers from the

combinatorial complexity, and the sampling-based methods [60, 63, 86, 123, 138, 160] are

confronted by the exponential demand of the increase of particles.

Such centralized solutions might be fine to a powerful processor. However, they may

not be appropriate for the emerging application of sensor networks, in which there are a

large number of sensing units that have the functionality of sensing, computing and com-

municating. However, these units are power-limited to prevent much computation and

communication [77]. Thus, to make good use of such sensor networks for target tracking,

complex computation must be distributed into the network, since once a certain unit

takes charge of sensing, its computational load on target tracking needs to be migrated
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to other idle units. Although this research is being carried out at the computer architec-

ture level, it is more desirable to find a decentralized scheme at the algorithm-level for

efficient tracking of multiple targets, since it will leads to the essential parallelization and

distributed computing.

In this chapter, we present a new and linear complexity decentralized framework for

visual tracking multiple “identical” targets with coalescence problem handling. The basic

idea is a distributed while collaborative inference mechanism, where the motion state

of each target, estimated by the tracker covering it, is not only determined by its own

observation and dynamics, but also through the interaction and collaboration with the

state estimates of its adjacent targets, which leads to a competition mechanism that

enables the set of casted trackers to compete for the common image resources, i.e., image

observations, to support the motion estimates of their covering targets in the video scene.

The theoretical foundation of this new approach is based on Markov networks, in

which each hidden node in the network represents the motion state of an individual

target, captured by a tracker, and the links in the network correlate a tracker to those

who compete image observations against it. The structure of the Markov network can

change according to the spatial relations of the trackers during the tracking process. We

call it an ad hoc Markov network. Since such a Markov network is likely to contain

loops, variational analysis is employed and reveals a mean field approximation to the

posteriors of the trackers, therefore it provides a computationally efficient way to this

difficult inference problem. In addition, we design a sequential Monte Carlo algorithm

that efficiently implements this mean field inference by simulating the competition among

a set of low dimensional particle filters.
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In order to track the variable number of targets, the proposed decentralized framework

is further extended to allow the set of trackers running autonomously and collaboratively

by equipping each tracker an entropy-based evaluator, where the individual trackers are

autonomous in the sense that they have the freedom to select targets to track and evaluate

themselves. The trackers then can be either in active or inactive status, indicating if they

are currently follow targets or not. Motion estimates of the targets from this set of

autonomous trackers are still distributed into a specifically designed Markov network,

where the collaboration mechanism of these netted trackers is again achieved by the

information exchanges of these trackers through the variational analysis of the Markov

network.

In addition, under the tracking variable number of targets scenario, a roughly trained

target detector [128] is equipped to each autonomous tracker to help sense the potential

newly appearing targets in the dynamic scene, therefore background subtraction is not

necessary to our method, although it can largely help the case of fixed backgrounds. The

use of object detectors within each tracker also supports the construction of an effective

importance function, which leads to a more effective variational inference.

With linear complexity in terms of the number of targets, the new approach copes

with multiple target tracking in a distributed and collaborative fashion. The competition

mechanism introduced by the collaborative inference mathematically incorporates the

essence of joint data association where one single observation cannot support more than

one target, therefore the coalescence problem can be naturally handled. Compared with

the existing solutions, the new decentralized approach stands out by its effectiveness and

low computational cost to the coalescence problem. The approach also shows its ability to



57

continuously track variable number targets as long as they are physically existing within

the video scene. Extensive experiments on the challenging video sequences are conducted

to demonstrate the effectiveness and efficiency of the proposed method.

The chapter is organized as follows. In the next section, we briefly review the existing

multiple targets tracking approaches. Section 3.3 presents our decentralized multiple tar-

get tracking framework based on Markov network formulation in details. The autonomous

trackers with entropy-based self-evaluators are introduced in Section 3.4, which enables

the framework to achieve tracking variable number of targets in the video scene. Sec-

tion 3.5 presents the variational analysis of the proposed Markov networks, where loopy

structure may present. Based on the mean field fixed point equations derived from the

variational analysis in Section 3.5, Section 3.6 introduces the sequential Monte Carlo im-

plementation to approximate the variational inference from the potential loopy Markov

network, where an importance sampling mechanism is also presented, when a roughly

trained target detector is available. Extensive experiments on various synthetic and real

video sequences are reported in Section 3.7. Finally, Section 3.8 summarizes the chapter

and makes a number of suggestions for future research.

3.2. Related Work

Many multiple target tracking methods have been developed during the past few

years, where most of them are based on the centralized joint state space inference either

under the parametric or non-parametric formulations. The parametric methods, such

as multiple hypothesis tracking (MHT) [28, 55] and joint probabilistic data association

filtering (JPDAF) [107] handle the coalescence problem by the joint data association
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principle in which one image observation can only support a single target hypothesis and

one target hypothesis can only occupy a single observation, therefore suffering from the

combinatorial complexity due to the exhaustive enumeration for all possible associations.

Based on Monte Carlo sampling techniques, non-parametric methods [60,63,86,123,160]

can tackle the coalescence problem in a top-down process that generates and evaluates

a large number of hypotheses, thus also confronted by a similar high computational cost

due to the exponential demand of the increase of particles. All these approaches are

actually dealing with the centralized state space directly, which results in the inevitable

combinatorial or exponential complexity in the algorithm level that is hardly scalable.

The existing approaches can also be classified into two categories according to whether

a fixed background model is employed. Background subtraction normally offers a strong

localization clue for detecting each new target entering the scene. Whenever a new target

is appearing, a new tracker can be immediately instantiated to follow it [56]. The fixed

background assumption is also the essential reason why the configuration level optimiza-

tion techniques, such as jump-diffusion Markov chain Monte Carlo in [160] and variants

of particle filtering [63,123], can be applied to inference the number of targets existing in

the scene over the union of joint state space of multiple targets, since under this assump-

tion the observation likelihood can be calculated based on the whole image information.

Foreground area is evaluated by the foreground target model, background area is also

assessed by the maintained background model, which in combination makes the config-

uration level reasoning feasible. However, this nice property does not exist under the

changing background situations, since there is generally no way to maintain a powerful
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background model to explain all non-target areas in the dynamic scene. Therefore ex-

isting approaches dealing with the dynamic background scenarios are either assuming to

track fixed number of targets [60,86,107,151], which obviously limits its generalization, or

adopting an target detector to help determine if any new target appears in the scene [95].

However, in [95] it stays unclear how the coalescence problem can be reliably solved under

their single particle filtering framework.

Different from these existing methods, we propose a decentralized approach to multi-

ple target tracking with linear computational complexity. Based on this new formulation,

a collaborative sequential Monte Carlo algorithm is proposed to allow a set of low di-

mensional particle filters compete against each other to solve the coalescence problem.

Furthermore, by using a set of collaborative autonomous trackers, our approach is also

capable of tracking variable number of targets. Compared to the state-of-the-art, this

new approach proves to be computationally efficient and algorithm-level parallelizable.

3.3. The Decentralized Representation

In this section, we mainly focus on the model descriptions for tracking fixed number

of targets. The discussions of extending the model to track variable number of targets

will be delayed to the next section.

Suppose M trackers are casted into the video scene to track M targets. We denote the

state of an individual tracker by xi, the joint state by X = {x1, . . . ,xM} for M trackers,

the image observation of xi by zi, and the joint observation by Z.
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3.3.1. Conditional Dependency

When multiple targets move close or present occlusions, it is generally difficult to distin-

guish and segment these spatially adjacent targets from image observations, thus we can

not simply factorize the joint image observation, i.e., p(Z) 6= ∏
i p(zi).

As a result, the image observations under this circumstance have to be treated as

they are jointly produced by all these targets, i.e., we need to model the joint likelihood

p(Z|x1, . . . ,xM). In this case, when the joint image observation is given, the posteriors of

different targets are conditionally dependent, i.e.,

p(x1, . . . ,xM |Z) 6=
∏

i

p(xi|Z).

This conditional dependency of multiple targets is the root of the reason why M.i.T.

and Condensation can not cope with the coalescence problem. It also makes clear why

the centralized methods that deal with the joint state space are confronted by the high

dimensionality, since they have to model p(Z|X) as a centralized entity.

We present in the next sections a new decentralized model to cope with this problem

with linear complexity and a distributed while collaborative algorithm is developed for

tracking multiple identical targets.

3.3.2. A Tracker Markov Network Formulation

Since the motions of the multiple targets become dependent when they are spatially

adjacent, we can consider to model the prior of the joint target states, i.e., p(X). This

prior can be very complicated due to the unknown correlations, but we can approximate
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it by a Gibbs distribution in general. Here we present a specific Gibbs model which leads

to a theoretically plausible and practically efficient tracking algorithm.

Figure 3.1. The Markov Network for multiple targets.

The theoretical foundation of the new approach is based on Markov networks, as

shown in Figure 3.1, which consists of two layers. The hidden layer is an undirected graph

Gx = {V,E} where each circle node represents the state or motion parameters (such as an

affine motion) of a tracker xi, and the pair-wise link between a pair of trackers represents

the motion correlation (of dependency) between them (as described below). In addition,

the observable layer includes square nodes that represent the image observations and are

individually associated with their corresponding hidden nodes. A directed link from the

tracker xi to its local image observation zi represents the observation likelihood p(zi|xi).

Since the local observation zi conditionally independent of others given xi, we have:

p(Z|X) =
n∏

i=1

pi(zi|xi). (3.1)

The core problem here is to infer the posterior p(X|Z).
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The structure of the graph in the hidden layer depends on the spatial relations among

the trackers’ states. At each time instant t, the structure of the tracker network is de-

termined according to the relative positions of the trackers, calculated by the conditional

mean state estimator xt =
∫

xtp(xt|zt)dxt. The tracker that is not close to others is

represented by an isolated vertex in the graph (such as x6 and x7 in Figure 3.1). If two

trackers are close enough (in the sense the the specific image observer or detector used

for tracking is unable to separate their image observations), there is an undirected link

between them in the graph to represent their motion dependency (such a x3 and x4 in Fig-

ure 3.1), and a potential function is associated with this link to parameterize the motion

correlation. For example, when several trackers are close, they are generally competing

targets for tracking, thus such motion correlation terms enforce an exclusive constraint

that a target must not be associated to more than one tracker. It is worth mentioning

that the pair-wise state constraint model has also been successfully applied in articulated

hand tracking based on a similar Markov network formulation [122].

Since the trackers are moving around to follow the targets, their spatial relations

change with time and the structure of the Markov network also change with time. Once

the spatial relations of the trackers are roughly determined, the structure of the network

is fixed. The neighborhood of a tracker is those that are linked with it, and we denote

the neighborhood of xi by N (i).

In this formulation, the prior p(X) is modelled as a Gibbs distribution and can be

factorized as:

p(X) =
1

Zc

∏

c∈C

ψc(Xc) (3.2)
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where c is a clique in the set of cliques C in the undirected graph, Xc is the set of hidden

nodes associated with the clique and ψc(Xc) is the potential function of this clique, and

Zc is a normalization term or the partition function. Our model allows two types of

cliques: the first order clique, i.e., i ∈ V , and second order clique, i.e., (i, j) ∈ E, where

C = V
⋃
E. The associated potential function ψc is denoted by ψi and ψij, respectively.

Thus, Eq. 3.2 can also be written as:

p(X) =
1

Zc

∏

(i,j)∈E

ψij(xi,xj)
∏

i∈V

ψi(xi) (3.3)

where ψi(xi) provides a local prior for xi which can be the dynamics prior or the prior

given by other modalities, and ψij(xi,xj) presents the motion dependency between neigh-

borhood nodes xi and xj.

It is critical to model the motion dependency or correlation mentioned above. The mo-

tion of two trackers become dependent a posteriori only because their image observations

can not be separated. But when one tracker has been associated with part of the total

image observations, the other tracker can only obtain the rest of the observations, since

the same piece of image evidence can not support the existence of two different trackers.

Therefore, we can approximate the motion dependency of them by a competition correla-

tion, i.e., trackers compete against each other for the common image resources. In other

words, if one tracker occupies a region in the state space, it will lower the probability

of others to occupy the same region. As a specific example, the competition potential

function can be modelled as:

ψij(xi,xj) ∝ ed(xi,xj)
T Σ−1d(xi,xj) (3.4)
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where d(xi,xj) = xi− xj is the distance between the two trackers in the state space, and

Σ characterizes the size of competition region in the state space. The intuition behind

Eq. 3.4 is that it favors the situation where the states of the two trackers are not close to

each other.
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Figure 3.2. Dynamic Markov Network for multiple targets.

Putting the above Markov network in the temporal context by accommodating the

dynamics model p(xi,t|xi,t−1) for each tracker, we can model the visual dynamics of mul-

tiple trackers in a more complicated graphical model, which can be called as a dynamic

Markov Network, as shown in Figure 3.2. In this figure, the red arrows connecting the

trackers in two consecutive frames represent the dynamic prior propagation to model the

local prior in the Markov network, i.e., ψi(xi,t) ∝ p(xi,t|Zt−1). Note that the structures of

the Markov networks in two consecutive time frames are a little different, which illustrates

the changes of motion correlations among the trackers, due to the change of the spatial

relations among them.

In all the notations, the subscript t represents the time index. In addition, we denote

the collection of all the image observation up to time t by Zt = {Z1, . . . ,Zt}. In this
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formulation, the multiple target tracking problem is to infer the posterior of each target

p(xi,t|Zt), which will be solved in Section 3.5.

3.4. Autonomous Trackers for Tracking Variable Number of Targets

Tracking variable number of targets requires either a configuration level optimization

over the variable dimensional state-space, or a fixed dimensional state-space in conjunc-

tion with a set of indicator variables showing which components from the state-space

correspond to active trackers (i.e., the trackers that are currently following the targets,

which are physically existing in the video scene.). Since our decentralized model prevents

a direct estimation of the number of targets, we adopt the second approach, because it

deals with fixed dimensional space, and fits into our previously presented Markov network

formulation with only some minor modifications.

As before, we denote the motion state of each individual tracker at time t by xi,t,

and its associated image observation by zi,t. However, now we allow individual trackers

move autonomously, and are able to evaluate themselves. They need to determine and

switch the modes (i.e., active or inactive) by themselves. We denote by ri,t the binary

performance indicator for each tracker, and let it be part of the tracker state variables,

where ri,t = 1 means active status and vice versa. The details of tracker self-evaluation is

given in Section 3.4.1.

A similar Markov network formulation for this set of autonomous trackers is thus

illustrated in Figure 3.3, which in comparison with the Markov network in Figure 3.1

clearly shows the difference that some of the nodes are weakly dotted, and correspond to
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those inactive trackers, while the solid nodes stay the same as before corresponding to

the set of active trackers.
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Figure 3.3. Autonomous and collaborative trackers as a Markov network
for tracking variable number of targets.

The competition constraints still apply to the individual trackers no matter whether

they are currently active or inactive. For example, when the competition presents among

active trackers, such a potential term acts to overcome the coalescence problem as de-

scribed before. When the competition presents among inactive trackers, this potential

term helps to force these inactive trackers to search different image regions for newly

appearing targets to track. When the competition happens between an active tracker and

an inactive one, such an elastically exclusive force becomes unidirectional, i.e. only the

active tracker can exclude the inactive one to prevent the case where the inactive tracker

“hijacks” the target being tracked by the active one.
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3.4.1. Self-awareness and Mode Switching

Based on the inference result p(xt|zt), there may exist different ways to obtain a perfor-

mance indicator for each tracker. We observe that when each single tracker is experiencing

good tracking conditions, the underlying posterior p(xt|zt) will mainly demonstrate some

sharp unimode distribution. On the contrary, a more uniform distribution implies larger

uncertainty of the motion estimation, i.e., the tracking result is less confident and thus

not satisfactory. Therefore, an entropy measure can be used as a good performance metric

to evaluate the tracking performance. Specifically, we define the performance indicator rt

as follows:

rt =





1 if −
∫
p(xt|zt)logp(xt|zt) < τ

0 otherwise
(3.5)

where rt = 1 indicates active trackers since the target seems to be successfully followed by

the tracker, while rt = 0 implies inactive trackers otherwise, such as the tracker loses track

due to the interferences from the cluttered background or simply because the previously

tracked target leaves the video scene. The threshold τ can be empirically determined.

The modes of an autonomous tracker determine its dynamics model p(xi,t|xi,t−1)

(where i indexes the tracker). Thus a track can switch its behaviors autonomously based

on the active or inactive mode determined by itself:

p(xi,t|xi,t−1) =





pa(xi,t|xi,t−1) if ri,t−1 = 1

pu(xi,t|xi,t−1) otherwise
(3.6)
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where pa(xi,t|xi,t−1) is a constant acceleration motion model, and pu(xi,t|xi,t−1) is an un-

informative uniformly random walk around the tracker’s previous conditional mean state

estimator xi,t−1.

Camouflages may affect the tracking performance significantly, no matter whether

these camouflages arise from the same types of targets in the nearby region or simply due

to the background clutters that resemble the target. Thus, it is not robust when tracking

one target. This difficulty can be largely alleviated by the joint tracking of multiple similar

targets since the joint data association can largely reduce the risk of loss track of any.

Casting this idea into a decentralized methodology, we believe the collaborations among

individual trackers act as a distributed way for data association.

3.5. Variational Inference and Decentralization

Belief propagation [44] is generally used to obtain exact Bayesian inference for non-

loopy Markov networks. However, this method may not be appropriate for analyzing the

Markov networks such as shown in Figure 3.1 and Figure 3.3 introduced in the previous

sections for multiple target tracking, because these Markov networks are likely to contain

loops when three or more targets are linked together. In contrast to belief propagation,

variational analysis methods [70,66,135] are more flexible to the structure of the network.

Although only the approximate inference can be obtained, they provide lower bounds of

the approximation as a theoretical benefit. Thus we perform variational analysis for the

above Markov networks in this section. For clarity, we first analyze the static Markov

network and then generalize the results to the dynamic Markov network.
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The fundamental idea of the probabilistic variational method is the employment of a

variational distribution Q(X) with variational parameters as a variation of the density

we want to infer, e.g., the posterior p(X|Z) in our case. Variational analysis aims at

finding the optimal variational distribution Q∗(X) that minimizes the Kullback-Leibler

(KL) divergence between them, i.e.,

Q∗(X) = arg min
Q

KL(Q(X)||p(X|Z)) (3.7)

This is feasible when the appropriate forms of the variational densities are adopted.

For simplicity, a fully factorized form is usually employed, i.e.,

Q(X) =
M∏

i

Qi(xi) (3.8)

where Qi(xi) is an independent distribution of the hidden node xi. Since Qi has to be a

probability density function, this becomes a constrained optimization problem with the

following Lagrangian for each Qi:

L(Qi) = KL(Qi) + λ(

∫

xi

Qi − 1) (3.9)

When using the Gibbs model for p(X) in Eq. 3.3, it is easy to show the solution is a set

of fixed point equations [151]:

Qi(xi)←−
1

Z ′
i

pi(zi|xi)ψi(xi)Mi(xi), where

Mi(xi) = exp{
∑

k∈N (i)

∫

xk

Qk(xk) logψik(xi,xk)}, (3.10)
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where Z ′
i is a constant, andN (i) is the neighborhood of the subpart i, and i = {1, . . . ,M}.

The iterative updating of Qi(xi) decreases the KL-divergence and reaches an equilibrium.

These fixed point equations are called mean field equations.

The same procedure can also be applied to the dynamic Markov network when tracker

temporal dynamics model is available, and the mean field equations can be derived:

Qi,t(xi,t) ←−
1

Z ′
i

pi(zi,t|xi,t)

×
∫
p(xi,t|xi,t−1)Qi,t−1(xi)

× Mi,t(xi,t) (3.11)

where the second term
∫
p(xi,t|xi,t−1)Qi,t−1(xi) is actually very similar to the dynamics

prediction prior, i.e., p(xi,t|Zt−1).

The mean field equations are very meaningful, since they reveal a collaborative so-

lution to the very difficult Bayesian inference problem: the posterior of a target xi is

not only determined by its local prior ψi(xi) (such as the dynamics prediction prior) and

its local image likelihood pi(zi|xi), but also the beliefs of its neighborhood targets that

compete image resources against it. The influence of the competition is summarized in

the “message” term, as defined in Eq. 3.10, that is passed to xi during the mean field

iterations.

In Eq. 3.11, it is clear that the basic computation unit is the posterior estimation

for each individual tracker, therefore, the computationally demanding tracking task has

been decentralized to the set of netted trackers with the cost of communication and

collaboration. The computational complexity of the collaborative tracker is easily figured
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out to be linear with respect to the number of trackers and the number of iterations,

which is a significant improvement of the methods that deal with the joint state space

directly.

During collaborative tracking, when the competition mechanism takes place, the dis-

tribution of the trackers that are unlikely to win the competition will be diffused around

the tracker that is likely to win, until other image observations become available in the

future. Once some trackers do not compete, i.e., without motion correlation, their image

observations can be readily separated and thus these trackers will be tracked indepen-

dently. At this time, the collaborative tracker acts as the same as M.i.T..

3.6. Sequential Monte Carlo Implementation

Since the image observation likelihoods are generally non-Gaussian due to the presence

of clutters for example, it is not plausible to express the mean field equations in parametric

forms by assuming all the densities are Gaussian. Thus, we describe in this section a

sampling-based sequential Monte Carlo implementation of the mean field inference.

A set of particle is employed to represent the variational density Qi(xi) for each tracker

xi, i.e.,

qk
i (xi) ∼ {s(n)

i (k), π
(n)
i (k)}Nn=1

where s and π denote the sample and its weight and N is the number of samples. Based

on Eq. 3.11, the Monte Carlo can be summarized as in Figure 3.4.

An equilibrium will be reached after several iterations. Then the optimal variational

distributions Qi,t(xi,t) can be treated as the approximation to the posterior p(xi,t|Zt). In

general, mean field equations converge very quickly due to the nature of the fixed point.
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Although we have not obtained the rigorous results on the convergence rate, we always

observe the convergence in less than five iterations in our experiments.

The significance of the above tracking algorithm is its distributed and collaborative

mechanism, where each individual tracker is associated with a particle filter. These par-

ticle filters are not independent but competitive through message passing and mean field

iterations.

(1) Structure Determination of Markov Network:
At time t, determine the Markov network structure according to
the relative positions and performance indicators of the trackers
from time t− 1.

(2) Particle Re-Sampling:

Resample Qi(xi,t−1) for {s̃(n)
i,t−1, 1}Nn=1.

(3) Dynamics Propagation:

∀ s̃(n)
i,t−1, sample s

(n)
i,t from p(xi,t|xi,t−1).

(4) Observation Likelihood Calculation:

For each s
(n)
i,t , perform likelihood calculation

w
(n)
i,t = p(zi,t|s(n)

i,t )

(5) Iteration: Initially set k = 0 and k = k + 1:
(a) calculate the “message” from neighbors:

m
(n)
i,t (k) =

∑

j∈N (i)

N∑

m=1

π
(m)
j,t (k − 1) logψij(s

(n)
i,t , s

(m)
j,t ).

(b) Re-weight the particles by:

π
(n)
i,t (k) = em

(n)
i,t (k) × w(n)

i,t .
(c) Normalize to obtain

Qk
i,t(xi,t) ∼ {s(n)

i,t , π
(n)
i,t (k)}

.
Figure 3.4. The sequential Monte Carlo implementation for variational in-
ference of the Markov network.

Most recently, Sudderth et al [121], Isard [61] and Sigal et al [118] have developed

algorithms for the interactions among multiple particle sets. These algorithms are based

on belief propagation, while the above sequential Monte Carlo algorithm is based on

probabilistic variational analysis. Although belief propagation and mean field iteration
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share the same paradigm of message passing, the difference between them are the contents

of the “messages” and the theoretical analysis for the case of loopy graphs. Theoretically,

our sequential Monte Carlo implementation for mean field inference is a very good choice

for tracking multiple targets as described in the previous sections, which is also supported

by the extensive and very promising experiment results as will be reported in next section.

3.6.1. Mixture Density of Importance Sampling

When facing the problem of tracking variable number of targets, many existing multi-

ple target tracking approaches assume fixed backgrounds [56, 55, 63, 123, 160], since the

pixel level likelihood facilitates efficient detection of the appearing and disappearing of

the targets. We do not limit our approach to this assumption. Therefore, to make pos-

sible the capturing of the new targets in dynamic video scenes, under our autonomous

tracker network formulation, each autonomous tracker is equipped with a rough local

range detector that only searches its nearby regions. When a new target enters the video

scene, it may not be immediately sensed and tracked by any of the trackers due to their

limited monitoring areas. But their collaboration will gradually distribute them to cover

the entire image region such that the new targets can be eventually detected and tracked.

In general, the process of pickup is quick in several frames, depending on the size of the

tracker network. This is also validated in our experiments. Although this may induce

detection lag, it saves computation significantly. An extreme case is to set the detection

range of each tracker to be the entire image to obtain instant detection, but incurring

demanding computation. Thus, in practice, we need to balance between the detection lag

and the computational cost. When the target detectors are available for each autonomous



74

(1) Structure Determination of Markov Network:
At time t, determine the Markov network structure according to
the relative positions and performance indicators of the trackers
from time t− 1.

(2) Importance Sampling:

For tracker i, i ∈ M , generate new samples {s(n)
i,t }Nn=1 from impor-

tance function Ii,t(xi,t).
(3) Importance Re-weighting:

For each s
(n)
i,t , set its re-weight

ω̃
(n)
i,t = [

∑N
m=1 π

(m)
i,t−1p(s

(n)
i,t |s

(m)
i,t−1)]/Ii,t(s

(n)
i,t )

(4) Observation Likelihood Calculation:

For each s
(n)
i,t , perform likelihood calculation

w
(n)
i,t = p(zi,t|s(n)

i,t )

(5) Iteration: Initially set k = 0 and k = k + 1;
(a) calculate the “message” from neighbors:

m
(n)
i,t (k) =

∑

j∈N (i)

N∑

m=1

π
(m)
j,t (k − 1) logψij(s

(n)
i,t , s

(m)
j,t ).

(b) Re-weight the particles by:

π
(n)
i,t (k) = em

(n)
i,t (k) · w(n)

i,t · ω̃
(n)
i,t .

(c) normalize to obtain

Qk
i,t(xi,t) ∼ {s(n)

i,t , π
(n)
i,t (k)}

.
Figure 3.5. The sequential Monte Carlo variational inference of the au-
tonomous tracker Markov network for tracking variable number of targets

trackers, a more effective way to generate the new sample set {s(n)
i,t , π

(n)
i,t }Nn=1 of tracker i for

the current time instant t in algorithm 3.4 is through the collections of target detections

reported from each local region target detectors. The target detections then function as

the bottom-up data driven process to design informative importance functions to guide

the particle sampling [95,111].

At time t, tracker i detects C potential targets within its monitoring area, and each of

these detections is depicted by the detected location and scale {Oc,t, c ∈ C}. We construct
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the following mixture density as an effective importance function:

Ii,t(xi,t) = α[
∑C

c=1 ωc,tN(xi,t|Oc,t,
∑

c,t)]

+(1− α)[p(xi,t|xi,t−1)] (3.12)

where N is a Gaussian density with mean vector Oc,t and diagonal covariance matrix
∑

c,t,

the Gaussian mixture weights ωc,t are empirically determined based on the detection’s

location relative to the current position of the tracker. The parameter α balances between

target detection and tracker’s dynamics. When the tracker is under good conditions, α

should be small and the sensing region for tracker’s target detection will also be reduced

such that the dynamics model plays the dominant role. On the other hand, if the tracker

is experiencing a tracking failure or unable to detect anything, α will become large and

the detection region will also expand to facilitate the search of the lost target or any

potential new targets.

Therefore, under the scenarios of autonomous tracker network inference for tracking

variable number of targets, the sequential Monte Carlo implementation of the proposed

collaborative tracker can be summarized as in Figure 3.5.

3.7. Experiments

In this section, we report our extensive experiments of the proposed decentralized

Markov network formulation to track fixed and variable number of targets.
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3.7.1. Tracking Fixed Number of Targets

Extensive and comparative experiments on both synthetic and real data to track fixed

number of “identical” targets are reported in this section. In all these experiments, the

individual tracker is a 2D appearance-based region tracker, in which the target state xi is

modelled by 2D affine parameters, the dynamic model p(xi,t|xi,t−1) is a 2nd order dynamic

model, the likelihood function p(zi|xi) is calculated by matching a PCA-based appearance

model which is trained in advance, and 200 particles are used to represent the posterior

of each target state. In all these experiments, our collaborative tracker runs comfortably

at 15-20 fps on a PIV 2GHz PC.

3.7.1.1. Proof-of-concept. To clearly demonstrate the basic idea and the correctness

of our approach, we firstly test our algorithm by a synthetic video sequence, in which five

identical and moving tennis are casted into a real dynamic scene. This synthetic testing

case prevents the subtraction of the background to obtain easy detection of the targets.

Each tennis presents an independent const velocity motion and is bounced by the image

borders. This sequence challenges many existing method due to the frequent presence of

occlusions.

Figure 3.6. MFMC tracker: 5 tennis in a synthetic video. The blue links
among the targets illustrate the structure of the ad hoc Markov network.

Equipped with the competition mechanism, our collaborative tracker performs excel-

lently. Sample frames from the results are shown in Figure 3.6.We use different colored
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rectangles to display the estimated target positions. An index is also attached to each

rectangle to identify these tennis uniquely. The blue lines in Figure 3.6 that link the

different targets are the visual illustration of the structure of the ad hoc Markov network.

Therefore, by observing the changing structure of the network over frames, we can clearly

learn that which tennis are subject to the collaborative inference and which are simply

being tracked by an individual tracker.

Although our collaborative tracker does not deliberately address the identity switching

problem, we find in our experiments that our approach seems to have such a capability to

nicely handle this problem when combined with motion coherence and dynamic predic-

tions. This can be easily validated by the subjective evaluation on the tracking sequence.

We also compare our results with those obtained by the multiple independent trackers,

as shown in Figure 3.7. The number of particles for each target in the M.i.T. algorithm

is the same as in our algorithm. However, M.i.T. can not produce satisfactory results,

where the coalescence problems always happen during the tracking.

Figure 3.7. M.i.T. tracker: 5 tennis in a synthetic video.

3.7.1.2. Lab Environments. The second and third test sequences are taken in the

laboratory environment. In the second sequence, a person is moving a tennis to cross

behind a row of other 4 tennis that act as several identical camouflages. Obviously,

the occluding tennis increase the burden of correct tracking of the occluded tennis. As

expected, our collaborative framework can still effectively handle the difficulty and lead



78

to a very robust tracking to the occluded target, even successfully keeping the identity of

those five tennis. Sample frames of the results are shown in Figure 3.8.

Figure 3.8. MFMC tracker: a tennis moving behind a row of 4 tennis. The
blue links among the targets illustrate the structure of the ad hoc Markov
network.

The third sequence contains 2 moving tennis and 3 still tennis, where different configu-

ration of the structure of ad hoc Markov network is intentionally exploited by changing the

positions of the two movable tennis. Once again, our collaborative framework successfully

keeps tracking those five tennis. Sample frames are shown in Figure 3.9.

Figure 3.9. MFMC tracker: 2 tennis moving around 3 static tennis. The
blue links among the targets illustrate the structure of the ad hoc Markov
network.

Figure 3.10. MFMC tracker: two people walking. The blue links among
the targets illustrate the structure of the ad hoc Markov network.

3.7.1.3. Real Scenarios. Both our collaborative tracking framework and M.i.T. track-

ers have been tested on real scenarios. In the first scenario, two persons are walking
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around in the scene and occlusion continuously happens between these two persons. It is

easy for our collaborative tracker to obtain very robust results, as shown in Figure 3.10,

while M.i.T. can not work well as shown in Figure 3.11.

Figure 3.11. M.i.T. tracker: two people walking.

Finally, three more real sequences that contain many challenging occlusion cases are

tested. As expected, our new method provides robust and stable results, as can be seen

in Figure 3.12, Figure 3.13, Figure 3.14.

Figure 3.12. MFMC tracker: three women soccer players drilling. The blue
links among the targets illustrate the structure of the ad hoc Markov net-
work.

Figure 3.13. MFMC tracker: three faces tracking. The white links among
the targets illustrate the structure of the ad hoc Markov network.
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Figure 3.14. MFMC tracker: three human walking around. The white links
among the targets illustrate the structure of the ad hoc Markov network.

3.7.2. Tracking Variable Number of Targets

To demonstrate the capacity of autonomous tracker network formulation for tracking

variable number of targets, the proposed framework discussed in 3.4 is implemented to

perform experiments on tracking sports players in real-life video sequences of soccer and

hockey games. In both these experiments, a set of 16 trackers is casted to cover the

changing background scenes. Each tracker is equipped with an object detector, which is

trained using AdaBoost, to help sense the potential appearing sports players within its

local range. The training data of the detector for each testing sequence is collected by

manually labelling the sports players regions from randomly selected 50 frames of that

sequence.

The individual tracker is a rectangle region tracker, where the target state xi is mod-

elled by 2D similarity transformation parameters, i.e. translation and scale. The dynamics

model p(xi,t|xi,t−1) is either a constant acceleration model or a uniformly random walk

model depending on the performance indicator ri,t−1, as described in section 3.4.1. The

likelihood function p(zi|xi) is a color-histogram based observation model built in HSV

color space, which is known insensitive to illumination changes. The histogram model

of the target is also trained using the same data set as of training AdaBoost detector.

100 particles are used to represent the posterior of each tracker, which leads to only 1600
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particles in total, linear with the number of trackers, to monitor the appearing and disap-

pearing of sports players in the highly dynamic scenes. Under this parameter setting, our

collaborative trackers runs around 15 fps on a P4 2GHz PC (Note that our decentralized

scheme is theoretically parallel at the algorithm-level, therefore with code optimization,

much faster performance can be easily achieved).

We firstly test the proposed approach on tracking multiple soccer players in a video

sequence of soccer match, in which the appearing and disappearing of players often happen

along the sequence. The maximum number of players simultaneously presenting in the

scene is 8. Note that in this sequence there are two team players, one is wearing white

sports clothes, while the other is wearing red. Therefore, our 16 trackers are equally

divided into two sets, which share the same trained object detector but have different

image likelihood functions, each specifically trained for one team.

The gradually detecting of the present soccer players in the viewing scene is shown in

Figure 3.15 that are corresponding to the 2, 18, 29 frames of the sequence respectively.

The casted autonomous trackers, which are inactive initially, start to roam around the

scene with random walk to sense their potential targets, while at the same time forcing

their neighboring inactive ones to search around other unchecked areas by communicating

with them through variational message, as shown in Figure 3.5. In general it will lead to a

roughly uniform coverage over the whole image area as can be seen in Figure 3.15. The red

thick rectangles in the Figure illustrate the active trackers which have successfully locked

on targets, while the thin blue ones mean they are inactive and still roaming around to

search for any potentially new targets. Labels are also displayed to help identify each

tracker uniquely.
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Figure 3.15. Soccer player detections using 16 autonomous trackers with
local range AdaBoost detector, frame numbers are 2, 18, 29 respectively.
The red thick rectangles illustrate active trackers, while the thin blue means
inactive ones. See text for details.

.

Some selected tracking results of the proposed approach are demonstrated in Fig-

ure 3.16 (Inactive trackers are not displayed for better illustration). The present soccer

players are successfully tracked with uniquely assigned identifiers even under the severe

interactions and occlusions. The involved collaborations among targets are depicted by

the blue links representing the edges in the underlying Markov network structure (Please

note that the network structure changes with time as shown in the Figure). With the help

of collaborations among targets, the coalescence problem is successfully handled along the

whole sequence.

Figure 3.16. Tracking soccer players using the proposed approach, frame
number 59, 75, 127, 186, 233. The blue links among the targets illustrate
the structure of the Markov network. Please see the attached video for
details.
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In comparison, 16 multiple independent trackers M.i.T. are also tested to perform

detecting and tracking with the same sequence. Every setting is the same as above except

the missing of collaborative message passing. The comparison results using the proposed

approach and M.i.T. are demonstrated in Figure 3.17, where the left column in the Figure

is the original source frames, the middle column corresponds to our proposed approach,

and the right one is the results from M.i.T.. For clear illustrations, only the tracking

results from the pink areas of the original frames are shown in the middle and right

columns. The frame numbers are 141 (top), 215 (bottom) respectively. In the following,

for clarification purpose, all the identifiers we described are corresponding to the players

in the proposed approach, i.e. the identifiers in the middle column, since there identities

are maintained correctly for each player. In frame 141, the M.i.T. loses tracking the red

team player 9 due to his previous crossing with the player 8. Actually, this interaction

between these two players can be clearly seen in the frame 127 of Figure 3.16. In frame

215, the coalescence problem becomes more severe in the M.i.T. case, where the player

9, although previously lost in frame 141, and then sensed and tracked by other nearby

inactive trackers, also “hijack” the tracker of the player 8, which leads to the lose track

of player 8. In M.i.T., although the set of trackers equipped with the object detector

may successfully cover all appearing targets within the dynamic scene, the inevitable

coalescence problem there will result in targets identity switching, then dramatically hurt

the tracking performance.

Secondly, a video sequence captured from a hockey game is tested, in which many

hockey players appear and disappear in the field and present severe interactions. The

tracking results of the sequence are originally reported in [95], which therefore provides
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Figure 3.17. The comparison results of tracking soccer players using the
proposed approach (middle column) and M.i.T. (right column). Left column
is the corresponding source frames, where the pink areas are the actual
showing regions in the middle and on the right for better illustration. Frame
numbers are 141 (top), 215 (bottom). The blue links among the targets in
the middle column illustrate the structure of the Markov network. See text
for details.

a direct comparison of our algorithms with theirs. By explicitly introducing the collabo-

rative mechanisms among the spatial adjacent trackers, our proposed approach robustly

follows most of the hockey players and handles the coalescence problem satisfactorily,

as can be seen in Figure 3.18, while in [95], a simple K-means clustering is proposed

to maintain multiple modalities of the underlying particle filtering, therefore may easily

result in the identity confusions of hockey players before and after clustering. Please note

that the few hockey players are not successfully sensed in the sequence, which are mainly

due to the imperfect object detector since it is only trained based the labelled data from

50 frames of the sequence.
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Figure 3.18. Tracking hockey players with the proposed approach, frame
number 31, 39, 63, 64, 115. The blue links among the targets illustrate the
structure of the Markov network. Please see the attached video for details.
The authors acknowledge Mr. Kenji Okuma for providing the test data on
the website.

3.8. Discussions

Tracking multiple targets is a challenging problem, especially when similar or identical

targets move close or occlude with each other. In this case, coalescence that means the

tracker associates more than one trajectories to some targets while loses track for others

can not be solved by simply instantiating multiple independent trackers. In this chap-

ter, we present a novel decentralized approach with linear complexity to the coalescence

problem. The basic idea is the collaborative inference mechanism, in which the estimate

of an individual tracker is not only determined by its own observation and dynamics, but

also through the interaction and collaboration with the estimates of its adjacent track-

ers, which leads to a competition mechanism that enables different trackers to compete

for the common image observations. The theoretical foundation of the new approach is

based on Markov networks, in which the links of the network introduce the competition

for image resources among trackers. Variational analysis of this Markov network reveals a

mean field approximation to the posterior density of each tracker. Therefore a sequential

Monte Carlo algorithm is designed to efficiently implement this mean field approximation

inference by simulating the competition among a set of low dimensional particle filters.
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To enable the framework to track variable number of targets, we further propose a

modified Markov network based on a set of autonomous while collaborative trackers. The

autonomous means each individual tracker is self-aware since it can determine its own

status, such as following a target or sensing potential new targets by an entropy-based

evaluator. In addition, a trained target detector is incorporated to help sense the potential

newly appearing targets in the dynamic scene, therefore background subtraction is not

necessary to our method. The use of object detectors within each tracker also supports

the construction of an effective importance function, which leads to an more effective

variational inference.

Since the proposed approach of collaborative tracking multiple targets is a general

framework, it does not make any assumptions about the individual autonomous tracker.

Therefore we are expecting to incorporate any promising progresses from the robust single

target tracking methods into our formulation. One of the representatives is on-line feature

selection in [21], where by exploiting the possible disjoint set of discriminative features for

multiple targets when they are spatially far away, then when they are coming close, by

constraining the corresponding trackers only employ the discovered disjoint feature set,

the switching identity problem may be more reliably solved.
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CHAPTER 4

Statistical Field Model for Pedestrian Detection

4.1. Introduction

The research of human detection and tracking has received more and more attentions

in recent years, due to the drive from many emerging applications such as perceptual

interfaces, ubiquitous computing and smart video surveillance [23, 46,102,103]. Different

applications are concerned with different image resolutions of the subjects, thus requiring

different techniques. For example, in perceptual interfaces, the motions of the human

body parts need to be determined for action recognition, thus these applications require

fairly high resolution for analyzing the articulated motion of the body parts. In contrast,

in many video surveillance applications, since the human typically is associated with

small image regions, the human needs to be treated as a nonrigid entity for detection and

tracking, while the detailed motion of the body parts is no longer the major focus here.

This chapter addresses the detection and tracking problem in the latter context.

Remind that we have shown in previous chapters: one of the conclusions we can

make for multiple target tracking is that a successful multiple target tracking algorithm,

such as multiple pedestrian tracking for intelligent video surveillance in our consideration,

may be largely benefited from the availability of a robust object detection component.

The existence of a reliable object detector will be able to help collect the valid target

observations from each video frame, which will not only reduce the number of wasted
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samples due to inaccurate dynamics model, but also provide some informative clues to

guide the trackers searching around some more possible areas where the targets may move.

In addition, in order to track variable number of targets under a distributed fashion as

shown in the previous chapter, an object detector is also indispensable for triggering

the possible tracker initialization for every newly appearing target in the video scene.

Therefore, in this chapter, we devote ourselves into the investigations of some robust

object detector, which, according to our interest, should be particularly suitable for the

detections of pedestrians in surveillance video.

A critical issue in object detection and tracking is to calculate the likelihood p(Z|y) of

the image measurements Z given the rigid motion parameters y (such as the location, the

orientation and the scale) of the target. If the target presents apparent visual invariants

(or features), calculating the image likelihood is straightforward. For example, despite

the uncertainty in the visual appearances, frontal faces have a similar image pattern

that allows the use of the Harr features for face detection [128]. On the other hand,

if apparent invariants are not available, we have to break the image likelihood p(Z|y)

into a set of conditionals p(Z|y,X) and integrate them, where X for example can be the

nonrigid motion of the target. If X is complicated, calculating such an integration can be

very difficult, leading to the nontrivial nature of detection and tracking in this scenario.

Unfortunately, this is the case when treating the human as a nonrigid entity.

Although the research of object detection has greatly moved forward with the success

of face detection, these face detection methods may not apply to human detection. The

visual appearances of the human present tremendous variabilities while lacking apparent

visual invariants, as the diversified clothing and the body articulation may significantly
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change the image of a person. In addition, handling partial occlusion is more concerned

in detecting humans, because the human detector in practice should be robust to the

missing body parts, but most existing methods are limited to cope with this difficulty.

Therefore, it is desirable to investigate new human detection methods that cope with the

large uncertainty of the visual appearances and are robust to partial occlusions. This

chapter addresses these two difficulties.

Because the human-like shapes are more or less unique in the real world, they may

provide a powerful clue for human detection and tracking [30, 47, 126]. The difficulty

of analyzing human shapes lies in the fact that the local shape nonrigidity has a large

number of degrees of freedom thus having very complicated uncertainties, which makes

rule-based methods unsuitable. Thus, learning-based methods are generally adopted for

learning the shape distributions from training data. If the uncertainty is simple, para-

metric methods such as Gaussian models or Gaussian mixture models can do a good job,

e.g., in face shape [26]. Unfortunately, because of the local nonrigidity, the uncertainty in

human shapes is too complex to be sufficiently modelled by reasonable Gaussian mixture

models. On the other hand, non-parametric methods, e.g., by using exemplars [47], can

be quite flexible. However, we need a huge set of exemplars to represent the concept of

the human-like shapes in order to accommodate the possible variations. As a tradeoff,

because the Gibbs distribution is flexible to capture a large variety of densities, it can

naturally be employed for this task. This idea has been exploited for modeling the face

deformations [83], where the face is represented as a random vector and an inhomogeneous

Gibbs distribution can be learned from training data. Although this model is complicated
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and needs quite involved training, its excellent performance suggests that the Gibbs dis-

tribution be useful for characterizing the large and complex variabilities of the human-like

shapes.

Unfortunately, it is difficult for the above learning-based methods to handle partial

occlusions, because it is not practical, if not impossible, to have the training data that

cover all possible situations of partial occlusions. Actually, this difficulty roots in the fact

that these methods represent a pattern as a centralized random feature vector. Thus, the

missing elements due to occlusion will greatly change the feature vector, thus affecting the

classification dramatically. Different from such vectorized methods, the component-based

methods [90, 105] divide the entity into parts and take advantage of the structures or

correlations of the parts. They have demonstrated excellent performances on detecting

partial occluded targets, suggesting that we need to go beyond the vectorized models.

The contribution of this chapter is a new non-vectorized method based on a two-layer

field model for detecting and tracking complex targets such as the human. This new

method stands out because of its robustness to partial occlusions, which is difficult for

the vectorized methods.

Different from most existing methods, this new approach embeds the complicated

nonrigid shape prior into a statistical field and distributes the complex image likelihood

to the local sites of the field. This new model has two layers. The hidden layer is a hidden

Markov field that captures the shape prior. Every node of this Markov field is associated

with an observation node describing the conditional likelihood of image observations of

this hidden node, thus constituting the observation layer of this field model. We model the

prior of the nonrigid human shapes as a Boltzmann distribution. Although it is a special
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Gibbs distribution, our method is different from [83], because we do not characterize the

Boltzmann distribution directly in a vector space, but distributing it into the Markov field.

This treatment results in quite simple inference and learning algorithms in both theory

and practice. Although the structure of this field model is similar to that in [44], the

difference is apparent, as our method employs probabilistic variational analysis that leads

to rigorous and elegant analytical approximations [66, 70]. Another theoretical benefit

is that the image likelihood estimates are lower bounded. This new approach enables

effective and efficient detection and tracking algorithms for many nonrigid objects such

as pedestrians.

This new approach has a number of advantages over many existing methods. Firstly,

since this model employs a field rather than a vector to describe a shape, it can sufficiently

capture the local variabilities of the shape by the local network structure, thus enabling

accurate modeling of the complex shape prior. Secondly, since the model captures shape

variabilities and performs image measurements in a distributed fashion, it is more robust

against occlusion than the vector-based global approaches (such as PCA) in which image

measurements have to be performed in a centralized fashion, i.e., conditioned on all shape

parameters. In addition, having an observation layer leads to more flexibility and robust-

ness for handling cluttered backgrounds. Thirdly, the variational approximation provides

a computationally efficient way to compute the likelihood of image observations, to infer

the hidden states of the model, and to facilitate fast learning. Last but not least, it in-

tegrates the top-down and bottom-up methodologies for tracking nonrigid objects. The

top-down approaches involve evaluating a large number of hypotheses, and the bottom-up

approaches require large efforts in grouping and detection. Given the huge variabilities in
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the nonrigid human shapes, neither approach would be satisfactory, because the number

of hypotheses would be tremendous and grouping a nonrigid object is very difficult. The

proposed tracking method is able to balance these two methodologies and to combine the

advantages of both: the global variabilities are handled in a top-down fashion by particle

filtering [12,62], while the local nonrigidity is coped by an bottom-up approach by directly

evaluating the likelihood of image measurements.

The chapter is organized as the following. After a brief description of the related

work in Section 4.2, we present the two-layer field model in Section 4.3. The probabilistic

variational analysis of this model is given in Section 4.4, and the learning algorithm is

presented in Section 4.5. Section 4.6 describes our methods for pedestrian detection and

tracking, and our extensive results are reported in Section 4.7. The chapter concludes in

Section 4.8.

4.2. Related Work

In the past decades, many methods have been proposed for object detection, mainly

for the human face and cars. They are based on different classification schemes. Neural

network has been employed for detecting faces [110] by classifying the candidate image

patches into face or non-face classes. A learned histogram model for wavelet coefficients

can be used for face/car detection [112], because the histograms approximate the distribu-

tions of object features for discrimination. In addition, combined with the Harr features,

the AdaBoost classifier has been very successful for frontal face detection [128], and has

been extended for pedestrian detection [129] with the help of motion information. Support

vector machines are also widely used in the detection tasks [96,98].
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But most existing approaches seem not to be suitable for the detecting targets with

large shape variations, such as the pedestrian. For example, methods based on the raw

pixel features, such as [97,110], can not handle large variability of the appearances of the

pedestrian. It turns out the shape features of these deformable targets need to be used.

The research of nonrigid shape analysis has a long history, and various approaches

have been proposed and investigated. For all these methods, three important common

issues should be addressed, i.e., the shape representation X, the shape prior p(X) and the

conditional likelihood of image observation p(Z|X). (Here we drop the rigid motion y for

clarity.)

Different shape representations can be categorized into either parametric or non-

parametric models. Examples of parametric representations includes Fourier descriptors,

B-splines [12, 71], the deformable template [158], etc, where shape deformation is con-

trolled by the shape parameters and smoothness constraints. A typical non-parametric

representation is the point distribution model [26] where a shape is described by an or-

dered and labelled set of landmark points, and the shape deforms when the points change.

Although it provides great flexibility, registration of landmark points is not a trivial task.

An even radical approach is to use a 2D mask [47,69,126], where the shape deforms when

multiplying by a sparse permutation matrix [69], or selecting different exemplars [47,126].

In all these representations, a deformable shape is mapped to a point in a vector space

(i.e., the shape space), although the dimensionality varies for different approaches. These

vectorized models are global, since the image observations are conditioned on all the

shape parameters. Thus, these global methods are generally not likely to be able to
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cope with partial occlusions, unless the training data have incorporated all possible oc-

clusion situations. In this chapter, rather than using a global representation, we propose

a field representation, with which the complex variabilities of the nonrigid shape and the

occlusion difficulty can be handled easily.

Obviously, in reality, a shape can not be allowed for arbitrary deformation, thus we

should characterize the allowable shape space by having a shape deformation prior model

p(X). An idea is to reduce the correlations among different shape parameters, and model

the variance of deformation by a multivariate Gaussian distribution in a lower-dimensional

subspace. This is the spirit of the principal component analysis (PCA), and has been

widely adopted for learning deformation priors [12, 26]. Since PCA identifies a linear

subspace and catches linear correlations, it is powerful to capture and decorrelate cer-

tain global deformations, but insufficient for the local nonrigidity. Thus, it motivated the

methods that use mixture distributions [69] or exemplar databases [47, 126]. Although

mixture distributions can represent arbitrarily complicated densities in theory, it becomes

unrealistic when the number of mixtures increase tremendously. To alleviate this diffi-

culty, an inhomogeneous Gibbs model has been proposed and applied successfully to face

deformation [83], although the model needs expensive training. The approach proposed

in this chapter also models the shape deformation prior, but instead of modeling the prior

in a global fashion, our approach is based on the field representation, and the prior, i.e., a

Boltzmann distribution (a specific Gibbs distribution), is distributed into a Markov field,

and a variational analysis is employed for analytical results (details in Section 4.3 and 4.4).

The new approach stands out from the existing methods by this new representation.
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Different approaches have been investigated to fit a shape model to image observations.

This can be done through minimizing an energy function [71], or based on the Bayesian

framework where it is important to characterize the conditional likelihood of image obser-

vation p(Z|X). Analytical forms can be obtained by assuming the independence among a

set of discrete points on shape contours [12,86]. To bypass the independence assumption

which may be invalid in reality, the conditional likelihood can be modelled as a metric

exponential density obtained from the Chamfer distance based on exemplars [126]. When

separating global motion from local nonrigidity, the likelihood conditioned on only global

motion can be obtained by the mixture (integral) of all exemplar components in the met-

ric mixture model [126]. The proposed approach in this chapter also provides tractable

ways to calculate the likelihood only conditioned on global motion, but the differences

from [126] are: (a) in our model p(Z|X) factorizes by independent components, and (b)

p(Z) is an integral over almost infinite number of X instead of a finite set of exemplars,

and our method obtains a lower bound of p(Z).

There have been many excellent works on nonrigid shape matching [7, 19, 27, 106,

115]. These methods are more concerned with the matching of extracted shapes for

shape registration, where the nonrigid motion needs to be explicitly estimated, while this

chapter is more concerned with integrating out the variabilities of the nonrigid motion.

In addition, since this chapter is based on field model, it is also related to Markov random

fields (MRF) that have been widely used for image restoration [49], texture analysis [163],

surface reconstruction [48], etc. This chapter extends MRF to a two-layer model that

consists of a random field and an image observation layer. It is more like the Markov

network [44, 130]. The detailed differences will be presented in later sections. More
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importantly, this chapter deals with the nonrigid target detection and tracking problem

that has not been addressed by the above methods.

4.3. The Field Representation

Global methods such as PCA are suitable for capturing the global deformation with

a set of uncorrelated deformation basis. But they tend to ignore the detailed local vari-

ations induced by the nonrigidity and they are generally vulnerable to partial occlusion.

Therefore, it is desirable to have a model that can handle the large number of degrees of

freedom of the local nonrigidity and is robust to occlusion. In this chapter, we propose

a two-layer field model as the representation. This is not a vectorized and centralized

model but a field and distributed model, as shown in Figure 4.1.

Figure 4.1. A two-layer field representation for nonrigid objects.

This field model consists of two layers. The hidden layer is a hidden random field that

represents the shape, modelled as an undirected graph Gx = {V,E}, where each vertex

(or node, or site) represents the hidden shape scene xk to be inferred. In this model, xk

takes binary values, i.e., xk ∈ {0, 1}, where xk = 1 means that node k is on the object’s
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contour. Each hidden node is connected to its neighborhood nodes N (k), thus forming a

field.

This hidden random field captures the prior of the shape and needs to be inferred

from image observations. The feasible shape changes is described by the joint probability

of all hidden nodes, i.e., X = {x1, . . . , xn}. We assume p(X) to be a Gibbs distribution.

Because we embed this Gibbs distribution in the random field, it can be equivalently

factorized as:

p(X) =
1

Zc

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi) (4.1)

where ψi and ψij are the potential functions associated with site i ∈ V and the link

(i, j) ∈ E, and Zc is a normalization term or the partition function. Specifically, because

xi is binary in our setting for modeling the shape, p(X) becomes a Boltzmann distribution,

i.e.,

p(X) =
1

Zc

∏

(i,j)∈E

eαijxixj

∏

i∈V

eβixi (4.2)

where {αij, βi : ∀(i, j) ∈ E, i ∈ V }, are parameters which can be learnt from training data

(see Section 4.5).

The other layer is the observation layer, through which the shape is associated with

its image measurements. As shown in Figure 4.1, each hidden node xk is associated

with an observation node zk representing the image observation produced by xk, which

is characterized by the conditional probability p(zk|xk). The observation of the shape is

the collection of the image observations for all sites, i.e., Z(y) = {z1, . . . , zn}, where y is

the global motion. This is a distributed likelihood model. Without causing confusion, we
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denote Z(y) by Z for short in later sections. We have:

p(Z|X) =
n∏

k=1

pk(zk|xk). (4.3)

Thus, the model in Figure 4.1 is fully characterized by {αij, βi, pi}, where pi = pi(zi|xi),

and we denote the model by λ = {αij, βi, pi}.

This two-layer field model is suitable for describing local nonrigidity and is robust

to occlusion, because of the following reasons. (a) Since the neighborhood sites of the

shape are generally correlated, this model captures the correlations and constraints among

neighbor sites rather than simply treating them independently, thus resulting in more

accurate modeling. (b) The Boltzmann distribution can capture complex distributions

which can not be represented by Gaussian or mixture of Gaussian, thus providing more

powerful priors. (c) Because the observation model p(Z|X) is distributed over the field

(i.e., the shape), wrong estimates on some part of the field may not ruin the other parts

of the shape, thus leading to the robustness to partial occlusion.

Within this model, we need to solve two key problems:

(1) Calculating the likelihood p(Z|λ). However, this is not a trivial problem, since it

involves the integral of all possible configurations of X, i.e.,

p(Z|λ) =

∫

X∈X

n∏

i=1

pi(zi|xi)p(X)dX. (4.4)

The key to solve this problem is to design an effective inference algorithm that

estimates the posterior p(X|Z, λ) and its marginals p(xi|Z, λ).
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(2) Learning model parameters λ. These parameters need to be estimated from train-

ing data. Without causing any confusion, we usually denote p(·|λ) by p(·) for

short.

The learning problem is closely related to the likelihood problem, because the solu-

tion to the learning problem relies on the inference of the model (i.e., the estimation

of p(X|Z, λ)). Therefore, we present an analytical approximation to the likelihood in

Section 4.4, and the solution to the learning problem in Section 4.5.

4.4. Variational Inference

The field model introduced in Section 4.3 is a high dimensional stochastic system,

because it consists of a large number of random variables (or nodes). Thus, solving

the observation likelihood p(Z|λ) and the posterior p(X|Z, λ) involves computationally

intensive multi-dimensional integral over p(X,Z|λ). Although the Markovian property of

the structure of p(X|λ) simplifies the problem, the exact analysis for such a model is still

prohibitive due to the loopy structures of this field model.

Thus, approximated but computationally efficient analysis methods are of special in-

terests. Probabilistic variational approximation is one of these methods. Here, the general

approach of the variational analysis for the field model is given in Section 4.4.1, and the

deduced Boltzmann field for nonrigid shapes is presented in Section 4.4.2.

4.4.1. Probabilistic Variational Analysis

The core idea of probabilistic variational analysis is to find an analytical and simple

variational distribution Q(X) from a variational family to approximate the complicated
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posterior probability p(X|Z), such that the Kullback-Leibler (KL) divergence of these two

distributions is minimized.

To see this clearly, we follow Jaakkola & Jordan [66] and formulate an optimization

problem to solve p(Z) and p(X|Z) simultaneously. We can write an objective function as:

J(Q) = log p(Z)−KL(Q(X)||p(X|Z))

= log p(Z)−
∫

x

Q(X) log
Q(X)

p(X|Z)

= −
∫

x

Q(X) logQ(X) +

∫

x

Q(X) log p(X,Z)

= H(Q) + EQ[log p(X,Z)] (4.5)

where H(Q) is the entropy of Q(X) and EQ[·] denotes the expectation w.r.t. Q(X). It

is easy to see that log p(Z) is lower bounded by J(Q), since the KL divergence is non-

negative. By maximizing the lower bound J(Q) w.r.t. Q, we can obtain an optimal

approximation of p(X|Z) by Q∗, and a closest value of log p(Z) by J(Q∗).

The spirit of this variational approach is to find the best approximation of p(X|Z)

within a given variational family Q(X). When such a variational family has good an-

alytical properties, such as having independent components, or sparse correlations, or

factorized forms, analytical approximation can generally be expected. Although the se-

lection of the variational family Q(X) can be arbitrary, an appropriate Q(X) will make

big difference on analyzing. Here, we adopt a fully factorized form:

Q(X) =
n∏

i

Qi(xi) (4.6)
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where Qi(xi) is an independent distribution of the hidden node xi. Then, we can write

the entropy of the variational distribution as:

H(Q) =
∑

i

H(Qi).

Such a fully factorized variation leads to the mean field approximation. To see this

clearly, we minimize the KL divergence with respect to Q(X). It can be easily shown (in

the Appendix 8) that the optimal approximation is made of a set of interrelated Gibbs

distributions:

Qi(xi) =
1

Zi

eEQ[log p(X,Z)|xi], i = {1, . . . ,M} (4.7)

where Zi is a normalization constant, and EQ[log p(X,Z)|xi] is the conditional expectation

given xi. The set of equations in Eq. 4.7 are fixed point equations. The iterative updating

of Qi(xi) will monotonically increase J(Q) and eventually reach an equilibrium. These

equations can be called as mean field equations.

Eq. 4.7 gives a general solution with a very general form of Q(X). Furthermore, when

taking advantage of the special factorization property of p(X) in Eq. 4.2 and p(Z|X) in

Eq. 4.3, we can easily obtain a further simplification. Given the structure of this field

model, it is easy to shown that:

Qi(xi)←−
1

Z ′
i

pi(zi|xi)ψi(xi)Mi(xi), where

Mi(xi) = exp{
∑

k∈N (i)

∫

xk

Qk(xk) logψik(xi, xk)}, (4.8)
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where Z ′
i is a normalization constant, and N (i) is the neighborhood of the site i. The

iterative updating of Qi(xi) based on these mean field equations will monotonically in-

crease J(Q) as well and eventually reach an equilibrium. From Eq. 4.8, it is interesting to

notice that the variational belief of a hidden node xi is determined by three factors: the

local conditional likelihood pi(zi|xi), the local prior ψi(xi), and the neighborhood prior

Mi(xi) from the constraints of the neighborhood nodes xN (i). This can be treated as a

generalized Bayesian rule for the field model.

Thus, we can treat the term pi(zi|xi)ψi(xi) as the local belief of xi, and treat the term

Mi(xi) as the “message” propagated through the nearby nodes of xi. This method is

actually different from the belief propagation algorithm [44], due to its use of variational

analysis and to the different contents in the “messages”. In our method, the computation

of Mi(xi) is easier than belief propagation, because of the factorization in the variational

distribution. In addition, we can clearly see from this equation that the computation

is significantly reduced by avoiding multi-dimensional integral, noticing Eq. 4.8 involves

only one dimensional integral.

4.4.2. Boltzmann Field

The derivations described above was only based on the factorization properties of Q(X),

p(X) and p(Z|X). Thus the result is quite general. When using the field model for

nonrigid shapes, since xi are binary random variables (i.e., xi ∈ {0, 1}), we can employ

a Boltzmann distribution for p(X), as introduced in Section 4.3 and Eq. 4.2. Since xi is
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binary, we can choose a specific variational distribution here:

Q(X) =
n∏

i

µxi

i (1− µi)
(1−xi), (4.9)

where {µi} are variational parameters to be estimated. Under this variational distribution,

the mean field equations Eq. 4.8 can be further simplified as:

µi =
pi(zi|xi = 1)mi

pi(zi|xi = 0) + pi(zi|xi = 1)mi

, (4.10)

where,

mi = exp{
∑

j∈N (i)

αijµj + βi}.

We can call it a Boltzmann field. This set of mean field equations in Eq. 4.10 are much

simpler than Eq. 4.8, since they only involve a finite set of variational parameters, rather

than a set of Gibbs distributions. As a result, the computation is quite straightforward.

Similar results have also been obtained by Jordan et al. [70], Peterson and Anderson [104].

Then based on this particular variational setting and the result above, Eq. 4.5 becomes:

J(Q) =
∑

i

H(Qi) +
∑

(i,j)∈E

αijµiµj +
∑

k∈V

µkβk

+
∑

k∈V

(1− µk) log pk(zk|xk = 0)

+
∑

k∈V

µk log pk(zk|xk = 1)− logZc (4.11)

We admit that J(Q) can not be fully computed, because of the complexity of calculat-

ing logZc. Instead, it is simple to compute J̃(Q) = J(Q)+logZc in practice. Fortunately,
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it is not necessary to calculate logZc, because once we find an optimal mean field distri-

bution of Q∗, we readily have:

p(Z) ∝ eJ̃(Q∗),

which is enough for our application of detection and tracking in Section 4.6.

4.5. Learning

This section discusses the problem of learning model parameters λ = {αij, βi, pi}

from training data. The solution of this model learning problem is in the expectation-

maximization (EM) framework, where the core of the expectation step is the inference

of the hidden field described in Sec. 4.4. In our method, the training of {αij, βi} and

{pi} can be separated. Considering the difficulty of collecting the training data with

the known hidden variables (i.e., the annotated training data), we propose a method of

using both annotated and un-annotated training data in a semi-supervised fashion. The

proposed learning method is based on the Gibbs sampling technique and the Expectation-

Maximization iterations.

The initial model is constructed by the following way:

(1) Collecting a set of annotated training examples, L = {Xk,Zk}K1
k=1, where Xk and

Zk denote the k-th annotated training sample. For each sample, the i-th hidden

node of the field model takes binary values xi ∈ {0, 1}, and the observation of this

hidden node zi is the average edge direction over a small image patch associated

with xi in our nonrigid shape applications. We quantize zi, and use a histogram

to model its distribution. If the target shape is very small, zi simply takes binary

value to indicate if it is a detected edge point or not.
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(2) Learning pi(zi|xi) for each xi. Due to the factorization of p(Z|X), i.e., Eq. 4.3,

each individual pi(zi|xi) can be learned independently. Each pi(zi|xi) is repre-

sented by a histogram in our experiments.

(3) Learning {αij, βi} by the following steps:

3.a calculating sufficient statistics Sij = Ep[xixj] and Si = Ep[xi] from the

annotated training data {Xk}K1
k=1;

3.b initialize a model λ0
b = {α0

ij, β
0
i };

3.c producing synthesized samples of {Xk
g}Nk=1 by Gibbs sampling of p(X|λb);

3.d calculating sufficient statistics Gij = Eλb
[xixj] and Gi = Eλb

[xi] from the

synthesized data {Xk
g}Nk=1;

3.e adjusting the parameters by:

∆αij ∝ (Gij − Sij) (4.12)

∆βi ∝ (Gi − Si) (4.13)

3.f go to step 3.c;

In our experiments, we select:

α0
ij = log

Sij

1− Sij

, and β0
i = log

Si

1− Si

as the initialization. In all of our experiments, we observed the convergence in less than

50 iterations.
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Once the model is initialized, we finely tune the model by using a large set of un-

annotated training examples U = {Zk}K2
k=1 which are cheaply available. The process is an

EM iteration:

• E-step: ∀Zk ∈ U , infer the posterior p(xk
i |Zk, λt) based on variational mean

field approximation in Eq. 4.8, i.e., we obtain the set of variational parameters

{{µi}k}K2
k=1.

• M-step: estimate the model parameters λt+1 = {αt+1
ij , βt+1

i , pt+1
i }, given a fixed

{{µi}k}K2
k=1 by a stochastic gradient descent:

∆αij ∝
∂J(Q)

∂αij

≈ µiµj − EQ[xixj] (4.14)

∆βi ∝
∂J(Q)

∂βi

≈ µi − EQ[xi] (4.15)

where EQ[xixj] and EQ[xi] are sufficient statistics calculated w.r.t. the variational

distributions. And the method of estimating pi is the same as the step 2 in the

above supervised training.

4.6. Pedestrian Detection and Tracking

A suitable representation for the nonrigidity of a pedestrian is critical for detection

and tracking. In this section, we approach to these tasks by the proposed field model.

4.6.1. Pedestrian Detection

Pedestrian detection involves two mean field models: λ0 corresponds to the negative

hypothesis H0, i.e., no pedestrian presence, and λ1 to the positive hypothesis H1, i.e.,
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pedestrian presence. The detection algorithm scans different extrinsic shape poses, in-

cluding locations u, orientations θ, and scales s, denoted by y = {u, θ, s}. For different

scales, we keep the dimension and the number of hidden nodes of the field model the same,

but use different sizes of image patches for the observation nodes. In our experiment, we

scan all image locations and over 5 scales.

For each extrinsic shape pose y, we collect the edge map of the corresponding image

patch and treat it as the image observation Z = I(y) of the hidden Markov field. We

perform likelihood ratio detection on each given y to determine the pedestrian presence

on this particular y:

log p(Z|y, λ1)− log p(Z|y, λ0) > τo ≥ 0. (4.16)

Since it is unrealistic to calculate p(Z|y, λ) (in Eq. 4.4), the variational analysis in

Section 4.4 nicely provides a mean field solution as an approximation, i.e.,

log p(Z|y, λ) ≈ J(Q∗(X|y, λ)),

where Q∗(X|y, λ) is the optimal mean field approximation of the posterior p(X|Z,y, λ).

Thus, the detection rule for each given y becomes:

J̃(Q∗(X|y, λ1))− J̃(Q∗(X|y, λ0)) > τ, (4.17)

where J̃(Q∗(X|y, λk)), k = {0, 1} can be obtained according to Eq. 4.5 once the mean

field iteration converges at Q∗(X|y, λk) according to Eq. 4.8.
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There are two factors affecting the threshold τ : (a) J(Q∗|λk) only provides an optimal

lower bound of log p(Z|λk), and (b) we generally only calculate J(Q∗|λk) up to a constant

difference, i.e., logZk
c (see Eq. 4.11). Thus, we do not simply set τ = 0, but train this

threshold from supervised examples to reduce the rate of false alarm and miss detection.

4.6.2. Pedestrian Tracking

Different from detection, only the pedestrian model λ1 is involved in tracking, where the

task is to estimate the posterior density of p(yt|It, λ1), where yt = {ut, θt, st} is the same

as in the detection problem, and It = {I1, . . . , It}. According to Bayesian rule, we have:

p(yt|It, λ1) ∝ p(It|yt, λ1)

∫

yt−1

p(yt|yt−1)p(yt−1|It−1, λ1). (4.18)

The dynamic process can be represented as a dynamic Bayesian network in Figure 4.2.

Clearly, the hidden factor Xt of local nonrigidity has been integrated out in the observation

Figure 4.2. The dynamic process for tracking a nonrigid target.

process. This is powerful for tracking since it leaves no extra motion parameters to be

estimated.
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It is clear that the visual dynamics is governed by the dynamics model p(yt|yt−1) and

the observation model p(It|yt, λ1). Since we have:

p(It|yt, λ1) = p(Z(yt)|λ1) ∝ eJ̃(Q∗(Xt|y,λ1)),

the local nonrigidity has been absorbed in the calculation of data likelihood which is based

on the mean field inference. In our experiments, the dynamics model is characterized as

a const acceleration model, and the parameters are learned from an annotated training

sequence. Once the MAP solution

y∗
t = arg max p(yt|It, λ1)

is obtained, the local nonrigidity can be revealed by

p(Xt|It,y
∗
t , λ1) ≈ Q∗(Xt|y∗

t , λ1).

Because the image likelihood p(It|yt, λ1) can be calculated, the tracking algorithm can be

easily implemented using particle filtering [12,62], where each particle represents a sample

of yt. Detailed results will be reported in Section 4.7.

4.7. Experiments

In order to validate the proposed approach and demonstrate the applicability of this

field model, we performed experiments on pedestrian detection and tracking, and com-

pared the proposed detection method with the AdaBoost detector.
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4.7.1. Training and Model Validation

We trained two models, one for the human λ1 and the other for the background λ0. In

our experiments, the size of the field was set to 12 × 6, and each of the node covers an

image patch, whose size depends on scale. We used 16 × 16 patches for the finest scale,

and coarser scales correspond to smaller patches. We used 5 scales, where the coarsest

scale takes 5× 5 patches. Please note that neighborhood image patches overlap.

To train λ1, the training data of various people were collected and their contours

were extracted. Then we resized and aligned all the contours by compensating their

extrinsic poses. Using the extracted contours and the corresponding image observations,

we obtained a set of 3, 000 annotated training data. All training images are aligned to

the center of mass. Some examples are shown in upper row of Figure 4.3. Training λ0 is

easier than λ1, since the alignment step is not needed, and a set of 10, 000 training data

were collected randomly from the training sequences to train λ0. Some of them are shown

in the bottom row of Figure 4.3.

In addition to these annotated training data, we also use 30, 000 un-annotated data

to tune the model, based on the method described in Section 4.5.

It is important to know if the trained Boltzmann field model really captures the true

shape prior p(X). Although there is no quantitative means to validate that, a plausible

way for a rough validation is to sample the learned prior Boltzmann distribution p(X)

and the learned image likelihood distribution p(Z|X), and then perform a subjective

evaluation. To synthesis an image, we first draw a sample of X = {x1, . . . , xn} by Gibbs

sampling from p(X) in Eq. 4.2, then for each xi, a sample of zi is drawn from pi(zi|xi).

Putting together zi produces a synthesis image. Through our subjective evaluations, the
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Figure 4.3. The upper row are examples of annotated training data for
human λ1, and the bottom row for nonhuman λ0.

trained models were able to synthesize reasonably good data. Some synthesized data

based on λ1 and λ0 are shown in Figure 4.4.

Figure 4.4. Examples of synthesized data. Left ones are sample from λ1

and right ones from λ0.

4.7.2. Pedestrian Detection

We performed extensive experiments and quantitative evaluation of the proposed ap-

proach to pedestrian detection, and we are particularly interested in the investigation
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of the capacity of this field model of capturing the tremendous shape variations and its

performance and robustness to partial occlusions.

4.7.2.1. Performance Evaluation. To provide quantitative evaluation of the proposed

approach, we constructed a testing database which contains 1, 000 images collected from

various occasions. We manually annotated the ground truth detection for each image.

The ROC curve is shown in figure 4.5. This curve shows that at 80% detection rate,

the detector has a false positive rate of about 1/200, 000 which corresponds to about one

false alarm per frame for 320×240 images. This is comparable to the most recent method

reported in [129].
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Figure 4.5. ROC curve of the proposed pedestrian detector.

Our extensive experiments show that the proposed field model is capable of capturing

the nonrigidity caused by the view changes of the pedestrian. In our test data, there

are a large volume of images where the pedestrians present various profiles. Some of the
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detection examples are shown in Figure 4.6. The algorithm can also easily detect multiple

targets. Some examples are shown in Figure 4.6. In the bottom right image, a false alarm

was observed. In these results, the algorithm did not detect the sitting persons and the

cyclist. This is reasonable, because the upper body of these examples are largely inclined

and our training set did not contain such cases.

In addition, this field model is also able to detect the target from various environments.

Some of the results are shown in Figure 4.7. The robustness comes from the observation

models of λ1 and λ0. We did observe the case where in a region the edge map is pervasive

and it is impossible to tell from the edge map where the person is.

Besides detection, a question of great interests is to reveal the value of hidden field.

For each detected region, when we display the corresponding mean field {µi}, a clear

pedestrian contour can be seen. Some examples are shown in Figure 4.8.

In addition, the proposed detection algorithm is efficient. Currently, our un-optimized

C++ implementation runs about 2 frame/second on a Pentium IV 2GHz PC for 320×240

images. We believe there are much room for improving the implementation. Beyond most

existing methods, the proposed field model enables parallel computing, since the mean

field updating on the set of sites is intrinsically parallel. In addition, when building

real systems, we can easily combine the proposed detection method with background

subtraction, motion detection or other remedies to further reduce the false alarm rate

while not decreasing the detection rate. (We did not perform these postprocessing in our

experiments, in order to provide a true ROC of the new model.)
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Figure 4.6. Pedestrian detection under various views.

4.7.2.2. Evaluation on Partial Occlusion. More interestingly, the proposed field

model works well even when the target is partially occluded. Samples results on the

detection under occlusion are shown in Figure 4.9. This feature is unique, since the ro-

bustness to partial occlusion is an intrinsic benefit of the proposed field model. This is
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Figure 4.7. Pedestrian detection in various environments.

Figure 4.8. The mean field inference of the hidden Markov field. The right
column shows the estimated mean field {µi} of the detected regions on the
left column.

truly owe to the property of the field model, because we did not deliberately include the

occlusion cases in training data. On the contrary, vectorized shape models, such as the
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active shape models [26], can not cope with this problem, since it is generally infeasible

to include all possible occlusion situations in training.

Figure 4.9. Sample results of pedestrian detection under partial occlusions.

To have a quantitative study on the robustness of our method, we created another

testing database which consists of 3 subsets, each of which contains 100 images under a

certain rough percentage of occlusion (less than 20%, between 20% and 40%, and over

40%, respectively). The ROC curves for these occlusion cases were obtained and shown

in figure 4.10.

These ROC curves show that the performance of the proposed method does not de-

grade much when the percentage of occlusion is under 40%, since 80% detection rate can

be achieved with comparable false positive rate as the case without occlusions. But when

the occlusion is over 40%, the detection rate drops a lot. Although such quantitative

measures are rough, they do verify the robustness of the proposed approach to partial

occlusions.
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Figure 4.10. ROC curves on the three testing subsets under difference oc-
clusion percentages.

4.7.2.3. Comparison with the AdaBoost Detector. We compare the performance

of the proposed method with the AdaBoost detector [128], which is by far one of the

best for face detection and is widely used for various object detection tasks. To have a

comprehensive comparison, we used six different data sets:

• Data set A is a set of 1, 000 images including both non-occlusion and occlusion

cases;

• Data set B is a set of 1, 000 images of non-occlusion cases only;

• Data set C is a set of 300 images of various occlusion cases;

• Data set D is a set of 100 images, each of which presents over 40% occlusion;

• Data set E is a set of 100 images, each of which presents 20% to 40% occlusion;

• Data set F is a set of 100 images, each of which presents less than 20% occlusion;

The ROCs on these data sets are shown in Figure 4.11 and Figure 4.12.
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Figure 4.11. ROC curves on Data set A and B.

Figure 4.11(a) shows the two ROCs on data set A that contains a mixture of non-

occlusion and occlusion cases, and Figure 4.11(b) on data set B of all non-occlusion cases.

These ROCs show that our method has overall 5%− 10% higher detection rate than the
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AdaBoost detector. With high false alarm rates, both methods have high detection rates

(over 90%).
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Figure 4.12. ROC curves on Data set C, D, E and F.

Figure 4.12(a) shows the ROCs on data set C, and gives the comparison of the two

methods on general occlusions. It is apparent from this figure, our method significantly

outperforms the AdaBoost detector. With high false alarm rates, our method can obtain

over 80% detection while Adaboost is merely 70%. Figure 4.12(b-d) show the ROCs
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on various degrees of occlusions. If the target present over 40% occlusion, AdaBoost

detector can hardly work, while our method has over 60% detection. When the target has

a moderate occlusion (between 20% and 40%), our method also significantly outperforms

AdaBoost. When the occlusion is less than 20%, the two methods are comparable, but

our method is slightly better.

4.7.3. Pedestrian Tracking

Tracking nonrigid objects is a challenging problem, especially when the camera is not

fixed and the target presents large shape variances, as in the demonstration of this section.

Since the mean field approximation also gives the data likelihood (given a global motion)

by integrating out all possible local nonrigidity, this is powerful and ideal for tracking

nonrigid targets, as described in Section 4.6.2. We did extensive experiments and verified

this idea. In our experiments, a particle filter was applied to track the targets, i.e.,

to estimate the extrinsic pose parameters y = {u, θ, s} through the video. We used 400

particles. (One of the tracking sequences ‘‘Tracking.avi" is included in this submission.)

Some sample frames are shown below in Figure 4.13. Actually, this is a difficult sequence

for many tracking schemes. One difficulty is that the camera is not static, then the

tracking methods based on background subtraction can not apply. In addition, when the

pedestrian walks and rotates, the visual appearances change dramatically and present

non-stationary characteristics, which is a very difficult problem for visual tracking in

general. This example shows the effectiveness of the proposed field model. Our method

can handle such a difficult scenario because the image likelihoods have integrated all the
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shape deformations. The C++ implementation of the proposed tracking algorithm runs

over 15 frames/second on a Pentium IV 2GHz PC.

Figure 4.13. Tracking a nonrigid target based on the mean field Boltzmann model.

4.8. Discussions

Characterizing priors of nonrigid shapes is critical for analyzing nonrigid objects.

Global or vectorized approaches such as PCA prove to be effective to capture global

deformation by reducing global correlations. However, these vectorized models are nei-

ther suitable for handling local nonrigidity nor robust to partial occlusion, which are

important for many real world applications such as pedestrian detection and tracking. In
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this chapter, we proposed a new statistical method to capture the local nonrigidity based

on a two-layer field model, where a Boltzmann distribution was employed to characterize

the complicated prior for local variability, and a variational mean field approximation

was presented for computationally efficient inference, likelihood calculation and model

training. Due to the distributed likelihood model, this new field method is robust to

occlusion. Based on the framework of this field model, the detection and tracking prob-

lems were also investigated and were successfully approached. The success of applying

the proposed method to pedestrian detection and tracking showed its effectiveness and

general applicability.

Aligning training data in the proposed approach is easier than labelling landmark

data in the active shape model [26], but it leaves a problem: how sensitive is the trained

model to the alignment errors? We leave it for further studies. In addition, in our future

work, we plan to investigate the capacity of the proposed Boltzmann field model, i.e., to

what extent the model can capture local nonrigidity. Moreover, better image observation

models will be studied to reduce the false alarm rate.
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CHAPTER 5

Component-based Robust Support Vector Tracking

5.1. Introduction

One of the major challenges of appearance-based tracking lies in the large uncertainties

of the visual appearances that significantly complicate the measurement models and the

matching measures of the visual objects. This difficulty is also shared in object detection

and recognition, and has been studied extensively. To address this problem in the context

of tracking, we should not let the handling of this problem to jeopardize the requirement

of computational efficiency of the tracker.

An early work of integrating classification methods and tracking methods is the sup-

port vector tracker (SVT) [4] and its more recent advance [131] that have shown their

efficacy of long duration tracking. It nicely combines the support vector machine and

the differential method, such that the variability of the target can be learned from the

training data and the gradient-based search can be used for efficient matching.

SVT works well when the uncertainty of the target’s appearances can be managed by

a support vector machine, i.e., the target can be well discriminated from non-target by

using a reasonable number of support vectors. However, the applicability of SVT is lim-

ited in many real applications where targets may exhibit enormous appearance changes.

For example, pose changes, partial occlusions, and clutter backgrounds significantly com-

plicate the handling of the uncertainties in the appearances [90, 4]. Even if a SVM can
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be trained to cover such tremendous variations, the number of support vectors will be

very large, thus making the computation demanding and not practical. Though object

pose changes may be dealt with by some special treatment, such as training multi-view

SVMs [79,80], partial occlusion, a more challenging situation to object classification, has

plagued SVT as well. As mentioned in [4], since occlusion leads to intractable variability

on the appearance, it is infeasible for a SVM to learn the occlusion cases that are virtually

limitlessness.

In general, larger image regions incur more variabilities, while the uncertainties of

smaller regions are more likely to be manageable. In other words, although the appear-

ances of the entire target have large variabilities, it is likely that its many components

or parts do not change much; otherwise, it does not make sense to recognize and track

such a target. Therefore, it seems to be a good idea to replace the problem of learning

complex uncertainties by the problem of managing a set of learning tasks with much less

uncertainties. This treatment is expected to reduce the complexity of learning as well as

the enhancement of classification accuracy. There have been many studies on this line

in component-based object detection [1, 58, 76, 88, 90, 113, 144]. Similar component-based

ideas were also proposed for human pose analysis to divide-and-conquer the complex

visual measurement process and high dimensionality of the body configuration through

pictorial structure [42,41,135].

This chapter proposes a novel solution of pursuing this component-based idea in visual

tracking with the emphasis on the handling of the challenges such as partial occlusions

in a computationally efficient way. Different from the method of using a single SVT for

the entire object, our solution is based on the collaboration of a set of correlated simple
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component SVTs, each of which has much less support vectors, thus the computation can

be greatly saved. Besides this intuition, a central issue of our solution is: how can a set

of component SVTs be optimally integrated?

This chapter presents an elegant answer to this central issue by giving analytical re-

sults that reveal the mechanism of the integration of the set of component SVTs, and

by providing a computationally efficient collaborative SVT (i.e., the CSVT algorithm).

Analytically, the motion estimation of a component is determined by two terms (1) the

motion estimated by the SVT tracker associated with it, and (2) a compensation term

passed by its neighborhood components. The estimations of all components encompass a

fixed point system, where the fixed point gives the optimal solution of the motion estima-

tion of the target. In addition, by investigating the behaviors of this CSVT tracker under

partial occlusions, we further propose to enhance the model by a selective mechanism,

which can automatically select trustworthy components while down-weight the unreliable

ones that may be occluded. This new tracking method produces very promising results

in our experiments.

The chapter is structured as follows: Section 5.2 provides a brief overview of the

original SVT method. Section 5.3 describes the formulation and solution of the proposed

collaborative SVT algorithm. The further extension of the CSVT model to handling severe

occlusions is discussed in section 5.4. Section 5.5 shows experimental results. Conclusions

and discussions are made in Section 5.6.
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5.2. Support Vector Tracker, SVT

In the following we briefly review the original SVT algorithm. In SVT, an object

model based on SVM is firstly trained from the set of training data, and then applied to

object tracking. Given the initial guess of the object location for each frame, which could

be the one estimated and predicted from the previous frame, the SVT algorithm aims at

finding an updated object location in the current frame, where the cropped image patch

from this location maximizes the object SVM score. Instead of taking an exhaustive

searching to find the optimal location, the SVT algorithm enjoys an efficient gradient

searching strategy, thus achieving a fast computation.

Although the original SVT algorithm in [4] only addresses the translational motion

model, here we present the SVT in a general motion formulation, which can be degenerated

to any special cases, such as translation, similarity, affine motion model.

Let I(p, t) denote the image intensity at the pixel location p = (x, y)T of time t. As-

sume the initial object region at time t0 is defined by a set ofN pixelsR = {p1, p2, . . . , pN},

and pi = (xi, yi)
T is the ith pixel location. We denote the motion model of the object

region as f(p;µ), where µ = {µ1, µ2, . . . , µn}T is the motion parameters.

Suppose at time t, we have an initial guess of the object motion parameters as µ(t),

which could be the estimation from previous time t−1, then the image patch corresponding
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to this initial guess is ready to be defined as

I(µ(t), t) =




I(f(p1;µ(t)), t)

I(f(p2;µ(t)), t)

· · ·

I(f(pN ;µ(t)), t)




(5.1)

SVT algorithm aims to find an optimal update of the motion parameters ∆µ, which,

after adding to the initial guess µ(t), reports an image region I(µ(t) + ∆µ, t) that maxi-

mizes the corresponding SVM score, i.e., we are dealing with the following optimization

problem for each frame:

max
∆µ

E(∆µ) = SVM(I(µ(t) + ∆µ, t))

=
l∑

j=1

cjαjK(sj, I(µ(t) + ∆µ, t)) + b

(5.2)

where l is the number of support vectors, and each is denoted by sj. cj is the training

data label, i.e. (−1,+1), αj is the lagrange multiplier corresponding to the weight of the

jth support vector, and b is the constant intercept. All these parameters are learned from

the training data set. K(sj, I) is the chosen kernel function. As shown in [4, 3], a second

order polynomial kernel can lead to a set of linear equations to solve for an optimal ∆µ.

By taking the small motion assumption, it is easy to show that I(µ(t) + ∆µ, t) can be

linearly approximated by first order Taylor expansion as follows [52]:

I(µ(t) + ∆µ, t) = I(µ(t), t) +M(µ(t), t)∆µ+ h.o.t (5.3)
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where h.o.t stands for the higher-order terms of the expansion, then can be omitted.

M(µ(t), t) is the Jacobian matrix of I(µ(t), t) with respect to the motion parameters µ,

and evaluated at µ(t). M(µ(t), t) is an N ×n matrix that has the following column form

M(µ(t), t) = [Iµ1(µ(t), t)|Iµ2(µ(t), t)| . . . |Iµn
(µ(t), t)] (5.4)

Each term is the partial derivative I(µ(t), t) over µi, i = 1, . . . , n.

Please note in Eq. 5.3, the Taylor expansion is done in a single frame at time t, i.e.

we only care about the Taylor expansion over the spatial domain, which facilitates the

iterative gradient ascent updating as shown in [4]. Actually, the similar single frame

updating strategy is also taken in several other tracking approaches, such as kernel-based

tracking [24]. Therefore, in the later derivations, we drop the argument time t.

Plugging Eq. 5.3 into the SVT objective function Eq. 5.2, we have

max
∆µ

E(∆µ) =
l∑

j=1

cjαjK(sj, (I(µ) +M(µ)∆µ)) + b

=
l∑

j=1

cjαj(s
T
j (I(µ) +M(µ)∆µ))2 + b

(5.5)

where we adopt a second order polynomial kernel. Taking the partial derivative over ∆µ

gives

∂E

∂∆µ
= 2P + 2Q∆µ (5.6)
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where the above two terms P,Q are defined as

P =
l∑

j=1

cjαjs
T
j I(µ)M(µ)T sj

Q =
l∑

j=1

cjαjM(µ)T sjs
T
j M(µ)

(5.7)

and the following linear solution to ∆µ can be derived

∆µ = −Q−1P (5.8)

where ∆µ is a n dimensional vector that updates the previous estimation of the motion

parameter µ, i.e. µ′ = µ + ∆µ. The new µ′ then serves as an initial point to start a

new cycle of the optimization. This updating is conducted iteratively by continuously

increasing the SVM objective function E until the newly derived ∆µ becomes sufficiently

small or maximum iterative times is reached. The convergent estimation of the object

motion µ(t)∗ then becomes an initial guess of the motion for new frame at time t+ 1.

5.3. Collaborative SVTs

Treating the object as a whole, like many existing image region classifiers did, the

original SVT algorithm needs to train a discriminative model that is capable of robustly

classifying the object class with diversified appearance patterns. This training task itself

is known to remain as a very challenging problem. In addition, illumination variations,

object pose changes, clutter backgrounds, and partial occlusions all bring even more

challenges to train such a holistic object classifier.
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The component-based representation, however, offers the advantages of being able to

achieve a more robust detection [58, 90]. It usually suffers less from the tremendous ap-

pearance variations, induced by either internal (object itself) or external (environmental)

reasons. We are interested in exploiting the extension of this component-based represen-

tation to SVT tracking framework, which, when combining them in the right way, will

benefit both of them. For example, the advantages of component-based representation,

such as insensitive to cluttered backgrounds and partial occlusions, can effectively remedy

the defects of original SVT algorithm. On the other hand, the component-based repre-

sentation may also enjoy the availability of estimation initialization propagated from SVT

tracking results of previous frames. Hence, a single stage optimization can be achieved,

which means we can simultaneously accomplish the object component detections and

geometric verification of these parts. Such a treatment will reduce the information loss

encountered by the previous two-stage component-based detection approaches, where the

first stage applies the trained component classifiers to collect component candidates, and

the second stage is to take a validation scheme using learned geometric configuration to

verify the combination of these component candidates.

Assume we are taking a K-component representation for the object class. A corre-

sponding SVM classifier is trained for each component, as did in [58,90]. By following the

notations in the previous section, we collect a set of SVM classifiers, each characterized

by their parameter set (lk, sk
j , c

k
j , α

k
j , b

k), where k = 1, . . . , K indexes different component.

The motion parameters of each component at time t are denoted by µk(t), whose initial

values are the estimation from the same component at previous frame. Please note that

although we endow each component a separate motion representation µk(t), considering
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the fact that different components are all correlated to the same object during the tracking

initialization, there must be some underlying constraint among these parts. Otherwise,

if arbitrary motion value is allowed for each component, the whole object may become

impractically deformed due to free motions of the components.

If the object being tracked is a rigid one, the motion parameters of different com-

ponents after each frame updating should be equal to each other, i.e. µi(t) + ∆µi =

µj(t) + ∆µj, i, j = 1, . . . , K. Based on this observation, we propose a modified SVT

objective function to not only incorporate the SVM score term from each component,

but also explicitly include a penalty term to pose the geometric constraints of different

components, which has the formulation as follows

max
∆µ1,...,∆µK

E(∆µ1, . . . ,∆µK)

=E1(∆µ
1, . . . ,∆µK) + E2(∆µ

1, . . . ,∆µK)

=
K∑

k=1

{
lk∑

j=1

ckjα
k
jK(sk

j , I
k(µk + ∆µk)) + bk}

− γ(Ψ(µ1 + ∆µ1, . . . , µK + ∆µK))2

(5.9)

where
∑lk

j=1 c
k
jα

k
jK(sk

j , I
k(µk +∆µk))+ bk is the SVM term for each component k, and we

denote the sum of the SVM terms from all components as E1(∆µ
1, . . . ,∆µK). The second

term E2(∆µ
1, . . . ,∆µK) contains a geometric structure constraint Ψ(µ1 + ∆µ1, . . . , µK +

∆µK). γ is a tradeoff factor to balance the relative weights of SVM scores and motion

consistency constraint. The constraint may take any form as long as the required structure

configuration is embedded, for example, the following is a specific pair-wise component
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motion constraint

Ψ(µ1 + ∆µ1, . . . , µK + ∆µK) =

∑

i,j∈K,i6=j

‖(µi + ∆µi)− (µj + ∆µj)‖2
(5.10)

The above objective function implies that the desired solution of ∆µ1, . . . ,∆µK should

not only maximize SVM scores of their respective components, but also minimize the

motion discrepancy among them.

To solve the above optimization problem, we take the partial derivatives of the objec-

tive function over each ∆µi. If a quadratic polynomial kernel is chosen for each component

SVM, the partial derivative of the first part of objective function in Eq. 5.9 can be readily

written as

∂E1(∆µ
1, . . . ,∆µK)

∂∆µi
= 2P i + 2Qi∆µi (5.11)

P i, Qi are the compact matrix representations as shown in Eq. 5.7 with added superscript

denoting the component index.

In general, the motion constraint term Ψ(µ1 + ∆µ1, . . . , µK + ∆µK) may take any

form with respect to the motion updating parameters ∆µk, either linear or nonlinear.

However, considering the fact that ∆µk is a continuous tracking update from successive

frames, then usually takes very small value, a linearization of the motion constraint by

first order Taylor expansion is therefore adequate to approximate the original constraint
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equation.

Ψ(µ1 + ∆µ1, . . . , µK + ∆µK) ≈

Ψ(µ1, . . . , µK) +
K∑

k=1

(
∂Ψ

∂µk
)T ∆µk

(5.12)

Please be aware that in above equations, µk is the previous estimation of the component

motion from last iteration that has already been computed, thus ∆µk is the only unknown

that needs to be estimated. With Eq. 5.12, the partial derivative over ∆µi from the second

part of the objective function Eq. 5.9 can be written as

∂E2(∆µ
1, . . . ,∆µK)

∂∆µi
=

− 2γ[Ψ(µ1, . . . , µK) +
K∑

k=1

(
∂Ψ

∂µk
)T ∆µk]

∂Ψ

∂µi

(5.13)

which is also a linear equation with respect to ∆µk.

Combining both Eq. 5.11 and Eq. 5.13 together, and setting the derivative to zero,

with some mathematical manipulations the following linear equation of the motion update

for each component can be derived

∆µi = −(Qi)−1P i + [−C iP i + γ((Qi)−1 + C i)Di] (5.14)

with C i, Di respectively defined as follows

C i =
(Qi)−1(

√
γ ∂Ψ

∂µi )(
√
γ ∂Ψ

∂µi )
T (Qi)−1

1− (
√
γ ∂Ψ

∂µi )T (Qi)−1(
√
γ ∂Ψ

∂µi )

Di =
K∑

k=1,k 6=i

(
∂Ψ

∂µi
)(
∂Ψ

∂µk
)T ∆µk + Ψ

∂Ψ

∂µi

(5.15)
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Intuitively, this set of K linear equations Eq. 5.14 define an iterative fixed point updating

mechanism for each component motion ∆µi, i = 1, . . . , K, and is actually very meaningful,

which reveals a collaborative algorithm to this general joint multi-component motion

estimation problem. The procedure shows that the motion estimation of each component

is not only determined by its local SVM score maximization, i.e. the estimation from its

own SVT tracker, governed by the term −(Qi)−1P i, which shares the same form as in

Eq. 5.8, but also through a compensation term [−C iP i+γ((Qi)−1+C i)Di] that is consisted

with the motion estimations of other geometric constraint components. One advantage of

this motion updating equation is that we can still make use of the original SVT tracking

implementation, i.e., the term (−Qi)−1P i, with only minimum modification due to the

introduction of geometric constraint. The compensation term serves as some kind of

“message” from other components to tune the motion estimation of the current component

to make it become consistent with the estimations of others. The iterative solutions allow

the set of SVT trackers to work individually while collaboratively to achieve a more

robust object tracking framework, which can better handle large appearance variations

and background clutter distractions.

5.4. Partial Occlusion Invariant SVTs

In the previous section, we show that the set of component SVT trackers introduce

an interestingly collaborative mechanism, which can hopefully achieve higher robustness

to object appearance variations, illumination changes and cluttered backgrounds.

However, when partial occlusion happens during tracking, by closely looking at the

SVM term of each component in the objective function Eq. 5.9, it is not difficult to notice
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that the SVM scores of those occluded components usually decline to negative values. It

implies the situation that the image regions corresponding to those missing components

are classified as non-object components, which, from the component classifiers’ point

of views, are actually not incorrect decisions, because what have been feeded to them

are actually the occluding image patches that in most cases are obviously not similar

to those training object components. The iterations of SVM maximization for these

components are then mainly conducted in image areas that have very slim probabilities

of showing the appearance patterns similar to the components due to occlusions. Under

these circumstances, it apparently makes no sense to still search for an optimal solution

to maximize SVM values around these occluded regions, which, even found, may still be

the very negative values, simply meaning non-object components.

A better strategy of dealing with this partial occlusion is to trust more on those unoc-

cluded object components, and propagate their accurate motion estimates to the occluded

ones via geometric structure constraint. This way, when it is done in the right manner,

will help maintain the roughly correct motion estimates of the occluded components, even

there are no positive confidence supports from their own SVM terms. On the contrary,

the occluded components should also reduce their distracting influences on the motion

estimates of the unoccluded ones.

Such a “message” propagation mechanism with more favoring on the trustworthy in-

formation sources calls for some triggering scheme to determine which components of the

object are currently valid, and which are not, i.e., we need to predicate the occlusion
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situation of every component. It can be naturally thought of that the SVM scores re-

ported from the component classifiers are the most qualifying indicators of these appearing

occlusions.

Based on the above analysis, we modify the objective function defined in Eq. 5.9, and

explicitly introduce the idea of favoring the SVM terms of the unoccluded components

determined by their corresponding SVM scores. It leads to the following new formulation

of the objective function

max
∆µ1,...,∆µK

E(∆µ1, . . . ,∆µK)

=
K∑

k=1

max{SVM(∆µk), 0} − γ(Ψ(µ1 + ∆µ1, . . . , µK + ∆µK))2

=
K∑

k=1

[SVM(∆µk)]+ − γ(Ψ(µ1 + ∆µ1, . . . , µK + ∆µK))2

=
K∑

k=1

[
lk∑

j=1

ckjα
k
jK(sk

j , I
k(µk + ∆µk)) + bk]+−

γ(Ψ(µ1 + ∆µ1, . . . , µK + ∆µK))2

(5.16)

where SVM(∆µk) is the SVM score term for each component k. In comparison with

Eq. 5.9, the modified part is that we add a nonlinear max operation over the component

SVM term, i.e. max{SVM(∆µk), 0}, which is compactly described as [SVM(∆µk)]+.

This modification implies that during the iterations of the optimization, if the SVM score

of any one component is less than 0, the max operation will immediately substitute 0 with

that term, i.e. the potential negative contribution from this SVM term will not be included

for the next iteration. However, if the SVM score of one component is greater than 0, the

optimization will take it into consideration, which also propagates the positive influence of
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this component to all others via the geometric structure constraint. The optimization aims

at maximizing the collaboration benefits through communicating the valid “messages”

among components, and simultaneously reduces the potentially unreliable information

propagations from those occluded components.

The introduction of [x]+ operation leads to a general nonlinear optimization problem

with non-smooth objective function in Eq. 5.16 [93], where the first order derivative is not

continuous, thus limiting the use of gradient-based method to iteratively find an optimal

solution. This problem, however, can be combated, if we choose to take the quadratic form

of the modified SVM score, i.e. ([SVM(∆µk)]+)2. The first order derivative of this modi-

fied SVM term does exist, and is the continuous function of ∆µk with ∂([SV M(∆µk)]+)2

∂∆µk = 0

for SVM(∆µk) ≤ 0. The gradient ascent approach applied in previous sections then is

still capable to solve this optimization problem. The objective function becomes the form

as follows

max
∆µ1,...,∆µK

E(∆µ1, . . . ,∆µK)

=
K∑

k=1

([
lk∑

j=1

ckjα
k
jK(sk

j , I
k(µk + ∆µk)) + bk]+)2−

γ(Ψ(µ1 + ∆µ1, . . . , µK + ∆µK))2

(5.17)

Please note that such a quadratic modification of the original objective function Eq. 5.16

does not change the property of this optimization task. The only thing that may be

affected by this modification is the tradeoff factor γ, which is used to balance the contri-

butions of SVM scores and motion consistency constraint. The value of γ, however, can

be empirically adjusted in the experiments.
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In order to still achieve a linear solution to the optimization problem defined above,

we change the previous second order polynomial kernel function of the SVM classifier

to the first order, i.e. dot kernel K(sj, I) = sT
j I. With this dot kernel, the SVM term

SVM(∆µi) can be simplified as

SVM(∆µi) = P i +Qi∆µi (5.18)

with P i, Qi defined as:

P i =
li∑

j=1

cijα
i
j(s

i
j)

T I i(µi) + bi

Qi =
li∑

j=1

cijα
i
j(s

i
j)

TM i(µi)

(5.19)

By following the similar mathematical manipulations as done in Section 5.3, the following

set of collaborative equations to iteratively update the motion estimate ∆µi can be derived





∆µi = −(Ai)−1Bi + [−C iBi + γ((Ai)−1 + C i)Di]

if P i +Qi∆µi ≥ 0

∆µi = −(Ei)−1Di

if P i +Qi∆µi < 0

(5.20)
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with the coefficient matrixes defined as

Ai = (Qi)TQi

Bi = (Qi)TP i

C i =
(Ai)−1(

√
γ ∂Ψ

∂µi )(
√
γ ∂Ψ

∂µi )
T (Ai)−1

1− (
√
γ ∂Ψ

∂µi )T (Ai)−1(
√
γ ∂Ψ

∂µi )

Di =
K∑

k=1,k 6=i

(
∂Ψ

∂µi
)(
∂Ψ

∂µk
)T ∆µk + Ψ

∂Ψ

∂µi

Ei = (
∂Ψ

∂µi
)(
∂Ψ

∂µi
)T

(5.21)

It is interestingly pointing out that the collaborative updating equations defined in Eq. 5.20

clearly reflect our willing of favoring more on the trustworthy information sources and re-

ducing the negative effects from the insecure ones. During the above fixed point iterations,

suppose for some iterative step, the SVM term of one component drops down less than

zero, meaning that the underlying region being tracked by that SVT tracker is potentially

invalid, such as occluded, the updated motion parameters ∆µi will then be more reliably

determined by the “message” propagated from other components. On the other hand,

if the SVM score of the component is greater than zero, then its own SVM confidence

support will also contribute to the motion estimate of the component. Again, we observe

that for these unoccluded components the motion estimates are composed with two terms,

one from its own SVM term −(Ai)−1Bi, and the other compensation term from geometric

constraint [−C iBi + γ((Ai)−1 + C i)Di]. In comparison with the previous collaborative

SVT updating equation shown in Eq. 5.14, the formulation is almost identical, where the

only difference is due to the use of dot product kernel here.
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5.5. Experiments

The proposed collaborative SVT algorithm is implemented to perform experiments

on tracking human faces, and we compared the performance with the original holistic-

based SVT tracker and a simple correlation-based SSD tracker. For SVM training, we

collected approximately 1000 frontal face training data from different sources, including

MIT face database, CVL face database, AT&T database, etc. We manually select three

discriminant components of the face to train the SVM face component classifier, which

are left eye, right eye, mouth respectively. Some samples of the facial component training

data are shown in Figure 5.1. In comparison, a holistic frontal face SVM classifier is

Figure 5.1. Samples of the training data for face parts.

also trained based on the same data set for the single SVT algorithm. The performance

records of the trained SVM classifiers for face components and holistic face are reported in

the Table 5.11. Consistent with our intuitions, since the smaller image region implies less

L-Eye R-Eye Mouth Face
Classification Rate 89.2% 91.4% 90.8% 81.2%
Support Vectors 221 198 179 663
Table 5.1. The trained SVM classifiers’ performance

appearance variations, the SVM component classifiers require much less support vectors

and achieve higher classification rate, as shown in Table 5.1.

1we are by no means to train the state-of-the-art SVM classifiers, since our main focus is on the collabo-
rative SVT formulation and solution instead of SVM itself.
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Although our algorithm requires to simultaneously run three SVT trackers with some

extra computational efforts on the “message” term calculation, considering the reduced

computational cost on the kernel evaluations on the support vectors, we still achieve

around 8 frames per second with the non-optimized C++ codes, while the single SVT

tracker also runs no more than 12 frames per second in our implementation. In this work,

we did not rely on some cyclic support vector selection procedure, as proposed by [3],

to further reduce the computational cost, since those steps are essentially heuristic-based

algorithm speedup.

Meanwhile, to avoid the problem of getting trapped into a local optimal solution

due to the large object movement, which violates the object small motion assumption, a

multi-scale searching mechanism is taken to achieve a coarse-to-fine search. The multi-

scale algorithm starts the optimization search at the coarsest scale. Once the coarser scale

iterations converge, the motion estimate obtained at this scale will be mapped as an initial

value of the motion estimate at the next finer scale. Then the procedure continues until

the finest scale estimation is arrived. In our experiments, three-scale Gaussian pyramid

images are constructed from the input video, and then the collaborative SVT is carried

out for all three scales, in a coarse to fine manner.

We implemented the trackers to be able to recover the object state up to similarity

motion transformation. Please note that our combination of SVM and gradient-based

tracking does not complicate the SVM learning. On the contrary, as well known, embed-

ding transformation invariance into SVM classifier itself requires many efforts on train-

ing. Therefore, our collaborative SVT greatly reduces the computations on the classifier

learning phase. In addition, it also simplifies the object detection process. Instead of
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exhaustively looking for all image locations, the object location estimate is speeded up

by taking the prediction from the previous frame tracking result.

5.5.1. Tracking Under Illumination Changes

(a) Tracking results with the holistic SVT algorithm.

(b) Tracking results with the proposed collaborative SVT algorithm.

Figure 5.2. Tracking rotating face under illumination changes. Please see
the attached video for details.

The first experiment shows a challenging sequence with dramatic illumination changes

induced by the continuous camera movement2. Some components of the person’s face

are highly affected by the shadows caused by the changing of the illuminating source

direction, especially the areas of two eyes. This uneven illumination situation fails the

original holistic-based SVT tracking with the whole face representation. It starts to drift

away just after the shadow appears around the left eye area at the 100th frame. Some

sample frames of this single SVT tracking are shown in Figure 5.2(a). Please note that we

highlight the top border of the object rectangle region by a green bar to explicitly show

the object orientation.

2The authors acknowledge Mr. Oliver Williams [131] for providing the video data on his website.
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On the contrary, the proposed collaborative SVT works fairly well for this case by

enjoying the advantages of the introduced geometric structure constraint among different

face components. Several samples of the tracking results are shown in Figure 5.2(b).

During the illumination change period, because the effect places less influence on the

mouth area, it then plays an important role on helping maintain the correct locations of

other two components through the “message” propagation.

5.5.2. Tracking Under Large Appearance Variations

Facial region may experience very different appearance patterns, when the person is be-

having different facial expressions. Learning all those variations with a holistic-based

SVM classifier is challenging. By the divide-and-conquer strategy, our component-based

collaborative SVT is able to tolerate such large facial expression changes.

One of the examples showing the efficacy of our approach to dealing with expression

variations is demonstrated in Figure 5.3. As illustrated in the Figure, the algorithm

is capable of keeping tracking the object, even when the person is showing local face

deformations induced by different facial expressions, and large global movement at the

same time. Both the open and close patterns of the mouth and eyes are captured by the

set of collaborative SVTs. Please note that the imposed geometric structure constraint

is not a hard one. It is able to tolerate the local deformations, characterized by the

relative distances of different components, to some extent. In this work, we obtained

the geometric structure model from the initialization step of the first frame. However,

since the proposed approach is a general framework, we may also take a learning step

to build the geometric structure model, i.e., Learning the geometric structure constraint
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from training data, as the pictorial structure did in [41], then linearizing the function as

explained in Eq. 5.12 to obtain the model.

Figure 5.3. Tracking a face with the large expression change and appearance
variations by the proposed Collaborative SVT algorithm. Please see the
attached video for details.

Figure 5.4 and Figure 5.5 give another two examples of the facial region tracking, where

the objects are showing large expression changes. Although our component SVM models

are trained only from the frontal face data. The decomposition of the whole facial area

into several components enables the algorithm to continuously track the faces even when

they demonstrate out-of-plane rotations, as shown in Figures. Note that the state-of-the-

art face detectors, such as [128] is usually unable to detect those out-of-plane rotating

faces, unless the detector is also trained from profile faces. In comparison with the brute-

force detections over every translation and rotation, our collaborative SVT also enjoys

the advantages of simplified SVM classifiers training and the computationally efficient

gradient search.
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Figure 5.4. Tracking a face with the large expression change and appearance
variations by the proposed Collaborative SVT algorithm. Please see the
attached video for details.

Figure 5.5. Tracking a face with the large expression change and appearance
variations by the proposed Collaborative SVT algorithm. Please see the
attached video for details.

5.5.3. Tracking Under Partial Occlusions

We demonstrate the efficacy of the occlusion invariant collaborative SVT algorithm pro-

posed in section 5.4 by the following face tracking sequences, where serious occlusions

happen frequently, making some parts of facial regions invisible, and thus challenging any

holistic-based appearance trackers.
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Due to the incapability of handling occlusions, single SVT algorithm fails at the early

stages of these sequences. Our approach, because of being equipped with the well de-

signed “message sifting” mechanism as discussed in section 5.4, successfully tracks all the

partially occluded faces.

Figure 5.6. Tracking partial occluded face with the proposed occlusion in-
variant CSVT algorithm. Weakly red-colored components illustrate the
negative SVM score response. Please see the attached video for details.

We show the sample frames for one of these testing sequences in Figure 5.6. During

some challenging periods, two of the three components (left eye and mouth) are both

occluded by a hand, where the SVM scores of these components decrease to negative values

and the corresponding tracking boxes become weakly red-colored. The only available and

reliable information source (the right eye) became critical to maintain a correct tracking of

the whole face. The plotted SVM scores of the three components are shown in Figure 5.7,

where the left figure illustrates the component SVM scores, and the right one demonstrates

the overall SVM score. Please note that when computing the overall SVM score, the

negative SVM scores are truncated out due to the explicit max term as in Eq. 5.17.

As can be seen from the figure, though the component SVMs may drop to negative,

the overall SVM responses from all parts remain positive, implying that at least one of
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the component SVTs are still functioning well, which thus guarantees the continuously

successful tracking of the whole facial area. Therefore, when doing iterative updating as

in Eq. 5.20, the components with negative SVM response will begin to gradually trust

the propagated information from those reliable components.
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Figure 5.7. The SVM scores of three face components measured from the
second sequence. Left figure shows the component SVM scores, and right
figure represents the overall SVM score.

Another facial tracking results are shown in Figure 5.8, where when the person is wear-

ing his glasses, both eyes are occluded. Thanks to the selective information propagation

mechanism, the mouth successfully maintains the rough locations of both eyes until they

are reinforced by their own positive SVM responses later.

Figure 5.8. Tracking partial occluded face with the proposed occlusion in-
variant CSVT algorithm. Weakly red-colored components illustrate the
negative SVM score response. Please see the attached video for details.
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5.6. Discussions

In this chapter, we propose a collaborative SVT tracking framework, where the ob-

jective function includes the SVM term from each component with an additional term

to explicitly model the geometric constraints among the components. The optimization

of this objective function reveals a computationally efficient iterative algorithm, which

mathematically decomposes the estimation of the joint multiple object component motion

states into a set collaborative SVT solvers. In addition, we further introduce an occlusion

invariant model, where when occlusion happens can achieve automatic favoring selection

to pay more attention on the trustworthy object components while down-weighting the

unreliable components.

One of the promising future directions is that instead of manually choosing the com-

ponents, can we find a principled criterion to automatically select the set of discriminative

components? We are also investigating the direct extension of the current framework to

multiple object tracking scenario.
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CHAPTER 6

Differential Tracking based on Spatial-Appearance Model

(SAM)

6.1. Introduction

One of the major challenges of appearance-based tracking lies in the large variations

of the visual appearances, which may be caused by many reasons, such as non-rigid de-

formations, and partial occlusions, etc. Such large uncertainties in the visual appearance

significantly complicate the matching of the visual appearances. Inappropriate matching

results in the inability of motion recovery and tracking failure.

Existing solutions to appearance-based tracking have different treatment and exploita-

tion of the spatial structure of the appearance. Two opposite extremes are template

matching that requires a fine localized match [52,68,4,54], and histogram matching that

completely discards the spatial structure [25,20,136,53].

Template tracking with SSD measure requires strict pixel-wise alignments between

the object template and the candidate object region [52]. This is fine to handle rigid

objects, while having a very limited power to handle non-rigid objects. To allow more

appearance variations, improvements have been made by generalizing the template to be

a template manifold, which can be linearly expanded by a set of eigenvectors [10], or

support vectors [4]. Such a template manifold has to be learned off-line.

Histogram, on the other hand, completely discards the spatial information, thus allows

dramatic appearance changes. Histogram-based tracking methods have demonstrated



150

their superb performance in handling the non-rigid deformation, pose change and partial

occlusions [25, 136]. However, the ignorance of the spatial layout also brings difficulties,

e.g., less discriminative to appearance changes and thus less sensitive to certain motions.

For example, the mean-shift tracker is awkward to handle scaling and rotation. Improve-

ments have been made by using multiple kernels [53,39,40].

This chapter presents a novel differential approach based on a spatial-appearance

model (SAM) that combines local appearances variations and global spatial structures,

thus integrating the advantages of both. SAM is in the form of a Gaussian mixture model.

This model can capture a large variety of appearance variations that are attributed to the

local non-rigidity. At the same time, this model enables efficient recovery of all motion

parameters. A maximum-likelihood estimation is defined for tracking, and is solved by

a proposed variant of Expectation-Maximization (EM) algorithm. The analytical deriva-

tions lead to a closed-form solution for motion estimation. The proposed EM iterations

guarantee the continuous increase of the likelihood, and result in a differential approach to

motion recovery. The physical meaning of our solution indicates that the exact pixel-wise

alignment is relaxed and the pixels in the candidate object region are weighted by their

nearby spatial-appearance Gaussian components in motion estimation.

Besides the ability of handling the appearance variations of non-rigid objects, another

advantage of the proposed method is its ability of estimating various motions (e.g., trans-

lation, rotation, scaling, and affine) in a unified and principled manner, rather than having

different mechanisms to handle them individually. It is actually a very appealing property

comparing with mean-shift that only copes with translation in a principal manner. The

new method proves very powerful to handle non-rigid objects.



151

The proposed method is different from some recent approaches that also make use of

spatial and appearance models. For example, a model based on the pixel spatial-color

features is proposed and is constructed by kernel density estimation [37]. An entropy-

based similarity measure between two kernel densities is used for matching. A recent

study [159] showed that this approach might not be suitable for the handling of complex

motions and the entropy-based similarity measure is difficult to compute. Our approach

differs greatly in the matching criteria, the analysis and thus the solutions.

6.2. Spatial-Appearance Model (SAM)

Recall the two extremes of appearance modelling vary from the approaches that strictly

obey the spatial layout of object appearance (rigid template representation) to the ones

where spatial locations of appearance features are completely discarded (histogram-based

representation). Both of the modelling approaches have their merits and limitations.

We choose to seek a tradeoff between the two approaches, and arrive at an intermediate

level appearance modelling, which not only maintains a rough global spatial structure

of object appearance as in template representation, but also preserves the simplicity of

the histogram-based representation by only keeping some dominant feature values in the

object region.

Given an initial object region R0 = {xi, i = 1, . . . , N}, selected manually or auto-

matically, a d dimensional spatial-appearance feature vector is extracted from each pixel

and denoted by xi. N is the total number of pixels within the initial object region. A

K-component Gaussian mixture model (GMM) is adopted to fit to the collected data

points, leading to a spatial-appearance model characterized by GMM with parameters
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θ = (pk, µk,Σk), k = 1, . . . , K. pk, µk,Σk represent the prior probability, mean and vari-

ance of Gaussian component k in the mixture model. Each Gaussian component is denoted

by g(x;µk,Σk). The likelihood of a pixel x within a candidate object region is simply the

mixture probability as:

p(x|θ) =
K∑

k=1

pkg(x;µk,Σk) (6.1)

Depending on different features, the model dimension d could take different values with the

first two dimensions occupied by the pixel spatial coordinate features (u, v). For example,

we may take d = 3 by augmenting the spatial features with the intensity feature, or when

color features are preferred, we may add dimensions with pixel feature values from (r, g, b)

color channels.

Similar to the de-correlation strategy of spatial-appearance features as in [37,146], we

assume the spatial and appearance dimensions of the GMM model are decoupled, i.e.,

the covariance matrix of the Gaussian component takes the block diagonal form, Σk =


Σk,s 0

0 Σk,c


, where s and c stand for spatial and appearance features respectively.

Thus the joint feature x of each pixel can be written as x = (xs, c(xs)), with the spatial

xs and the appearance c(xs) features of a pixel at the location xs. Each GMM Gaussian

component then has the following factorized form:

g(x;µk,Σk) = g(xs;µk,s,Σk,s)g(c(xs);µk,c,Σk,c) (6.2)

The appearance feature c(xs) is actually the function of pixel location xs, implying the

intrinsic correlations between the spatial and appearance features although the decoupled

Gaussian distribution.
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Figure 6.1. The fitted spatial-appearance Gaussian mixture model to the
object region.

An illustrative example of fitting the spatial-appearance model to the object region (a

kid face) with 40-component mixture model is shown in Figure 6.1, where the left image

is the original video frame, and in the right image each red ellipse represents a spatial

Gaussian component fitted using Expectation-Maximization (EM) [33].

6.3. Expectation-Maximization (EM) Tracking

6.3.1. Maximum-Likelihood Formulation

Assume the object undergoes a motion transform characterized by a general motion model

T (xs; at). at is the transform parameter at time t that warps a pixel at location xs

from reference frame to the location T (xs; at) in the current frame. Without losing the

generality, we can assume the considered motion model having a general linear form as

follows:

T (xs; at) =




a1,t a2,t

a3,t a4,t


 xs +




a5,t

a6,t




= Atxs +Bt

(6.3)
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which can actually cover a broad spectrum of object motions, such as translation, scaling,

rotation, and affine motion, etc.

With the SAM object model initialized in the reference frame, the likelihood of an

object pixel xi, warped from the reference frame to the current frame by motion transform

T (xs; at), is evaluated as:

p(T (xi; at)|θ)

= p(T (xi,s; at), c(T (xi,s; at))|θ)

=
K∑

k=1

pkg(T (xi,s; at);T (µk,s,Σk,s; at))

× g(c(T (xi,s; at));µk,c,Σk,c)

=
K∑

k=1

pkg(xi,s;µk,s,Σk,s)g(c(T (xi,s; at));µk,c,Σk,c)

(6.4)

Note from Eq. 6.4 that not only the pixel spatial coordinate xi,s is transformed to

T (xi,s; at), but also the Gaussian parameter values on the spatial dimension are changed

from (µk,s,Σk,s) to T (µk,s,Σk,s; at). With the general linear motion model defined in

Eq. 6.3, such that T (xi,s; at) = Atxi,s +Bt, and T (µk,s,Σk,s; at) = (Atµk,s +Bt, AtΣk,sA
τ
t ),

this generally leads to a cancelled out effect on the Gaussian function evaluations on the

spatial GMM components. However, since the appearance features of each pixel are cou-

pled with the transformed position of the pixel in the current frame, i.e., c(T (xi,s; at)),

it essentially correlates the pixel likelihood evaluation with the unknown object motion

estimation at.
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To ease the derivations, define the data component probability q(k, xi; at) as

q(k, xi; at) = pkg(xi,s;µk,s,Σk,s)g(c(T (xi,s; at));µk,c,Σk,c) (6.5)

We propose a matching criterion to recover the object motion at based on the integration

of the pixel data logarithm likelihood over the object region.

E(at; θ) =
∑

xi∈R0

log p(T (xi; at)|θ)

=
∑

xi∈R0

log{
K∑

k=1

q(k, xi; at)}
(6.6)

This joint data likelihood term measures the data fitness of a candidate object region Rt

at current time t, warped from the reference object region R0, to the object SAM model

characterized by model parameter θ. Thus the problem of object tracking becomes an

essential optimization problem, where the objective is to look for an optimal value a∗t that

maximizes the joint likelihood energy function E(at; θ), i.e.,

a∗t = max
at

E(at; θ) (6.7)

6.3.2. Closed-Form Tracking with EM

Treating the motion transform parameter at as the only unknown value in the above

maximum likelihood estimation of Eq. 6.6, the Expectation-Maximization (EM) algorithm

is well suitable to be adopted here to recover the unknown value of at for the current frame,

with simultaneous achievement of energy function maximization.
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Unlike the general EM algorithm for the parameter fitting of GMM model, where the

objective is to find an optimal model parameter set θ∗ that best explains the training data

set. Here we assume that the GMM model parameter θ remains unchanged during this

optimization process, while only deriving a solution to incrementally update the motion

parameter at embedded into the EM iterations. We should clarify that our assumption

that the GMM model parameter stays constant during this one frame EM iteration is a

quite valid assumption. It actually has been intrinsically utilized by most existing tracking

approaches, where the object model, once firstly initialized, will generally remain fixed

during the whole tracking sequence, unless some online updating mechanism is adopted

in order to handle the non-stationary visual process [68,54,147].

In fact, it is interesting to point out that our mixture framework does allow a straight-

forward incorporation of an online updating process to handle the problem of tracking

non-stationary object appearance. Although the current version of the algorithm does

not take such a further step, we leave this issue for the future improvements. All the

experiments reported in this chapter do not take an online updating step, while still

achieving very encouraging tracking results.

Similar to the general EM algorithm, an initial value for the unknown parameter must

be specified in order to start the EM iterations. In our case we simply take the recovered

motion estimation a∗t−1 from previous frame as the initialization of at, i.e., a
(0)
t = a∗t−1. The

superscript indexes the EM algorithm iteration. Assume that we have already obtained an

estimation of at during the jth EM iteration, i.e., a
(j)
t , the E-step involves the computation
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of pixel assignment probability to each Gaussian component as

p(j)(k|xi; a
(j)
t ) =

q(k, xi; a
(j)
t )

∑K

m=1 q(m,xi; a
(j)
t )

(6.8)

with the data component probability q(k, xi; a
(j)
t ) defined in Eq. 6.5.

From the Jensen’s inequality, we have the following lower bound to the original energy

function E(at; θ):

E(at; θ)

=
∑

xi∈R0

log{
K∑

k=1

q(k, xi; at)}

=
∑

xi∈R0

log{
K∑

k=1

p(j)(k|xi; a
(j)
t )

q(k, xi; at)

p(j)(k|xi; a
(j)
t )
}

≥
∑

xi∈R0

K∑

k=1

p(j)(k|xi; a
(j)
t ) log

q(k, xi; at)

p(j)(k|xi; a
(j)
t )

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; at)−

∑

xi∈R0

K∑

k=1

p(j)(k|xi; a
(j)
t ) log p(j)(k|xi; a

(j)
t )

= E(j)(at; θ)

(6.9)

Maximizing E(at; θ) can be achieved by maximizing the lower bound function E(j)(at; θ),

and subsequently maximizing the first term of E(j)(at; θ) in Eq. 6.9, since the old pixel

assignment probabilities p(j)(k|xi; a
(j)
t ) are known provided the value a

(j)
t at jth EM it-

eration, thus the second term is unrelated to the objective function maximization over

at.



158

we define the first term of lower bound function by Ẽ(j)(at; θ),

Ẽ(j)(at; θ) =
∑

xi∈R0

K∑

k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; at) (6.10)

Iteratively maximizing Ẽ(j)(at; θ) by finding an updated estimation a
(j+1)
t has the same

effect on the incremental maximization of the original objective function E(at; θ). Rather

than the logarithm of a sum as in E(at; θ), the derived Ẽ(j)(at; θ) only contains a linear

combination of K logarithms, which breaks the coupling of the equations when setting

the derivatives of Ẽ(j)(at; θ) over the parameter at to zero.

We take an incremental updating form by assuming that a
(j+1)
t = a

(j)
t + ∆at, then the

above maximization can be written as

max
∆at

Ẽ(j)(∆at; θ)

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi; a
(j)
t ) log q(k, xi; a

(j)
t + ∆at)

(6.11)

Taking the partial derivative of Ẽ(j)(∆at; θ) over ∆at and setting it to zero, we can obtain

a series of linear updating equations to incrementally maximize the objective function

depending on what motion model is used.

To ease the exposition, we firstly show the updating equations for the simple case,

where a translational motion model is adopted, and object appearance feature is simply

the pixel intensity. Then we generalize the discussions to handle more complex motion

model, including scaling, rotation, or affine transform, and multi-dimension appearance

features such as pixel values in (r, g, b) color channel are also considered there.
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Recall that the motion parameter at = {At, Bt} as defined in Eq. 6.3, when transla-

tional motion model is taken, At becomes an Identity matrix, we only need to consider the

second term, i.e., at = Bt. By taking the incremental updating form, we have ∆at = ∆Bt.

Ẽ(j)(∆Bt; θ)

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t ) log q(k, xi;B

(j)
t + ∆Bt)

(6.12)

Taking the partial derivative over ∆Bt

∂Ẽ(j)(∆Bt; θ)

∂∆Bt

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t )

∂ log q(k, xi;B
(j)
t + ∆Bt)

∂∆Bt

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t )

× ∂ log g(c(xi,s +B
(j)
t + ∆Bt);µk,c,Σk,c)

∂∆Bt

(6.13)

where the spatial component probability g(xi,s;µk,s,Σk,s) and component priori pk in

q(k, xi;B
(j)
t + ∆Bt) disappear due to their uncorrelation with motion update ∆Bt. How-

ever, please note that their effects on the motion estimation do reflect on the computation

of pixel assignment probability p(j)(k|xi;B
(j)
t ).

Following the small motion assumption, c(xi,s+B
(j)
t +∆Bt) can be linearized by taking

the first order Taylor expansion as

c(xi,s +B
(j)
t + ∆Bt) = c(xi,s +B

(j)
t ) +H

(j)
i,t

τ
∆Bt (6.14)
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where H
(j)
i,t is the Jacobian matrix of the appearance feature over motion estimation

evaluated at its current value B
(j)
t . When the appearance feature is simply the pixel

intensity, H
(j)
i,t takes the form as

H
(j)
i,t =




cu(xi,s +B
(j)
t )

cv(xi,s +B
(j)
t )


 (6.15)

where (cu(xi,s +B
(j)
t ), cv(xi,s +B

(j)
t )) are the horizontal and vertical intensity gradients at

location xi,s +B
(j)
t of the current frame.

Recall that the probability distribution in appearance dimension g(c(xi,s + B
(j)
t +

∆Bt);µk,c,Σk,c) also takes the Gaussian form, in combination with the linearized form of

c(xi,s+B
(j)
t +∆Bt) in Eq. 6.14, the partial derivative of the objective function Ẽ(j)(∆Bt; θ)

over ∆Bt can be eventually reached as

∂Ẽ(j)(∆Bt; θ)

∂∆Bt

=
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t )

×H(j)
i,t Σ−1

k,c[(c(xi,s +B
(j)
t )− µk,c) +H

(j)
i,t

τ
∆Bt]

=0

(6.16)

i.e., the following linear system equation can be derived to solve ∆Bt

U∆Bt = V

∆Bt = U−1V

(6.17)



161

where matrix U and V are defined as follows

U =
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t )H

(j)
i,t Σ−1

k,cH
(j)
i,t

τ
(6.18)

V = −
∑

xi∈R0

K∑

k=1

p(j)(k|xi;B
(j)
t )H

(j)
i,t Σ−1

k,c(c(xi,s +B
(j)
t )− µk,c) (6.19)

The form of linear system equation implies that the contribution of each pixel to

motion estimation is weighted by its nearby spatial-appearance Gaussian components,

through assignment probability p(j)(k|xi;B
(j)
t ), and appearance mean µk,c and variance

Σk,c. Thus exact pixel-wise alignment between initial object region R0 and warped can-

didate Rt is relaxed, leading to a more flexible framework of tolerating large appearance

deformation during tracking. The extent of deformation tolerance is governed by the

variance coverage of each mixture component. The contributions of all pixels to motion

estimation are combined and voted for the optimal solution of motion update.

With the estimated motion update ∆Bt solved from Eq. 6.17, a new circle of EM

iteration starts with the updated estimation of the motion parameter B
(j+1)
t as

B
(j+1)
t = B

(j)
t + ∆Bt (6.20)

In summary, the proposed EM tracking approach takes the following two-step iterative

procedure.

E-Step: compute the mixture component assignment probability for each pixel xi by

Eq. 6.8.
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M-Step: obtain a motion update estimation ∆at by solving the linear system equation

as in Eq. 6.17.

The above EM iterations are iteratively computed to increase the joint data likelihood

until convergence.

6.3.3. Tracking under General Motion Transform

The proposed EM tracking procedure could be easily generalized to handle more complex

motion model, and incorporate more informative appearance features, while the same M-

Step updating equation as in Eq. 6.17 could still be derived. The only difference between

these variations lies on the computations of Jacobian matrix of the appearance feature over

motion estimation, i.e., H
(j)
i,t . For example, for similarity motion model, handling transla-

tion, scaling, and rotation, the 4-dimensional motion vector at = (a1,t, a2,t, a3,t, a4,t)
τ has

the following form:

At =




a1,t −a2,t

a2,t a1,t


 , Bt =




a3,t

a4,t


 (6.21)

the corresponding Jacobian matrix H
(j)
i,t with intensity feature is defined as

H
(j)
i,t =




cu(A
(j)
t xi,s +B

(j)
t )ui,s + cv(A

(j)
t xi,s +B

(j)
t )vi,s

−cu(A(j)
t xi,s +B

(j)
t )vi,s + cv(A

(j)
t xi,s +B

(j)
t )ui,s

cu(A
(j)
t xi,s +B

(j)
t )

cv(A
(j)
t xi,s +B

(j)
t )




(6.22)
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When color appearance features are used, the Jacobian matrix H
(j)
i,t becomes multi-

columns with each column having the same form as in Eq. 6.22 but in a different color

channel. More complex motion model, such as affine transform, can be derived in a similar

manner, therefore we omit the discussion here.

It is clear that our framework allows tracking object under any general linear motion

transforms that are solved in a unified way. The more complex motion recovery puts no

more computation overhead than the simple ones. It is actually a very appealing property

in comparison with the kernel-based tracking approaches using mean-shift, where only

object translation is principally handled.

As guaranteed by the Jensen’s inequality in Eq. 6.9, the lower bound optimization in

the proposed EM iterations will subsequently lead to a continuous maximization of the

original objective function, i.e., the data likelihood, thus driving the motion estimation

towards the optimal candidate object region. Compared with the Kernel-based track-

ing [25], where a line search procedure is usually required for the optimal step length

decision of mean shift iteration, our closed-form linear solution derived in Eq. 6.17 enjoys

a Newton-style iteration as in template matching [52] and Kernel-based tracking with

SSD [53]. It reaches a local optimum in an one-step jump, thus avoiding the tedious

process of line search.

Figure 6.2 shows an illustrative example of one-frame EM iterations. The left figure

represents the iterative motion estimations, illustrated by a series of colorized quadrangles

overlapping on the original frame, with pure red to pure yellow depicting this sequential

iteration procedure. The right figure clearly demonstrates the continuous increase of

the data logarithm likelihood, as provably guaranteed in Eq. 6.9. In this example, 10
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EM iterations are performed to reach the algorithm convergence, where we declare a

convergence when there is no significant change between the motion estimations in two

consecutive iterations.

Figure 6.2. Logarithm likelihood evaluation of the candidate object region
during one frame iterations.

6.4. Experiments

In this section, we present extensive experiments tested under challenging real-world

sequences. A differential tracker based on the proposed approach is implemented, capable

of handling object translation, scaling, and rotation. Comparisons are made with simple

template tracker and Kernel-based tracker, demonstrating the very encouraging perfor-

mance of our unified approach for tracking non-rigid objects under dramatic appearance

deformations, large object scale changes and partial occlusions.1

Depending on the availability of color channels from the input video, the appearance

features in the SAM model vary from intensity feature to color features in the RGB color

space. The number of mixture components used to model objects may take different

values depending on the relative size of objects. It is actually a trade-off factor to govern

1Please see the supplemental video for the detailed tracking results.
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the model flexibility to appearance deformation, where more components imply more

localized component coverage, thus more strict observance of rigid structure assumption,

while less components allow more relaxed alignment between the candidate region and

object model. Our experience shows that 20-40 components usually work well for a broad

spectrum of non-rigid objects we are testing on. We leave the investigation on optimal

number of components selection for future study. Some related work along this direction

includes [2, 54]. To speed up the model initialization, we take the tracked object regions

in the first 50 frames of each sequence to update the mixture model, with one frame

one EM iteration to obtain the model. After that, the model is fixed without further

updating, and used for tracking the rest of video frames. The current unoptimized C++

implementation of the algorithm runs comfortably around 5-10 fps on average on Pentium

3G.

6.4.1. Large Appearance Deformation

Figure 6.3 shows the tracking results over a home video sequence, where a kid presents

significant expression changes, thus dramatic appearance deformations. Considering the

relative large size of object, a 40-component mixture model is adopted here to initialize

the differential tracker with similarity transform motion model. The first row gives the

result from a template matching tracker. It loses a tight tracking of the kid face at the

early stage of the sequence, when the kid starts to behave his exaggerating expression and

simultaneously shows the significant head movement. The second row of the Figure 6.3

shows the iterative motion estimations in each frame via the proposed differential tracker,

with colorized quadrangles from pure red to pure yellow depicting the series of updating
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as before. The thickened boundaries due to multiple iterations clearly reflect the large

motion effects, which are not only from translation, but also through rotation and scaling.

Albeit the difficulties, the proposed differential tracker successfully keeps localizing the

non-rigid face with correct motion estimations until the kid completely turns his head to

the right side, thanks to the intrinsic deformation tolerance of the proposed approach.

Figure 6.4 demonstrates our tracking results on the famous but challenging Dudek se-

quence2, which has been tested over several approaches addressing online tracking adapta-

tion [68,82]. The person in this sequence presents not only large appearance variations by

changing pose during movement, but also several short periods of severe occlusions. With-

out counting on the online adaptation, which is acknowledged hard to find the balance

between the model adaptability and resistance to noise [54], our approach still achieves

very encouraging results, that the improved robustness to partial occlusions could be at-

tributed to the some extent model tolerance on spatial-appearance misalignments in the

SAM model.

6.4.2. Large Scale Change

Figure 6.5 shows a real-world surveillance video to demonstrate our tracker capacity of

handling large object scale change3. A person enters the scene distantly with a quite small

scale. Our tracker is initialized on this small object region, and robustly tracks the person

for the remaining 1000 frames. Note the accurate scale estimations of the person during

most of the tracking period. Two severe occlusions happen when the person is coming

2We acknowledge Dr. El-Maraghi [68] for allowing us to download this sequence from his website for
testing.
3We acknowledge the source data is provided from the EC Funded CAVIAR project/IST 2001 37540,
found at URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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across with other pedestrians, which shortly affects the tracker’s scale estimations during

occlusion. After the person re-appearance from occlusion, the tracker recovers itself and

starts to report the accurate motion estimations again.

The last example in Figure 6.6 also shows a home video filming the same kid as in

Figure 6.3. Now the kid demonstrates a dramatic scale change, and also brings the trouble

to the tracker by intentionally presenting serious occlusion. Our tracker again robustly

tracks the kid face with the correct scale estimations for the whole sequence as shown in

Figure 6.6 (b). In comparison, the results obtained from a color-based mean-shift tracker

in Figure 6.6 (a) reports an incorrect scale estimation, and consequently loses tracking

the object.

6.5. Discussions

In summary, this chapter presents a novel differential approach for non-rigid object

tracking under the general motion transform. A spatial-appearance model (SAM) is in-

troduced to model both the object appearance variations and its global spatial structures.

A maximum likelihood matching criterion is defined and rigorous analytical results are

obtained through Expectation-Maximization (EM) algorithm, leading to a closed form

solution to motion tracking. The derived linear system equation also suggests us to take

a new view to look at the connections between the two standard tracking paradigms,

template tracking and Kernel-based tracking. Our ongoing research will mainly focus on

a deeper investigation on the intrinsic relations of the proposed approach with them, and

their more recent advances, such as [53,39].
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(a) tracking with template matching.

(b) differential tracking via SAM, iterative motion estimations of each frame.

(c) differential tracking via SAM, final tracking result of each frame overlapped by spatial mixture components.

Figure 6.3. Tracking a kid face under large appearance deformation. (560 Frames)



169

(a) differential tracking via SAM, iterative motion estimations of each frame.

(b) differential tracking via SAM, final tracking result of each frame overlapped by spatial mixture components.

Figure 6.4. Tracking a human face under large scale change and severe
occlusions (1145 Frames).
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Figure 6.5. Tracking a pedestrian under large scale change and partial oc-
clusions with the proposed differential tracker via SAM. Results overlapped
by spatial mixture components. (1230 Frames)

(a) mean shift tracking.

(b) differential tracking via SAM, iterative motion estimations of each frame.

Figure 6.6. Tracking a kid face under large scale change. (690 Frames)
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CHAPTER 7

Conclusion and Future Research

With the proliferation of camera sensors deployed world widely, video surveillance

systems are gradually finding their way into our daily lives. Security enforcement [55],

traffic monitoring [22,99] and daily assistance for elderly [150] are all active applications of

the video surveillance systems, to mention a few. A direct consequence of the technological

advancements in camera sensor networks is the increased demand for intelligent video

analysis and understanding techniques.

This dissertation concentrates on the developments of efficient and effective visual

motion analysis techniques that allow automated tracking of multiple targets, which is

arguably the most essential problem and component of any state-of-the-art intelligent

video surveillance systems.

Due to the unknown number of targets that need to be tracked, and the potential

ambiguities introduced by multiple target-tracker associations, a simple solution of in-

stantiating multiple independent trackers is far from enough to solve the problem. Be-

sides sharing the common challenges faced by visual tracking of single target, successful

tracking of multiple targets’ motions are also confronted by the tremendous difficulties

from the theoretical and practical aspects of the problems, such as target appearance

variations, target occlusions, high computational demanding, and difficulty of training a

target detector.
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7.1. Summary

In this dissertation, we present several novel effective and computationally efficient

solutions to addressing the above mentioned problems in multiple motion analysis, with

the aim of driving the state-of-the-art motion analysis algorithms to fulfill the ever in-

creasing challenges from the real world data. In summary, we have made the following

novel contributions to tackle the above challenging problems:

• A novel centralized formulation to tackle the multiple target tracking problem

with explicit occlusion handling, where the extra hidden process of occlusion is

embedded into a dynamic Bayesian network formulation. The successful inference

of this hidden process can reveal the explicit occlusion relations among different

targets, which makes the tracker more robust against partial even complete oc-

clusions.

• A novel linear complexity decentralized framework to address the multiple target

tracking problem. The basic idea is a distributed while collaborative inference

mechanism based on Markov network formulation, where a probabilistic exclu-

sive constraint is added to the targets to allow the set of neighboring targets

to compete for the common visual data accounting for the target appearances.

Variational inference is employed on the Markov network analysis and reveals an

essential parallelization and distributed computing paradigm for multiple target

tracking.

• A principled extension of the decentralized framework to enable the tracking of

variable number of targets through the entropy-based tracker performance self-

evaluator. Discriminative target detector is also bonded into the framework to
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enable the construction of effective importance functions to collect informative

bottom up image features for more efficient probabilistic inference.

• A novel two-layer statistical field model is proposed to characterize the large

shape variability and partial occlusions for nonrigid target detections, especially

pedestrian detections. Probabilistic variational analysis reveals a set of fixed

point equations that give the equilibrium of the field, leading to computationally

efficient methods for calculating the image likelihood and for training the model.

• A component-based appearance tracker based on support vector machines is in-

troduced to accommodate the large object appearance variations, enabling the

development of a robust single target tracker. The designed component selective

mechanism brings the algorithm the capacity of automatically selecting trust-

worthy components while down-weighting the unreliable ones, thus making the

robust handling of object partial occlusions possible.

• A novel differential tracking approach is developed based on a spatial-appearance

model (SAM) that combines local appearances variations and global spatial struc-

tures. Rigorous derivation of the model can lead to a closed form solution to

motion tracking under any linear motion transformations. The performance eval-

uation shows that the developed tracker is able to continuously track non-rigid

objects that exhibit dramatic appearance deformations, large object scale changes

and partial occlusions.
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7.2. Potential Future Research Directions

There are a few directions which are interesting to explore in the future research

endeavors.

• Single target robust tracking with valid model adaptations. Although our pro-

posed algorithms ?? are able to handle the large non-rigid appearance variations,

the other issue remaining to be explored is how to achieve the robust tracking

of a target with non-stationary appearances? Due to the inexistence of invariant

appearance features for target modelling, model adaptation has to be addressed,

i.e., an online model updating mechanism must be explored in order to success-

fully fitting the model to the continuously changing target appearance. Actually,

both our collaborative support vector tracker and differential spatial-appearance

tracker do not exclude such a direct extension to accommodate this incremental

model updating procedure. Some of the promising results along this direction

have been proposed in [59,148,54], but we believe that a more rigorous treatment

is expected to justify the validity of model adaptations over time.

• Tracking using camera networks. All the tracking algorithms presented in this

dissertation are based on the input from single camera setup, although the pro-

posed approaches are theoretically general enough to be compatible with inputs

from multiple camera setups. The visual measurements collected from multiple

cameras also enable the possibilities of the 3D target model construction in the

tracking formulation. We believe that not only this 3D extension will lead to

more accurate target model characterizations, but also the motion competitions

introduced in the decentralized multiple tracker formulation will also be better
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beneficial from this 3D setting, since practically any two targets can not physi-

cally occupy the same locations in 3D space.

• Target re-identification under the non-overlapping camera network. It is very

often that the number of cameras set up to cover a large surveillance area may

not be enough to achieve an overlapping coverage between any spatial neighboring

camera sensors, while the target being tracked may show the extensive movements

across these non-overlapping cameras. It implies that we are facing the problem

of establishing the correct correspondences of the target tracks even under the

existence of target disappearing during some noticeable period of time. Some

promising results for this problem are reported in [67, 116, 51], but they are still

in some heuristic nature. It is interesting to investigate that whether some more

theoretical sound solution can be discovered.

• Towards trajectory-based event detection and mining. When multiple target de-

tection and tracking have successfully extracted the motion trajectories of the

targets from large video data set, the next question we are naturally willing to

ask is that what semantically interesting contents we can discover for analysis, in-

terpretation, and action. In general, learning-based approaches must be adopted

to achieve supervised or unsupervised classifications based on the trajectories

data set. We deem this as our long term goals to fulfill the desired properties

of the high level semantical descriptions of the visual data for truly “intelligent”

video surveillance applications.
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CHAPTER 8

Appendix

This appendix gives the derivation of the mean field approximation of Eq. 4.7. Based

on Eq. 4.5 and 4.6, we have:

J(Qi) = H(Qi) +
∑

k 6=i

H(Qk) +

∫

xi

QiEQ[log p(X,Z)|xi]

Since Qi is a distribution, we can construct a Lagrangian:

L(Qi) = J(Qi) + Λ(

∫

xi

Qi − 1)

Then, the derivative of L(Qi) w.r.t. Qi gives:

∂L(Qi)

∂Qi

= − logQi − 1− EQ[log p(X,Z)|xi] + Λ

Once we set the derivative to zero, we obtain:

Qi = e−1+Λ+EQ[log p(X,Z)|xi] =
1

Zi

eEQ[log p(X,Z)|xi]
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