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ABSTRACT

Many emerging applications require tracking targets in

video. Most existing visual tracking methods do not work

well when the target is motion-blurred (especially due to fast

motion), because the imperfectness of the target’s appearances

invalidates the image matching model (or the measurement

model) in tracking. This paper presents a novel method to

track motion-blurred targets by taking advantage of the blurs

without performing image restoration. Unlike the global blur

induced by camera motion, this paper is concerned with the

local blurs that are due to target’s motion. This is a chal-

lenging task because the blurs need to be identified blindly.

The proposed method addresses this difficulty by integrating

signal processing and statistical learning techniques. The es-

timated blurs are used to reduce the search range by providing

strong motion predictions and to localize the best match ac-

curately by modifying the measurement models.

1. INTRODUCTION

Many emerging applications require tracking targets in video.

In real situations, motion blurs are not uncommon in cap-

tured video data. They are undesirable for image analysis be-

cause the imperfectness of the target’s appearances is likely

to jeopardize image features, such as image gradients, sum-

of-square-differences (SSD), and color histograms, and thus

invalidates the image matching model (or the measurement

model) in tracking. Although deblurring methods that im-

prove the image quality have been widely investigated in the

literature [1, 2], these studies are often based on the assump-

tion that the entire image is subject to the same global mo-

tion blur (this is for the case when there is camera motion).

Unfortunately, in real applications, we observe more compli-

cated and challenging situations where motion blurs are only

present in parts of the image. These local motion blurs can

be produced by 1) fast movements of the targets, or 2) insuffi-

cient lighting that reduces the shutter speed of auto-exposure

cameras.

Studies on motion blur detection or estimation of the point

spread function (PSF) can be traced back to 1970s. For exam-

ple, motion blurs and out-of-focus blurs may be identified by

locating the zero-crossings of the cepstrum [3] and the bispec-

trum [4]. In the more recent studies, blurs can be estimated

by mapping the low frequency components to the high fre-

quencies based on a learned VQ codebook [5], or employing

the discrete periodic Radon transform for efficient computa-

tion [6].

Although motion blur degrades image qualities, we can

also take advantage of it. If the motion can be estimated from

the blur, it can facilitate many motion-related tasks, such as,

optical flow computation [7], motion segmentation [8], and

tracking [9]. Note that in the aforementioned works, a global

motion blur is assumed in stead of a local one.

This paper presents a novel method to deal with local

motion blurs in visual tracking without deblurring, by inte-

grating signal processing and statistical learning techniques.

This learning-based scheme differentiates motion-blurred im-

age patches from non-blurred patches and estimates the local

motion blur mask to facilitate tracking. A support vector ma-

chine (SVM) classifier is employed to discriminate blurs after

aligning the patches by steerable filters. Then those identified

blurred patches are clustered to obtain a more accurate esti-

mation of the motion direction. During the tracking process,

blurred templates of the target are synthesized according to

the blur direction and used for matching.

2. THE PROBLEM

It is reasonable to assume that the target’s motion is linear

between two successive frames, so the PSF h(x, y) can be

modelled as a rectangular pulse whose orientation and width

correspond to the direction and severity of the blur. Regard-

less of the orientation, the PSF is

h(x, y) =

{

0 y 6= 0,−∞ ≤ x ≤ ∞

1/l y = 0,−l/2 ≤ x ≤ l/2,
(1)

where l represents the strength of the blur. The blurred im-

age Iblur(x, y) is generated by convoluting the PSF and the

original image I(x, y), that is,

Iblur(x, y) = I(x, y) ∗ h(x, y) + n(x, y), (2)

where n(x, y) represents the additive noise. In the frequency

domain, the rectangular PSF corresponds to a sinc function,

which provides valuable information for blur estimation. It

is very difficult to detect the zero-crossings associated with



the sinc function. However, the associated strip patterns that

indicate the possible presence of motion blurs are generally

adequately detectable. Thus an important issue here is to lo-

cate the strip patterns, or simply the dominant directions in

the frequency domain.

To identify global blurs, images can be divided into small

patches so as to suppress the noise by averaging the estimated

blurs. However, the situation is more complicated when de-

tecting and identifying local motion blurs, because some parts

of the image are non-blurred regions, so then we can not sim-

ply apply the averaging scheme. Thus, a critical issue here is

to determine if a small image patch is motion blurred or not.

We need to answer some important questions: (1) is the infor-

mation in the individual image patch sufficient to determine

if it is blurred? (2) how to suppress the influence of noise and

other factors such as texture? (3) how to detect and estimate

the blur? and (4) how can the blur be used for tracking?

To answer the first question, only one small image patch

itself may not be able to determine the blur. Since it can pro-

vide some rough estimates, the final decision can be made

by integrating a number of patches. For the second question,

there are many factors that may influence the estimation re-

sult, such as the additive noise, texture regions, and block

boundary effects due to compression. Since it is difficult to

model these factors, we employ a statistical learning approach

(a support vector machine) to discriminate blurs. For the third

question, we employ steerable filters to estimate the dominant

direction in the frequency domain.

When the target is blurred due to fast motion, the predeter-

mined measurement model of the tracker is generally unable

to obtain good matches and is likely to fail the tracker. At this

point, once the blur is detected and identified, we can syn-

thesize various blurred templates of the targets with different

blur strengths, and search for the best matches of the blurred

templates so as to obtain more accurate tracking results.

3. PROPOSED APPROACH

The proposed approach to tracking motion-blurred targets is

illustrated in Fig. 1. The target of interest T is initialized

in the first frame. For each image frame fk, the mean-shift

tracker [10] that matches the target’s color-histograms is ap-

plied first. If its matching score is low, we assume that blur

occurs and we need to estimate the blur parameters (direction

θb and strength lb). The blur identification procedure consists

of three steps: blur mask detection with SVM, blur direction

estimation with steerable filters, and blur strength estimation.

Then, the mean-shift algorithm is applied again with synthe-

sized blurred templates T (θb, lb).

3.1. Steerable filters

Steerable filters [11] can extract the dominant direction of a

small image patch. They are much more computationally ef-

ficient than the Radon transform. The filter in any given di-

rection can be expressed as a linear combination of a small

Fig. 1. The proposed approach.

set of basis filters. So we only need to compute the convolu-

tion with a small number of filters, and infer the responses on

other directions by a simple linear combination. The filter in

direction θ can be expressed as

fθ(x, y) = Σjkj(θ)f
θj (x, y), (3)

kj(θ) =
1

3
[1 + 2 cos(2(θ − θj))], (4)

where θj = jπ/3, j = 0, 1, 2, and fθj is the basis filter in

direction θj . After scaling of x and y, it can take the rotated

version of the following even and odd filters respectively

fe(x, y) = 0.9213(2x2 − 1)e−(x2+y2), (5)

fo(x, y) = (−2.205x + 0.9780x3)e−(x2+y2). (6)

To extract the strip direction in the frequency domain,

only the even filter is required due to the symmetry property.

To extract the dominant direction of an image patch in the im-

age domain, both even and odd filters are needed, since both

a strong image edge and a strip may produce a dominant di-

rection. The final direction can be chosen as

θb = arg max
θ

((fθ
e (x, y))2 + (fθ

o (x, y))2). (7)

3.2. Blur detection based on SVM

A Support Vector Machine (SVM) [12] is a powerful statis-

tical learning algorithm. It can learn a non-linear discrimina-

tion function from a set of labelled training data for pattern

classification or data regression. This function can minimize

the training error, and at the same time, guarantee the gen-

eralization ability of the classifier by maximize the margin

between the so-called support vectors.

In our approach, an SVM is trained to classify blurred and

non-blurred small image patches in order to implicitly han-

dle the noise and other influences that are difficult to model

explicitly. This approach is completely different from most

existing blur estimation methods that are based on spectral

analysis and are thus limited by noise. Images with a lin-

ear motion blur generally show strip patterns in the frequency

domain. In theory, the blur direction and strength can be es-

timated by extracting the direction and width of the strips.



Fig. 2. 2D color histograms for the same object without and with

motion blur (frame #1 and #70 in the sequence of Fig. 5(a)).

However, there are two difficulties here: (1) the strip pat-

terns are not apparent when the patches are small such that

the noise may override the strip patterns, and (2) the window

effect produces edges in the frequency domain that generate

undesirable patterns.

Although it is difficult to model these influences, they can

be learned from the training examples. To train an SVM

classifier, we collect negative (or non-blurred) training data

that are patches from non-blurred images, and positive (or

blurred) training data that are synthesized motion-blurred im-

age patches. These data are aligned by rotating the patches

according to their dominant directions extracted by steerable

filters on a fixed scale (4 in our experiments). The direction

saliency of a patch p is defined as

S(p) =
maxθ((f

θ
e (x, y))2 + (fθ

o (x, y))2)

minθ((fθ
e (x, y))2 + (fθ

o (x, y))2)
. (8)

Patches with S(p) ≤ Sthr are not included, because they

usually represent homogeneous regions and are ambiguous

to classify. We set Sthr = 2. The size of each patch is

16 × 16 pixels, 5000 non-blurred patches are randomly col-

lected from the Corel database, while 5000 blurred patches

are synthesized on random patches selected in the same data-

base. The blur strengths are randomly chosen from 5 to 32

pixels. Each patch is represented by its 256 DFT coefficients.

The average classification accuracy of 5-fold cross validation

is 90.5%, which is enough for direction estimation in our ex-

periments.

3.3. Blur estimation for tracking

As mentioned in Sec. 1, motion blurs influence most low-level

image features and thus fail many tracking algorithms. The

mean-shift tracker [10], which searches for the best matching

of the kernel weighted color histograms of the target by gradi-

ent descent, is used in this work. When motion blur is present,

adjacent color pixels will be blended and generate new colors

such that the color appearance of the target may be greatly

changed (as shown in Fig. 2) to fail the mean-shift tracker.

Fortunately, once we can estimate the local motion blur di-

rection, we can synthesize various motion-blurred templates

of the target with different blur strengths along the estimated

motion direction. Then we can utilize the color histograms of

the blurred templates to obtain the matches by mean-shift.

In our experiment, the blurred patches are identified on the

region which is obtained by enlarging the tracking result in

Fig. 3. Local motion blur detection and identification.
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Fig. 4. Matching score comparison with Mean-shift for the se-

quence of Fig. 5 (a).

the previous frame by 50% in length. We use morphological

operations to obtain a spatially consistent blurred mask, and

steerable filters to estimate the blur direction of this region.

The direction estimation result is likely to be distracted by

nearby strong edges without the blur identification modular.

Once the blur direction θb is estimated, for a given blur

strength l, a new template T (θb, l) can be synthesized (the

template size is reduced to exclude the influence from nearby

regions). The mean-shift tracker finds the best match for T (θb, l)
very efficiently, and provides a similarity measurement de-

noted by MT (θb, l). The blur strength lb is chosen by a line

search, the search step in our experiments is set to 4 pixels.

lb = arg max
l

MT (θb, l). (9)

4. EXPERIMENTS

4.1. Local motion blur detection and identification

Fig. 3 shows the result of local blur detection and identifica-

tion on synthesized image. The left image contains two re-

gions blurred by different parameters. The right image shows

the confidence of the SVM classifier (darker color means lower

confidence). The ground truth is θ = 0, l = 10 and θ =
90, l = 15 for two regions respectively. The estimated blur

directions of the two regions are θ = 5o and θ = 84o respec-

tively, which are very close to the ground truth.

4.2. Tracking with blur estimation

We incorporate the local motion blur detection in a mean-shift

tracker. The color histogram has 64 × 64 bins in the hue-

saturation plane. As the object moves quickly or the illumi-

nation is not sufficient, the motion blurs are severe and result



(a)

(b)

Fig. 5. Tracking and comparison. Two examples are shown, where top/buttom rows in (a) and (b) are the tracking results without/with

motion blur estimation (frame # for (a): 1, 69, 70, 105, 183, 190, frame # for (b): 1, 63, 64, 135, 177, 190).

in the blending of the adjacent colors. The target is manually

initialized in the first frame. As shown in Fig. 5, the yellow

pixels in the book title region are blended with the adjacent

red pixels, and the purple and the green ones on the box are

merged to generate some yellow pixels. As shown in the first

row, the mean-shift tracker is unable to find an exact matching

from frame 69 and 63, thus loses track. With the help of local

motion blur estimation, our approach achieves much more ac-

curate tracking results, as shown in the bottom rows in Fig. 5

(a) and (b). For sequence (a), Fig. 4 shows that our method

can achieve higher matching scores in present of motion blur,

thus provide a more accurate tracking result.

5. CONCLUSION

This paper addresses the challenges in tracking motion-blurred

targets and proposes a novel learning-based method to esti-

mate local motion blurs for tracking. This method uses an

SVM classifier to differentiate blurred and non-blurred image

patches to cope with the influence of noise and other non-

parametrical factors. The proposed method yields promising

results on detecting local motion blurs and achieves encourag-

ing results on tracking blurred targets compared to the state-

of-the-art tracking algorithm. The future study includes the

incorporation of more complex motion blurs and the reduc-

tion of the complexity.
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