

Shengyang Dai¹, Mei Han², Wei Xu², Ying Wu¹, Yihong Gong²

EECS Department, Northwestern University, Evanston, IL
 NEC Laboratories America, Inc., Cupertino, CA

Prior is needed

- Minimize the reconstruction error
 - \Box Degraded HR \rightarrow LR input
 - □ Efficient solution by Back-projection (Irani'93)
- However ...
 - SR is under-determined (Baker&Kanade'02, Lin&Shum'04)
 Image prior is needed for regularization

What kind of prior?

LR input

Back-projection **Bicubic interpolation**

Smooth edges are preferred

What kind of smoothness?

Soft smoothness is preferred

Questions

- □ How to describe an edge?
- □ How to obtain a soft smooth edge?

Our solutions

- □ Alpha channel edge description
- □ Soft edge smoothness prior

Questions

How to describe an edge?
How to obtain a soft smooth edge?
Our solutions
Alpha channel edge description
Soft edge smoothness prior

Alpha matting

A closed form solution with smoothness assumption (Levin etc. '06)

Matting for SR

Matting for SR

Matting for SR

Questions

How to describe an edge?
How to obtain a soft smooth edge?

Our solutions

Alpha channel edge description
Soft edge smoothness prior

Objective

Regularity term prefers soft smooth edge

Objective

Geocut	Our method
Hard edge	Soft edge

Pixel neighborhood

Image grid graph

$$\mathcal{G} = \langle V, E \rangle$$
$$n_{\mathcal{G}} = 2$$

Hard edge smoothness

Geocut (Boykov&Kolmogorov'03)

$$\mathcal{G} = \langle V, E \rangle$$
 Curve C
Cut metric: $|C|_{\mathcal{G}} = \sum_{e \in E_C} w_e$
 $= \sum_{1 \leq k \leq n_{\mathcal{G}}} \left(w_k \sum_{e_{pq} \in N_k} |F_C(p) - F_C(q)| \right)$
 F_C : Binary indication function on grid
 $n_{\mathcal{G}}$: Neighborhood order of the image grid
 \mathcal{W} : Edge weight of the grid graph
 N_k : Set of the pixels pairs of order k

Hard edge smoothness

$$|C|_{\mathcal{G}} \rightarrow |C|_{\mathcal{E}}$$

Cut metric Euclidean length

- A regularity term prefers hard smooth edge
- Application
 - □ Segmentation problem
 - □ Reducing the metrication artifact

Objective

Geocut	Our method
Hard edge	Soft edge

Soft edge smoothness

Soft edge is equivalent to a set of image level lines

Soft edge smoothness

Soft edge smoothness

- A regularity term prefers soft smooth edge
- Application
 - □ Super resolution
 - □ Reducing the jaggy effect

For SR

Objective function

$$I^{h} = \arg\min_{I} \left(||I^{l} - (I * G) \downarrow ||_{2}^{2} + \lambda |I|_{\mathcal{G}} \right)$$

- Efficient optimization by steepest descent
- Critical parameters

$$n_{\mathcal{G}}$$

- Two options
 - □ Alpha channel SR for each edge segment
 - □ Color channels SR over entire image

Effect of $n_{\mathcal{G}}$

Effect of λ

0

 $\lambda = 0.01$

Back-projection

 20×20 s = 3 $n_{\mathcal{G}} = 12$

Note: color channels are processed separately

Color channels SR

Color channels vs. alpha channel

Color channels SR on the entire image

Alpha channel SR on edge segments

Alpha channel SR

Process each edge segment separately

Comparison

Bicubic

Our method

Back-projection

Comparison – reconstruction based

 $100 \times 170 \times 3$

Bicubic

Our method

Back-projection

Comparison – exemplar based

 $\begin{array}{c} 70\times70\\\times4\end{array}$

Our method

Learning low level vision (courtesy to Bill Freeman)

Neighbor embedding (courtesy to Dit-Yan Yeung)

Conclusion

- Soft smoothness prior
 - □ With specific geometric explanation
 - □ Applicable to super resolution
- Alpha channel super resolution

Limitation

□ The smoothness prior may not hold for texture